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ABSTRACT

Ovarian cancer accounts for the highest mortality among gynecologic cancers, 
mainly due to intrinsic or acquired chemoresistance. While mechanistic-based 
methods have been used to identify compounds that can overcome chemoresistance, 
an effective comprehensive drug screening has yet to be developed. We applied 
a transcriptome based drug sensitivity prediction method, to the Cancer Genome 
Atlas (TCGA) ovarian cancer dataset to impute patient tumor response to over 100 
different drugs. By stratifying patients based on their predicted response to standard 
of care (SOC) chemotherapy, we identified drugs that are likely more sensitive in SOC 
resistant ovarian tumors. Five drugs (ABT-888, BIBW2992, gefitinib, AZD6244 and 
lenalidomide) exhibit higher efficacy in SOC resistant ovarian tumors when multi-
platform of transcriptome profiling methods were employed. Additional in vitro and 
clinical sample validations were carried out and verified the effectiveness of these 
agents. Our candidate drugs hold great potential to improve clinical outcome of 
chemoresistant ovarian cancer.

INTRODUCTION

Ovarian cancer is the leading cause of death among 
gynecological cancers with an average 5-year survival rate 
of only 46% [1]. The standard of care (SOC) for ovarian 
cancer is surgery followed by chemotherapy with a 
combination of a platinum agent (carboplatin or cisplatin) 
and a taxane (paclitaxel or docetaxel). Even though the 
majority (about 80%) of ovarian cancer patients respond 
to the initial chemotherapy, around 20% patients fail to 
respond. In addition, more than half of initial responders 
relapse within 3 to 5 years [2, 3]. Therefore, the 
identification and development of effective drugs against 
chemoresistant ovarian tumors is of great importance.

Several compounds have been examined to 
overcome chemoresistance in ovarian cancer based on 
known biology [4-8]. In addition, high throughput drug 
screening has been conducted in large variety of cancer 
cell lines [9-11]. However, efforts to adapt the high 
throughput drug screening results in order to overcome 
ovarian chemoresistance have not been reported. To this 
end, our lab has previously developed pRRophetic, a 
transcriptome based drug sensitivity prediction tool, which 
relates cell line drug sensitivity screening datasets with 
the corresponding cell line transcriptome data to predict 
in vivo drug IC50s with great accuracy [12, 13].

In this study, to leverage the predictive power of 
pRRophetic, we applied it to impute drug sensitivity in the 
Cancer Genome Atlas (TCGA) ovarian cancer dataset. The 
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rich molecular profiles available in over 500 high-grade 
serous ovarian cancer (HGSOC) made TCGA ovarian cancer 
dataset an optimal dataset to comprehensively examine 
the molecular landscape of ovarian cancer. However, one 
drawback of the TCGA data is the lack of clearly reported 
drug sensitivity data. Our work therefore filled this gap 
by applying drug prediction methods to TCGA in order to 
generate predicted drug IC50 for every ovarian tumor sample.

More importantly, given that both the SOC and 
drugs that have never been used in treating ovarian cancer  
have been screened in vitro, this allowed us to generate 
predicted in vivo drug sensitivity to a wide range of 
drugs. By stratifying patients based on their likelihood of 
responding to SOC chemotherapy, we revealed several 
drugs that can be more efficacious in tumors that are 
resistant to SOC. Additionally, in vitro and in independent 
clinical sample validations were carried out to confirm the 
role of these agents.

RESULTS

Predicting drug sensitivities in ovarian tumors 
based on their transcriptome profiles

Using pRRophetic, we generated 1,773 predicted drug 
IC50s for all tumors in TCGA ovarian cancer datasets (see 
Methods; 138 drugs × 598 unique tumor samples). Separate 
predictions were generated using each of the 4 different 
transcriptome profiling platforms, including 520 samples for 
Affymetrix microarray, 574 samples for Agilent microarray, 

413 for RNA-Seq, and 266 for RNA-Seq V2 (samples were 
overlapped among 4 platforms). A high predicted drug 
IC50 represented less sensitive/potential resistance, and 
conversely a low predicted drug IC50 suggested sensitivity.

