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Abstract

Disparity in suicide rates across various metropolitan areas in the US is growing. Besides

personal genomics and pre-existing mental health conditions affecting individual-level sui-

cidal behaviors, contextual factors are also instrumental in determining region-/community-

level suicide risk. However, there is a lack of quantitative approach to model the complex

associations and interplays of the socio-environmental factors with the regional suicide

rates. In this paper, we propose a holistic data-driven framework to model the associations

of socio-environmental factors (demographic, socio-economic, and climate) with the suicide

rates, and compare the key socio-environmental determinants of suicides across the large

and medium/small metros of the vulnerable US states, leveraging a suite of advanced statis-

tical learning algorithms. We found that random forest outperforms all the other models in

terms of both in-sample goodness-of-fit and out-of-sample predictive accuracy, which is

then used for statistical inferencing. Overall, our findings show that there is a significant dif-

ference in the relationships of socio-environmental factors with the suicide rates across the

large and medium/small metropolitan areas of the vulnerable US states. Particularly, sui-

cides in medium/small metros are more sensitive to socio-economic and demographic fac-

tors, while that in large metros are more sensitive to climatic factors. Our results also

indicate that non-Hispanics, native Hawaiian or Pacific islanders, and adolescents aged 15-

29 years, residing in the large metropolitan areas, are more vulnerable to suicides compared

to those living in the medium/small metropolitan areas. We also observe that higher temper-

atures are positively associated with higher suicide rates, with large metros being more sen-

sitive to such association compared to that of the medium/small metros. Our proposed data-

driven framework underscores the future opportunities of using big data analytics in analyz-

ing the complex associations of socio-environmental factors and inform policy actions

accordingly.
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Introduction

Suicide rates have increased approximately 30% in the US since 1999 and have become the

tenth leading cause of death nationwide, rendering it to be a grievous concern in global public

health [1–3]. Particularly, studies demonstrated that there is a growing disparity in suicide

rates across various metropolitan areas in the US, highlighting more urbanized areas witness-

ing lower suicide rates and less urbanized areas experiencing higher suicide rates [4, 5]. Addi-

tionally, statistics showed that age-adjusted suicide rate in the remote rural counties of the US

reported 1.8 times higher suicide rates than the populous urban counties (as of 2017) [5, 6].

With the overall continued urbanization trend in population migration from less urbanized

areas to urban areas of the U.S. [7], it has become even more critical to understand why the

less urban regions are more vulnerable to mental health issues, and identify the key factors that

are significantly associated with such higher suicide mortality rates.

Suicidal behavior is considered to be an outcome of the interactions among a number of

factors, ranging from personal genomics (a.k.a. internal factor associated with individual char-

acteristics) to various socio-environmental factors (a.k.a external variables). The associations

of personal genomics with the suicide risk is a well-defined area. For example, some research-

ers conducted longitudinal study to examine the mechanisms that transmitted the suicidal

behaviors from parents to children, in order to discover the presence of heritability of suicidal

behaviors through families. The research concluded that adults whose parents had suicidal acts

were vulnerable to suicides, with a nearly five times higher likelihood of exhibiting suicidal

behaviors compared to an average person [8, 9]. In addition to genetics, contextual factors

such as traumatic events are also associated with higher rates of suicide and suicidal thoughts.

However, the associations of various socio-environmental factors with the suicide risk is

under-explored. This can be mostly attributed to the unclear definition of the “socio-environ-

mental” factors, mostly in terms of what types of factors it include. More specifically, based on

the scale of the study—i.e., victim-level or community/region-level, the “socio-environmental”

factors can significantly vary. This is re-emphasized in a review study of 200 articles (including

both victim-level and region-level studies), which concluded that most of the studies included

a large variety of socio-environmental variables such as economy and income, unemployment,

relationship status, fertility and birth rates, female participation in the workforce, religion,

migration, location of residence, modernisation, media reporting, alcohol, and access to sui-

cide methods [10]. To give specific examples, a victim-level suicide risk assessment study cate-