As a proof-of-concept, we compared our predicted 
drug IC50s to the patient outcome data (survival) available 
through TCGA. Here, because of the lack of drug treatment 
response reported in TCGA, the survival data was used as a 
surrogate for the measured drug response phenotype. When 
evaluating predicted vs. actual drug sensitivity (quantified 
as alive or dead after a given treatment), we observed that in 
the ovarian cancer patients who were treated with paclitaxel, 
the predicted drug IC50s for paclitaxel were correlated with 
the patients’ survival outcomes (Figure 1, Student’s t-test 
P=0.032, Wilcoxon rank-sum test P<0.0001). When a tumor 
is predicted to be more sensitive to the drug (i.e., a lower 
predicted IC50 values), the patient is more likely to be alive. 
These correlation trends between predicted and observed 
drug sensitivity were also observed for docetaxel and 
cisplatin, although not statistically significant. Note that only 
a subset of TCGA ovarian cancer samples contain treatment 
information with the highest numbers of patients treated with 
paclitaxel (n=469). Given ovarian cancer survival is highly 
correlated with disease stages, we also fitted a regression 
model between survival and predicted paclitaxel sensitivity 
controlling for disease stage. Once again, we observed a 
significant correlation between the predicted paclitaxel 
IC50 and the survival outcomes of those patients underwent 
paclitaxel treatment (P=0.0385). Only 112 and 154 patients 
were known to be treated with docetaxel and cisplatin, 

Figure 1: Predicted paclitaxel IC50s are correlated with the patients’ survival outcomes (Student’s t-test P=0.032). 
Predicted drug IC50 is lower (more sensitive to paclitaxel) in alive group.
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respectively, suggesting that we may be underpowered to 
observe such an association for these other drugs.

Identify drug candidates that may work in the 
SOC resistant ovarian tumors

For every tumor sample, we averaged the predicted 
drug IC50 of cisplatin and docetaxel, the current SOC, as 
an indicator of individual tumor sensitivity to SOC (See 
blue line in Figure 2). Given 80% SOC response rate 
was well documented by literature [2, 3], we stratified 
the 20% tumor with higher predicted SOC IC50 as SOC 
non-responders (Figure 2). We then performed a Student’s 
t-test for predicted drug IC50 for all other drugs between 
SOC responders and non-responders. Only those drugs 
that showed lower predicted IC50 in SOC non-responders 
groups than SOC responders (P<0.05) were further 
evaluated.

Each of the 4 transcriptome profiles for these 
samples were analyzed separately to generate predicted 
drug IC50s. Therefore, four sets of candidate drugs were 
identified using each transcriptome profiling dataset. 
Specifically, we identified 13, 17, 18 and 12 drugs with 
the Affymetrix arrays, Agilent arrays, RNA-Seq, and 
RNA-Seq V2 datasets, respectively. (Details about these 
drug candidates identified from each platform can be 
found in Supplementary Table 1). Among them, 5 drugs 
were identified in all four datasets. They were ABT-
888, BIBW2992, gefitinib, AZD6244, and lenalidomide 
(Table 1). For each candidate drug, the average predicted 
drug IC50 in SOC sensitive and resistant group were 
reported in Table 1. All 5 candidate drugs had significantly 
lower predicted drug IC50 (suggesting more sensitive) in 
the SOC resistant group than those in SOC sensitive group 
(P<0.05, two-tailed Student’s t-test). Significant negative 
Pearson correlations were shown in Figure 3 between 
ABT-888 (R= -0.164, P= 0.0002), or BIBW2992 (R= 
-0.148, P= 0.0007), and SOC when rank order patients 
based on their predicted sensitivity to these drugs. To 
ensure the robustness of the results, we also performed 
Pearson test using the actual predicted drug IC50. Again, 
significant negative correlations were shown between 
SOC and ABT-888 (R= -0.222, P<0.0001), or BIBW2992 
(R= -0.412, P<0.0001). These inverse correlations for drug 
response indicated that our candidate drugs were predicted 
to be more efficacious in SOC resistant patients. Notably, 
the average predicted drug IC50 of each given drug in the 
SOC resistant or sensitive groups were very close between 
different datasets. This suggests that our prediction was 
highly reproducible even though different technologies 
were applied to obtain gene expression profiles.

Validation

For validation, we applied the same methods to 
an independent ovarian cancer dataset: the Australian 

Ovarian Cancer Study (AOCS, n=285). Significant 
higher predicted sensitivity (lower predicted IC50) in SOC 
resistant ovarian tumors were confirmed for BIBW2992 
(P=0.003) using 80/20 (responder vs. non-responder) 
cutoff. To test if the results were robust to the choice 
of cutoff, we stratified SOC sensitivity using the 50/50 
predicted SOC IC50 as threshold (50% sensitive and 
50% resistant) as well. As a result, all candidate drugs— 
AZD6244, gefitinib, BIBW2992, lenalidomide and ABT-
888, were significantly more sensitive in the SOC resistant 
tumors (P<0.05). In addition, we performed correlation 
analysis between predicted SOC and candidate drug 
IC50. Significant correlations were found for all drugs as 
ABT-888 (Rs= -0.119, Ps= 0.023, Rp= -0.112, Pp= 0.029), 
BIBW2992 (Rs= -0.318, Ps< 0.0001, Rp= -0.276, Pp< 
0.0001), gefitinib (Rs= -0.302, Ps< 0.0001, Rp= -0.273, Pp< 
0.0001), AZD6244 (Rs= -0.272, Ps< 0.0001, Rp= -0.259, 
Pp< 0.0001), and lenalidomide (Rs= -0.142, Ps=0.008, 
Rp= -0.139, Pp=0.009).

For in vitro validation, we employed a large scale 
independent cell line drug sensitivity screening data 
set – CTRP v2 [14]. In CTRP v2, 4 of the 5 candidate 
drugs were screened (ABT-888, BIBW2992, gefitinib 
and AZD6244). The AUCs (area under the dose response 
curve) were used to define cellular sensitivity to these 
drugs. Given the small sample size (41 ovarian cancer 
cell lines in total) in CTRP v2, we stratified 22 cell lines 
as sensitive to SOC and 19 as resistant based on mean 
predicted SOC IC50. Then, for the four drugs, differences 
of AUCs between SOC resistant and sensitive group were 
analyzed using one-tailed t-test. P-values were presented 
in Table 1. ABT-888 and BIBW2992 showed significant 
lower AUC (suggesting higher sensitivity) in SOC 
resistant group (Figure 4A, P=0.011 for ABT-888; Figure 
4B, P=0.031 for BIBW2992). There was no significant 
difference between the SOC resistant and sensitive groups 
(P>0.05) for gefitinib and AZD6244.

Identification of pathways associated with the 
SOC resistance and candidate drugs sensitivity

To further explore the underlying biology that 
leads to the effectiveness of the 5 candidate drugs in 
SOC resistant ovarian tumors, we performed Gene Set 
Enrichment Analysis (GSEA) using the KEGG pathway 
gene sets. The pathways listed in the left column of Table 
2, were statistically significant positive correlation to SOC 
sensitivity and negative correlation to sensitivities of the 
candidate drugs (FDR q-value <0.25). In other words, the 
enrichment of KEGG pathways we selected could make 
the tumors more resistant to SOC, at the same time more 
sensitive to candidate drugs.

Interestingly, among the pathways that were 
enriched for SOC resistance and candidate drug 
sensitivity (Table 2), were the apoptosis and cytosolic 
DNA sensing pathway. Both apoptosis and cytosolic DNA 
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sensing pathways desensitized tumors to SOC, which 
was supported by literature [15]. ABT-888, a PARP1/2 
inhibitor, plays a role in inhibition of DNA repair and 
introduction of cell death. Gefitinib and BIBW2992 are 
both EGFR inhibitors, which could induce apoptosis by 
inhibition of Ras signaling [16].

DISCUSSION

Taxane and platinum based chemotherapy was 
introduced 20 years ago to treat ovarian cancer as standard 
first line regimen. There has been little progress in the last 
decade to improve the overall survival for chemoresistant 
ovarian cancer patients. In this study, we applied a novel 
transcriptome-based drug sensitivity prediction method to 
a collection of large in vivo and in vitro ovarian cancer 
datasets. Importantly, we identified five agents—ABT-
888, BIBW2992, gefitinib, AZD6244, and lenalidomide 
that exhibit higher sensitivity in SOC resistant ovarian 
cancers in multi-platform TCGA datasets. We provided 
further validation of these drugs’ sensitivity in additional 

clinical samples derived from ovarian cancer patients 
(through AOCS) and in vitro (through CTRP v2).