gorized family problems, family history of suicidal behaviour, and financial and relationship

problems as environmental risk factors [11]. Another victim-level study considered age, sex,

race and income, education, immigration status as socio-demographic characteristics while

included frequency of childhood neglect, frequency of physical abuse, measure indicating

childhood poverty, and a measure indicating household instability as the environmental fac-

tors. All these factors together are considered as socio-environmental factors [12]. In another

victim-level study analyzing various environmental factors contributing to suicide of Austra-

lian farmers, extreme climatic events, isolation, service availability, access to, and frequent use

of firearms, death and suffering of animals, government and legislation, technology, and prop-

erty values are considered as environmental factors [13]. On the contrary, studies focusing on

community/region-level suicide risk assessment considered only the macro-level region-based

socio-environmental factors. For example, in a study on the spatiotemporal analysis of the

associations between socio-environmental factors and suicide in Queensland, Australia, the

authors considered only the socio-economic, demographic and climate as the socio-environ-

mental factor [14]. Similarly, another study focusing on understanding the associations of the

socio-environmental factors with suicide risk from a spatial perspective considered only the
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meteorological and socio-demographic factors as their socio-environmental factors [15]. In

fact, although it is well-established that suicide mortality rates at community-level are influ-

enced by multifaceted macro-level factors such as socio-economic and demographic character-

istics of a population [16], the associations of climatic factors with suicides are not well-

established. Moreover, although the seasonality of suicide has long been recognized [14], not

many studies have focused on analyzing the associations between meteorological factors and

suicide risk. Recently, with the growing concerns of global warming, some researchers exam-

ined the relationship between climate conditions and suicidal behaviors, but the conclusions

were contradictory. Some of studies indicated that a higher suicide rate is positively correlated

with the elevated temperature [17, 18], on the contrary, others found that an increase in suicide

rate is linked to a lower temperature [19–21]. Thus, it is of particular importance to incorpo-

rate climate conditions when examining the suicide trend of the population.

To address the above-mentioned challenges, since the overall objective of our study is to

analyze the suicide risk across the large and medium/small metros, we leverage a macro-level

region-based approach and consider climate, socio-economic and demographic characteristics

of the metropolitan regions as the relevant “socio-environmental” factors. Specifically, leverag-

ing a multifaceted socio-environmental data collected from publicly available data sources, we

propose to develop a holistic data-driven predictive framework to model the associations

between various socio-environmental factors and suicide mortality rates across the different

metropolitan areas in the U.S.

The notable contributions of our study is threefold. First, for the first time, a robust data-

driven framework leveraging a set of statistical models is proposed to model the complex asso-

ciations between the socio-environmental factors and the suicide mortality rates. Second, a

wider range of variables defining socio-environmental conditions including socio-economic

condition of the population, demographics and climatic factors have been examined in rela-

tion to suicide rates across metropolitan counties in the U.S. using a systematic holistic

approach. Finally, a comparative assessment of the key factors is provided to evaluate the sui-

cide disparities in the large and medium/small metropolitan areas.

Background

Suicide is complex, multi-factorial behavioral phenotype. It is considered to be an outcome of

complex interactions between a multitude of internal (e.g., personal characteristics, mental

and physical illness) and external entrapment (e.g., environmental factors, traumatic events)

[22]. A large body of literature has been investigated the relationship between internal factors

and suicidal behaviors at the individual-level. However, since the purpose of this study is, at

the population level, to understand and evaluate the socio-environmental effects on suicide

mortality rates across urban and suburban counties, the literature review presented in this sec-

tion mostly focus on socioeconomic, demographic and climatic factors related to suicides and

suicidal behaviors.