Although survival information has been collected 
for almost all TCGA samples, the treatment information 
for each patient is lot sparse, ranging from 40-97% 
coverage for each disease type to date. Our work bypassed 
this issue by generating our own in vivo drug sensitivity 
prediction. This method has been tested previously 
in silico analysis of 3 independent clinical trials and has 
demonstrated superior power [12]. Furthermore, in our 
proof-of-concept analysis, we observed a significant 
different predicted drug IC50s between dead and alive 
patients who were treated with paclitaxel. It is ideal to 
use response to treatment as a phenotype when comparing 
to our predicted drug IC50; however, since such data is 
not present, we opted to examine relationship between 
predicted drug sensitivity and survival outcome as a 
surrogate for treatment response.

BIBW2992 (afatinib) is an irreversible tyrosine 
kinase inhibitor (TKI) that inhibits ErbB family members 
including EGFR, HER2, and HER4. Thereby BIBW2992 

Figure 2: TCGA ovarian cancer patients were subgrouped into SOC responders and SOC non-responders. SOC, 
standard of care.



Oncotarget115106www.impactjournals.com/oncotarget

Figure 3: The opposite effect patterns between candidate drugs and SOC. (A) Significant negative Pearson correlation between 
the ranking of SOC and ABT-888 (Rp= -0.164, Pp= 0.0002). (B) Significant negative Pearson correlation between the ranking of SOC and 
BIBW2992 (Rp= -0.148, Pp= 0.0007).
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can target downstream oncogenic signaling pathways. The 
mechanism of its anti-cancer activity has been investigated 
mainly in non-small cell lung cancers (NSCLC) cells. 
BIBW2992 induces apoptosis by activating pro-apoptotic 
autophagy or through Elk-1/CIP2A/PP2A/AKT pathway 
in NSCLC cells [17]. It was approved by the FDA as 
first-line treatment of EGFR-mutated NSCLC in 2013. A 
number of clinical trials for various solid tumors including 
breast, prostate and head and neck cancer also have 
reported promising outcomes [18-20]. We are unaware 
of trials of BIBW2992 conducted in ovarian cancer; 
however, some pre-clinical results indicated encouraging 
prospects. For example, Wang SQ et al. demonstrated 
that BIBW2992 reverses multidrug resistance in ovarian 
cancer cells by dually inhibiting ATP binding cassette 
subfamily B member 1 [17]. They found BIBW2992 
enhanced the paclitaxel-induced apoptosis in vitro and in 
mouse model, which strongly supports our findings and 
suggests BIBW2992 may be an effective treatment option 
for chemoresistant ovarian cancers. Moreover, another 
group compared multiple HER inhibitors in terms of 
growth inhibition of ovarian cancer cell lines. Irreversible 
pan-HER family TKIs including BIBW2992 were more 
effective than EGFR specific TKIs gefitinib and erlotinib, 
the dual EGFR/HER-2 TKI lapatinib or the reversible pan 
EGFR/HER-2/HER-3 TKI sapitinib [21]. Therefore, we 
propose that BIBW2992 may provide a more effective 
way to overcome chemoresistance in ovarian tumors.

Impressively, of the 5 drugs we discovered that 
may be useful in overcoming SOC resistance in ovarian 
cancer, 4 have had ongoing clinical studies and the 
preliminary findings suggest the promise/validity of our 

predictions from pRRophetic. The first in vitro validated 
candidate drug is ABT-888 (veliparib), a potent inhibitor 
of PARP1 and PARP2. Poly (ADP-ribose) polymerase 
(PARP) is essential enzyme involved in damaged DNA 
detection and repair through the base excision repair 
pathways. The inhibition of PARP can sensitize tumors 
to cytotoxic agents by blocking DNA repair, followed by 
cell cycle arrest and apoptosis, and possibly make tumors 
more susceptible to DNA-damaging agents including 
carboplatin [22]. PARP inhibitors have shown preclinical 
activity in cancers that are deficient in DNA repair due to 
defects in homologous recombination (HR), eg. BRCA-
mutated tumors [23, 24]. PARP inhibitors were initially 
tested in trials as treatment for BRCA mutation-associated 
ovarian and breast cancers. The TCGA discovery on the 
defects in the HR pathway commonly existed in more 
than 50% of high-grade serous ovarian cancers [25], had 
led to further investigation of PARP inhibitors in a wider 
population of ovarian cancers. Olaparib, as the first FDA-
approved PARP inhibitor, is used to treat recurrent BRCA 
mutant ovarian cancer patients. ABT-888 is undergoing a 
number of clinical trials in combination with SOC, and 
also as maintenance in the first-line treatment of ovarian 
cancer. In a single-agent Phase I trial [26] designed for 
platinum-refractory ovarian or basal-like breast cancers, 
ABT-888 showed higher response rate and clinical 
benefit rate in BRCA-mutated tumors than BRCA wild-
type tumors. Another single-agent Phase II study [27] 
in BRCA-mutated ovarian cancer patients has also been 
reported. ABT-888 was well tolerated with a response 
rate of 26%. It remains unclear whether PARP inhibitors 
should be utilized as newly-diagnosed or relapsed 

Table 1: Summary of the predicted drug IC50 for candidate drugs in SOC responders and non-responders analyzed 
using different expression profiling platforms

TCGA discovery datasets Validation dataset

Affymetrix Agilent RNA-Seq RNA-Seq V2 CTRP v2

Predicted drug  
IC50

Student’s 
t-test

P value

Predicted drug  
IC50

Student’s 
t-test

P value

Predicted drug  
IC50

Student’s 
t-test

P value

Predicted drug  
IC50

Student’s 
t-test

P value

P
value a

Correlation
analysis b

SOC 
Res-
ponders

SOC Non-
responders

SOC 
Res-

ponders

SOC Non-
responders

SOC 
Res-

ponders

SOC Non-
responders

SOC 
Res-

ponders

SOC Non-
responders

Spearman Pearson

ABT-888 5.35 5.27 3.17x10-5 5.34 5.30 7.69x10-3 5.35 5.26 1.26x10-4 5.35 5.25 1.17x10-3 0.011 R= -0.119, 
P= 0.023

R= -0.112, 
P= 0.029

BIBW2992 2.27 2.14 7.95x10-4 2.28 2.18 2.63x10-11 2.28 2.19 1.82x10-7 2.28 2.19 3.57x10-5 0.031 R= -0.318, 
P< 0.0001

R= -0.276, 
P< 0.0001

Gefitinib 2.05 1.79 8.92x10-8 2.04 1.84 1.00x10-6 2.03 1.90 6.62x10-3 2.05 1.85 1.02x10-3 0.383 R= -0.302, 
P< 0.0001

R= -0.273, 
P< 0.0001

AZD6244 3.05 2.73 2.73x10-6 3.04 2.80 3.74x10-4 3.06 2.72 7.44x10-6 3.07 2.68 7.77x10-5 0.338 R= -0.272, 
P< 0.0001

R= -0.259, 
P< 0.0001

Lenalidomide 5.40 5.30 2.71x10-8 5.39 5.35 1.57x10-3 5.39 5.32 1.04x10-4 5.39 5.33 8.82x10-3 NA R= -0.142, 
P=0.008

R= -0.139, 
P=0.009

a P value was calculated from Student’s t-test by comparing Predicted drug IC50 between SOC responders and non-responders.
b Correlation analysis was performed between predicted SOC IC50 and candidate drug IC50.
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patients, single agent or in combination with SOC or as 
maintenance treatment. Further investigations will help 
to answer the questions and unveil its full potential as a 
treatment option.

Gefitinib, a selective epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitor, can 
competitively inhibit ATP binding on EGFR. Gefitinib 
was approved by the FDA as monotherapy treatment for 
patients with locally advanced or metastatic non-small cell 
lung cancer (NSCLC) after failure of both platinum and 
taxane based chemotherapies [28]. EGFR is commonly 
present in 33% to 75% of ovarian cancers and increased 
EGFR is associated with poor survival in ovarian cancer 
patients [29]. A Phase II trial with gefitinib in combination 
with paclitaxel and carboplatin as a second-line treatment 
for advanced ovarian adenocarcinoma, showed a high 
rate of 63% overall response [30]. Our study provides 
additional supporting evidence in further pursuing the 
evaluation of gefitinib in SOC resistant ovarian cancer 
treatment.