The socioeconomic and demographic factors

In the literature, some researches examined the difference in suicide rates between males and

females, and observed the well-known philosophy of “gender paradox” in suicide—i.e., females

typically have higher rates of suicide ideation, but lower rates of suicide mortality compared to

males [23, 24]. In addition to gender, other demographic factors can also play a critical role in

linking to a higher suicide risk. A meta-analysis was performed to highlight that although

demographic factors were found to be statistically significant, they were weak (i.e., no single

demographic factor appeared to be particularly strong) in contributing to the overall complex

PLOS ONE A data-driven predictive approach to compare suicide disparities in large vs. medium/small metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0258824 November 24, 2021 3 / 27

https://doi.org/10.1371/journal.pone.0258824


phenomenon of suicidal behaviors [16]. Additionally, the authors suggested that further stud-

ies are needed to understand the effects of demographics on suicide mortality rates. Another

nationwide study conducted for Iran from 2006 to 2010 concluded that certain demographic

factors such as gender, age and education level could influence people in adopting different

methods to commit the suicide [25]. The authors found that younger generation was more

likely to use a highly violent method such as firearms to complete suicide, while the elderly

people often selected hanging and poisoning as means to commit suicide [25]. In addition, it

was found that men preferred hanging while women preferred self-burning to end their lives

[25]. The authors also concluded that hanging was more prevalent among low educated people

while poisoning was more popular among higher educated groups [25].

The suicide mortality rate varies significantly among different racial and ethnic groups. A

previous study concluded that African Americans were more likely to select violent methods

in committing suicides than Caucasians, when socioeconomic status and other factors were

kept constant [26]. Other studies revealed that the adolescent minority groups such as Native

Hawaiian/Pacific Islander and American Indian/Alaska Native as well as multi-racial groups

were highly vulnerable to committing suicides, compared to their Asian, Black, Hispanic, and

White counterparts [27, 28]. The educational attainment can be also linked to suicide risk. For

example, people with a college degree or higher, exhibited lowest rates of suicide, whereas

those with a high school diploma only were found to be more vulnerable with an increased

risk of suicide [29]. Similarly, the results from another study pointed out that men with lower

educational attainment had a higher risk of suicide in eight out of ten European countries,

while suicide rates among women was found to be low and less consistent across all the coun-

tries [30].

Economic condition also plays a critical role in affecting suicide mortality rates. This is

expected and it is established that poor socio-economic conditions characterized by higher

incidence of poverty, lack of health insurance and higher unemployment rates are critical in

affecting the mental health and wellbeing of adults in metropolitan areas [31, 32]. For instance,

a study conducted in Taiwan to explore the relationship between unemployment rate and sui-

cide rate, found that a 1% increase in absolute unemployment rate was linked to a 4.9%

increase in the relative age-adjusted suicide rate from 1978–2006 [33]. Suicide rate was found

to be statistically different across genders—men were found to be more likely to commit sui-

cides compared to women in face of economic turmoil and financial issues [34]. This gender

difference in suicide mortality rate during economic crisis is also unwrapped in another study,

where researchers found that men with lower per capita income more frequently committed

suicides, while such a phenomenon was not observed in the female group [35].

Previous exploratory data analysis on suicide rates in rural and urban counties in the U.S.

revealed that the age-adjusted suicide rate for most of the rural counties was 1.8 times higher

than most of the urban counties in 2017, and its rate had been rapidly increasing over the past

decade. The authors, however, neither attribute a cause to such an increase in the suicide rates,

nor did it explain why the difference was observed between rural and urban counties [5].

The climatic factors

To understand the impact of environmental factors on suicide rates, some researchers investi-

gated the weather-induced higher risk of suicide. A systemic literature review was conducted

to highlight that air temperature had a significant influence on suicidal acts, but their correla-

tion could be either positive or negative, depending on the variation of sociological or geo-

graphic factors across different populations [36]. In another study [17], the authors established

a distributed lag nonlinear model (DLNM) to determine the relationship between suicide rates

PLOS ONE A data-driven predictive approach to compare suicide disparities in large vs. medium/small metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0258824 November 24, 2021 4 / 27

https://doi.org/10.1371/journal.pone.0258824


and air temperature in Toronto, Ontario (Canada), and Jackson, Mississippi (USA). The mod-

els from both the locations concluded that warmer than normal temperatures had a positive

correlation with the total number of suicides. However, the authors claimed that since the data

was only from two cities, it might not be sufficient to establish immediate clinical implications,

but can guide further investigations to better understand and quantify the suicide rates associ-

ated with temperature changes [17]. A positive correlation between elevated temperatures and

suicide rates had also been established in another nationwide study [18], where the authors

analyzed decades of historical data (1968–2004 in the U.S. and 1990–2010 in Mexico) and

demonstrated that the relationship between temperature and suicide was roughly linear using

distributed lag models. It was observed that a 1˚C increase in average monthly temperature

could contribute to an increase in the monthly suicide rate by 0.68% in the U.S., and 2.1% in

Mexico. The study projected that under climate change, suicide mortality rate would increase

by 1.4% in the U.S. and 2.3% in Mexico by 2050 [18]. On the contrary, a negative correlation

between temperature and suicide rates was observed in the other studies [19–21], suggesting

that decreasing temperature was linked to a growing rate of suicide incidents. The cause of this

contradiction might be explained as climate variation could have heterogeneous effects across

geographic areas [37]. In this view, the further studies are needed to investigate the complex

interactions of climate-induced shifts in suicidal behaviors by controlling other factors such as

spatiotemporal and socioeconomic backgrounds.

Existing research gaps and research questions

Previous research studies have been investigated the impacts of certain environmental factors

in relation to suicide risks. However, to the authors’ best knowledge, some knowledge gaps

still exist that are summarized below.

1. Most of the existing studies examined the relationships of socioeconomic, demographic

and climate factors with suicide rates using a silo-ed approach, without considering the

complex interactions among these factors [16, 21, 27–30].

2. The associations of socio-environmental factors with the suicide rates significantly vary

across the various metropolitan regions, but little attention has been paid to compare such

relational disparities [4–6].

3. Most of the previous studies applied the traditional linear models and basic statistical analy-

ses (e.g., Pearson correlation coefficient) to characterize the relationships between the

potential risk factors and the increased risk of suicide [12, 14, 15, 20]. These traditional

approaches, however, fail to adequately capture the nonlinear characteristics in the complex

structure of data in modeling suicide risks [28].

4. Moreover, in the face of climate change and growing urbanization, the models’ strong capa-

bility of predicting suicide risks is particularly critical. However, a robust predictive

approach in modeling such suicide risks has attracted little/no attention in the previous

studies [36–38].

In this paper, we aim to address the above-mentioned existing gaps by answering the fol-

lowing research questions:

1. Is there a significant disparity in suicide rates across the large and medium/small metropoli-

tan areas in the US?

PLOS ONE A data-driven predictive approach to compare suicide disparities in large vs. medium/small metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0258824 November 24, 2021 5 / 27

https://doi.org/10.1371/journal.pone.0258824


2. What are the key socio-environmental factors that contribute to the suicide rates in the

large vs. medium/small metropolitan areas, and how are these factors associated with the

suicide rates?

3. Do non-parametric nonlinear machine learning models better predict the suicide rates

compared to the traditionally-used linear models, while capturing the complex interactions

between suicides and socio-environmental factors?

To answer the research questions, we aim to develop a data-driven predictive approach to

identify and evaluate the socio-environmental factors in relation to the suicide rates across the

large vs. medium/small metropolitan areas in the US during 2000–2017, leveraging a library of

advanced statistical learning techniques. A comparative assessment of the key influencing fac-

tors is conducted to analyze the disparities in the associations of the socio-environmental fac-

tors across the large and medium/small metropolitan areas.

Data collection, preprocessing and visualization

In this section, we present the data collected from multiple publicly available data sources, and

a sequence of data preprocessing steps to clean and aggregate the data, as well as data visualiza-

tion to provide a basic understanding of suicide rates across different spatial-temporal scales.

Data collection

Suicide mortality data was collected from the Centers for Disease Control and Prevention

(CDC) for the period 2000–2017 monthly using CDC’s WONDER tool [39] based on the vari-

ables—County, Month, Year, Intent of injury. “Intent of injury” describes an act of injury

caused on purpose by oneself or by another person, with the goal of injuring or killing them-

selves or others [40]. Here, the intent of injury is specified as “suicide” in this study.