Another example is AZD6244 (selumetinib), a 
potent, highly selective MEK1/2 inhibitor which also 
inhibits ERK1/2 phosphorylation. It has reported single 
agent activity in several trials on solid tumor including 
recurrent low-grade serous ovarian cancer (LGSOC). A 
recent phase II AZD6244 trial in LGSOC showed better 
efficacy than SOC in terms of response rate and disease 
stabilization [31]. One of the reasons to platinum resistance 
has been proposed as through the activation of JNK and 
ERK cascades by cisplatin-induced DNA damage, where 

JNK and ERK are required for cell proliferation and 
differentiation. The inhibition of JNK or ERK cascades can 
sensitize ovarian cancer cells to cisplatin [32]. Therefore, 
it is not surprising that AZD6244, as an ERK1/2 inhibitor, 
may promote sensitivity to cisplatin. The findings along 
with our work warrants further investigation of this drug 
in ovarian cancer.

Lenalidomide is an antiangiogenic agent, with 
capability as an immunomodulator, which can inhibit 
hypoxia-inducible factor (HIF)-1α, an essential regulator 
of metastasis. Lenalidomide was approved by the FDA 
in 2006 to treat patients with multiple myeloma in 
combination with dexamethasone. Its clinical efficacy has 
also been reported as a single agent and combined with 
chemotherapy in solid tumors, including ovarian, prostate, 
renal cell and hepatocellular cancers [33, 34]. Most of the 
Phase I trials on ovarian cancer showed an acceptable 
safety profile, while one of them was terminated because 
of toxicity. Further studies of lenalidomide may be 
warranted in this disease setting.

Several compounds have been proposed for 
overcoming ovarian cancer chemoresistance, including 
bortezomib [4], antiprogestin compounds [5], combined 
treatment with death ligand TRAIL and antidiabetic acting 
PPARγ ligands [6], P-glycoprotein (P-gp) inhibitors [7, 
8], cancer stem cell targeting agents and autophagy based 
modulation [7]. Most of them, except for bortezomib, 
were not screened in the anti-cancer drug sensitivity 
database pRRophetic was built on. Adam et al. observed 
that bortezomib combined with paclitaxel act in a 

Figure 4: ABT-888 and BIBW2992 are more sensitive in SOC resistant ovarian cancer cell lines tested in CTRP v2. 
In vitro measured drug sensitivities (AUC) in CTRP v2 are compared between SOC sensitive and resistant cell lines. The higher the AUC, 
the more resistance the cell line has for a given drug. (A) ABT-888 showed significant lower AUC in SOC resistant group (Student’s t-test 
P=0.011). (B) BIBW2992 showed significant lower AUC in SOC resistant group (Student’s t-test P=0.031).
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synergistic manner. There was more than 2-fold decrease 
in IC50 when treating the cells (SKOV3 and A2780) with 
the combination as compared to paclitaxel alone [4]. 
Our screen did not reveal the role of bortezomib in SOC 
resistant ovarian cancer possibly because our work focused 
on single agent efficacy rather than drug combination.

Our GSEA results indicated that pathways related 
to apoptosis and cytosolic DNA sensing were important 
in SOC resistance. These have been supported by 
various literature [35-37]. For example, enhanced DNA 
repair [35], induction of anti-apoptotic protein [37] and 
activation of the AKT [37] have been demonstrated to 
be the major contributing factors for chemoresistance in 
ovarian cancer. At the same time, these pathways were 
found to be enriched in increasing sensitivity to our 
candidate drugs. ABT-888, as a PARP inhibitor, could 
block the repair of single-strand DNA breaks and result 
in accumulation of single-strand breaks and subsequently 
double-strand breaks. The inability of DNA repair will 

cause chromosomal instability, cell cycle arrest and 
ultimately cell death. It is therefore not a surprise that 
up-regulated DNA repair and apoptosis pathway could 
decrease the vulnerability of chemotherapy, however, 
increase the vulnerability of DNA repair targeted ABT-
888.

Although the effectiveness of all 5 candidate drugs 
was reproduced in AOCS, an independent clinical ovarian 
cancer study, only 2 of the 5 drugs were validated in vitro 
using CTRP v2. The reasons may be 1) lenalidomide was 
not screened in CTRP v2; and 2) much smaller sample size 
in the in vitro validation dataset when compared to the in 
vivo validation dataset (41 vs 285).