In addition, the county-level socioeconomic and demographic information were collected

from the U.S. Department of Agriculture (USDA) Economic Research Service (ERS) [41] for

the period of analysis from 2000–2017. And, climate data was obtained from the National Oce-

anic and Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC)

[42]. The climate data captures several weather variations on a monthly basis from 2000–2017.

Data preprocessing, aggregation and visualization

Based on the publicly available data, we collected the county-level time series data of monthly

suicide rates. A county was selected if it satisfied the following two criteria: 1) it is within a

state that constantly reports higher rates of suicides and fall within the upper 50th percentile of

all the 50 US states, ranked in terms of witnessing a consistent high suicide rate (number of

suicides per 100,000 of population) since 2016; and 2) reported more than ten suicide cases

every month during 2000–2017. The first criterion is applied to avoid perturbations in suicide

rates caused by short-term factors such us social upheaval or influx of tourists [43, 44]. The

second criterion is followed by the CDC’s policy on protecting personally identifiable informa-

tion by disabling reporting a county where the monthly suicide incident was below the pre-

determined “cut-off” value (i.e., death counts of nine or fewer) [45]. Thus, counties reporting

less than ten suicides per month do not appear in the publicly available CDC dataset.

To investigate the suicide disparity across the various metropolitan counties, the selected

counties are further classified into two groups based on the latest version of 2013 NCHS

Urban–Rural Classification Scheme for Counties [46]. The “large metro” group contains the

counties having a population of one million or more measured by metropolitan statistical area

(MSA), while the “medium/small metro” group refers to those counties with MSA population
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of at least 50,000, but not more than one million population. This classification criterion is val-

idated by discriminant analysis with settlement density, socio-economic and demographic var-

iables [46]. The selected counties used in our study are summarized in Table 1. The

distributions of the normalized suicide mortality rates in the large and medium/small metros

are exhibited in Fig 1. From Fig 1, we observe that the distribution of suicide rate in the

medium/small metropolitan counties is highly right-skewed, depicting that these counties spo-

radically witness higher suicide rates. In addition, we performed the statistical t-test showing

that there is a significant difference in suicide rates between large and medium/small metro-

politan areas (p< 0.05). This validates our hypothesis that the suicide disparity exists across

Table 1. Study samples.

Urbanization level Selected counties

Large Metros Maricopa County (AZ), Adams County (CO), Arapahoe County (CO), Denver County (CO),

Douglas County (CO), Jefferson County (CO), Johnson County (KS), Jefferson County (KY),

St. Charles County (MO), St. Louis County (MO), Jackson County (MO), Clark County

(NV), Oklahoma County (OK), Clackamas County (OR), Multnomah County (OR),

Washington County (OR), Davidson County (TN), Shelby County (TN), Salt Lake County

(UT), Clark County (WA), King County (WA), Pierce County (WA), Snohomish County

(WA)

Medium/Small

Metros

Mohave County (AZ), Pima County (AZ), Yavapai County (AZ), El Paso County (CO), Weld

County (CO), Ada County (ID), Sedgwick County (KS), Washoe County (NV), Hillsborough

County (NH), Bernalillo County (NM), Tulsa County (OK), Utah County (UT), Weber

County (UT), Spokane County (WA)

https://doi.org/10.1371/journal.pone.0258824.t001

Fig 1. Violin plot depicting normalized suicide mortality rates between large and medium/small metropolitan

areas. Violin plots are similar to box plots, with a rotated kernel density plot on each side showing the probability

density of the data at different values.

https://doi.org/10.1371/journal.pone.0258824.g001
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the large vs. medium/small metropolitan areas, and thus we develop two different models for

the two types of counties.

To investigate the key socio-environmental factors that could explain the suicide disparity

shown in Fig 1, all the datasets were integrated using year, month and county as the “common

keys”. These variables (i.e., year, month and county) are used in the model as proxies to cap-

ture the unobserved heterogeneity. Based on exploratory data analysis, we found that there are

no significant increasing or decreasing trends in the annual or monthly suicide mortality rates

in either of the large and medium/small metropolitan counties. However, more outliers are

observed in the post 2000s, indicating suicide rates are increasing in some of the counties (see

S1 and S2 Figs in S1 File).