In conclusion, by applying a novel drug sensitivity 
prediction approach to a set of large in vivo and in vitro 
datasets, we discovered and validated several candidate 
drugs that could be more effective in SOC resistant ovarian 
cancer patients. GSEA analysis unveiled the pathways that 
may account for the improved efficacy of our candidate 

Table 2: Summary of enriched KEGG pathways that were significantly correlated with resistance of SOC and 
sensitiveness of candidate drugs

Positively correlated 
(desensitize tumor to 

drug)

Negatively correlated (sensitize tumor to drug)

SOC ABT-888 BIBW2992 Gefitinib AZD6244 Lenalidomide

Allograft rejection 0.45 -0.861 -0.808 -0.797 -0.755 -0.602

Graft versus host disease 0.4 -0.847 -0.827 -0.808 -0.761 -0.542

Type I diabetes mellitus 0.389 -0.803 -0.736 -0.774 -0.708 -0.515

Antigen processing and 
presentation 0.372 -0.736 -0.68 -0.683 -0.63 -0.453

RIG I like receptor signaling 
pathway 0.364 -0.597 -0.543 -0.453 -0.521 -0.235

Autoimmune thyroid disease 0.354 -0.819 -0.689 -0.742 -0.695 -0.517

Apoptosis 0.311 -0.517 -0.519 -0.488 -0.503 -0.185

Asthma 0.302 -0.79 -0.72 -0.767 -0.715 -0.414

Intestinal immune network 
for IGA production 0.291 -0.795 -0.633 -0.742 -0.66 -0.575

TOLL like receptor signaling 
pathway 0.27 -0.626 -0.539 -0.549 -0.585 -0.22

Leishmania infection 0.26 -0.712 -0.614 -0.7 -0.661 -0.223

NOD like receptor signaling 
pathway 0.232 -0.677 -0.565 -0.586 -0.631 -0.29

Cytosolic DNA sensing 
pathway 0.216 -0.686 -0.576 -0.538 -0.588 -0.31

Natural killer cell mediated 
cytotoxicity 0.159 -0.668 -0.515 -0.622 -0.611 -0.404

The numbers in this table indicated the Enrichment Score (ESs).
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drugs comparing with SOC. Clinical trials evaluating 
the effectiveness of some of these candidate drugs either 
alone or in combination with chemotherapy are ongoing in 
ovarian cancer. They should also be carefully examined in 
the SOC resistant setting.

MATERIALS AND METHODS

Overview

pRRophetic method simultaneously constructs 
prediction models using transcriptome and drug sensitivity 
data derived from the Cancer Genome Project (CGP) 
and apply it to the datasets that contain transcriptome 
information (i.e., the TCGA) to generate predicted drug 
IC50s.

Given that there are 138 drugs screened in CGP [9], 
we were able to generate predicted drug IC50s of all 138 
drugs in each tumor sample. In this study, we generated 
predicted drug IC50s in vivo for two independent large 
ovarian cancer datasets: the TCGA and Australian Ovarian 
Cancer Study (AOCS) [38]. Furthermore, to validate our 
prediction, we generated predicted drug IC50s in another 
large in vitro cancer cell line drug screening dataset, 
the Cancer Therapeutics Response Portal v2 (CTRP 
v2) [14] ; and compared the predicted drug IC50 to the 
experimentally measured cellular sensitivity (eg. AUC) to 
drugs.

Specifically, TCGA ovarian cancer gene expression 
profiles were downloaded from TCGA data portal 
(https://tcga-data.nci.nih.gov/tcga/). There are four sets of 
transcriptome profiles for ovarian cancer: two generated 
using microarrays— Affymetrix HT Human Genome U133 
and Agilent 244K Custom Gene Expression G4502A-07; 
and the other two with RNA-seq. The Affymetrix platform 
contained expression profiles of 520 patients, and Agilent 
platform contained expression profiles of 574 patients. 
Illumina HiSeq 2000 RNA Sequencing platform contained 
413 patients’ tumor expression profile, and Illumina HiSeq 
2000 RNA Sequencing Version 2 has expression profiles 
for 266 patients. Although the samples from these four 
expression datasets were highly overlapped, because 
the different transcriptome profiling technologies have 
different specificity, sensitivity and dynamic range, we 
examined each dataset separately as technical replications. 
Findings from each analysis were compared and only 
those drugs that predicted to be more sensitive in SOC 
resistant tumors by all 4 analyses were further evaluated.

Transcriptome data for AOCS was generated using 
Affymetrix U133_plus2 microarray and obtained through 
GEO (GSE9891, http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE9891). This includes gene expression 
data for 285 ovarian tumor samples.

For prediction validation, we employed CTRP 
v2 [38], in which area under the dose response curve 
(AUCs) for 481 compounds were available in 860 cancer 

cell lines. The drug sensitivity data was downloaded 
from CTD2 DATA PORTAL (https://ctd2.nci.nih.gov/
dataPortal/). The mRNA expression (Affymetrix U133+2 
array) data of the cell lines was obtained from Cancer 
Cell Line Encyclopedia (CCLE) data portal (http://www.
broadinstitute.org/ccle).

In vivo identification of drugs that may work in 
SOC resistant ovarian cancer patients

We chose to analyze TCGA ovarian tumors as our 
discovery dataset because it is one of the largest ovarian 
cancer datasets where algorithms such as pRRophetic 
could be employed, while AOCS dataset was used as 
independent in vivo validation dataset. For each tumor 
sample in TCGA and AOCS, we generated 138 predicted 
drug IC50s. Specific for TCGA, predicted drug IC50 
was generated independently using each set of the four 
transcriptome profiling datasets separately. Note that 
lower predicted drug IC50 indicated higher sensitivity to 
such a drug.

We calculated ovarian cancer patients’ SOC 
IC50 by averaging the predicted drug IC50 to cisplatin 
and docetaxel for every patient. Furthermore, with the 
commonly observed 80% response rate to SOC in ovarian 
cancer [3, 4], we classified TCGA ovarian cancer samples 
as either resistant to SOC (as the top 20% ranked SOC 
response) or sensitive to SOC (the bottom 80% ranked 
SOC response).

We then evaluated the predicted drug IC50s of other 
136 drugs to discover drugs showing opposite predicted 
efficacy profile to that of SOC using Student’s t-test. In 
another word, we aimed at identifying drugs with lower 
predicted drug IC50 (meaning higher sensitivity) in SOC 
resistant patients. The same selection method was applied 
to all 4 TCGA gene expression datasets. The candidate 
drug lists were overlapped to generate the final candidate 
drug list. To avoid findings dependent on the arbitrary 
cutoff used in defining SOC response, in addition to 
the 80/20 (responder vs. non-responder) cutoff, we 
also evaluated the 50/50 (responder vs. non-responder) 
cutoff as well as employing correlation analysis between 
SOC and candidate drugs. P values less than 0.05 were 
considered significant.

In vivo and in vitro validation of candidate drugs

The findings from TCGA were first validated through 
the AOCS dataset. Given CTRP v2 has measured hundreds 
of drugs’ sensitivities in ovarian cancer cell lines (including 
some of the candidate drugs we predicted to be more sensitive 
in TCGA and AOCS), we performed separate predictions 
using CTRP v2 ovarian cancer cell lines. Specifically, gene 
expression profiles was available in 41 of the 43 ovarian 
cancer cell lines in CTRP v2. Once again, cell lines sensitivity 
to SOC were generated by averaging the predicted drug IC50 
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of cisplatin and docetaxel. CTRP v2 measured and reported 
AUC as drug sensitivity with the higher the AUC, the more 
resistant the cells to any given drug. Then we performed 
Student’s t-test on candidate drug AUCs between SOC 
sensitive cell lines and SOC resistant cell lines.

Gene set enrichment analysis (GSEA)

To further explore the potential mechanism 
underlying the observed opposite therapeutic effect of our 
candidate drugs and the SOC, we performed GSEA analysis 
(GSEA software v2.2.2, www.broadinstitute.org/gsea) using 
the KEGG pathway gene sets. We input TCGA-Agilent 
expression dataset and predicted SOC IC50s and those of 
the candidate drugs as phenotypes. The association between 
drug sensitivities and gene expression was run separately 
for each phenotype following the developer’s protocol 
(http://www.broad.mit.edu/gsea/). FDR q-value <0.25 
was used to define significantly regulated pathways. The 
positively SOC-correlated pathways were overlapped with 
pathways that were significantly and negatively correlated 
with all candidate drugs.
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