For socio-environmental factors, the variables are removed if they satisfied the following

criteria: 1) more than 20% of missing inputs; or 2) highly correlated with other variables based

on Pearson correlation coefficient (ρ�0.9 or ρ�-0.9). Removing the highly correlated variables

can avoid the “masking effect” of certain variables or model overfitting, and will help identifi-

cation and unbiased assessment of the key factors [47, 48]. Finally, the socio-environmental

variables used in this study are displayed in Table 2. After variable selection and data aggrega-

tion, we then normalized the suicide mortality counts to suicides mortality rates per 100,000

population, to eliminate the effect of population size in a county. Finally, the final dataset

included 2,496 observations and 33 variables including 29 socio-environmental variables in

Table 2, three proxy variables (year, month and county) and one response variable (normal-

ized suicide rates).

Research methodology

A data-driven holistic framework for modeling the complex interactions between a number of

socio-environmental factors and the growing suicide rates in the large and medium/small met-

ropolitan areas is explained in this section. Then, we present a brief description of the super-

vised learning theory where the related predictive model and the statistical techniques used to

select the model are also introduced.

Research framework

The schematic of our proposed research framework is exhibited in Fig 2. The research frame-

work consists of three major steps: (i) data processing; (ii) model training and testing; and (iii)

model inferencing. In Step (i), county-level suicide mortality information and multifaceted

socio-environmental variables at different spatiotemporal scales were processed by a series of

procedures ranging from data collection, cleaning, normalization, aggregation and visualiza-

tion. Final aggregated dataset was divided into two independent subsets based on urbanization

level—(1) large metros, and (2) medium/small metros. More details in Step (i) can be found in

the section of Data collection, preprocessing and visualization. Then in Step (ii), a library of

regression models were trained and tested separately on each subset. More specifically, we per-

formed the model training and testing by leveraging a 30-fold 80–20 randomized holdout

technique. This technique can be described as follows: in each subset, 20% of the data is ran-

domly held-out as test set to evaluate the model’s out-of-sample predictive accuracy, while the

remaining 80% of the data is used as training set for training the models. This process is

repeated 30 times to ensure that all the data is used at least once to produce generalized errors

in training and testing the models [49]. The average model performance across all iterations is

then calculated in terms of three commonly-used statistical metrics—R2, RMSE (root mean

square error) and MAE (mean absolute error). Finally, the model that outperforms other mod-

els in terms of out-of-sample predictive accuracy as well as a comparative better goodness-of-
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Fig 2. Schematic of the proposed data-driven research framework.

https://doi.org/10.1371/journal.pone.0258824.g002

Table 2. Description of socio-environmental variables.

Variable Name Description Periodicity

Urbanization level Large metro or medium/small metro per county. Annually

Unemployment

Rate

Percent of unemployed workers in the total labor force. Monthly

Poverty Percent of people (of all ages) in poverty in the county. Annually

Income Median household income in the county. Annually

Age Group 1 Percent of county’s population ages below 14. Annually

Age Group 2 Percent of county’s population between ages 15–29. Annually

Age Group 3 Percent of county’s population between ages 30–44. Annually

Age Group 4 Percent of county’s population between ages 45–59. Annually

Age Group 5 Percent of county’s population between ages 60–74. Annually

Age Group 6 Percent of county’s population ages above 75. Annually

Female Percent of county’s population female. Annually

NA Percent of county’s population which is Native Hawaiian, Pacific Islander alone (i.e., no other race). Annually

AA Percent of county’s population which is Asian alone. Annually

IA Percent of county’s population which is American Indian, Alaska native alone. Annually

BA Percent of county’s population which is Black alone. Annually

WA Percent of county’s population which is White alone. Annually

NH Percent of county’s population which is non-Hispanic. Annually

Education Group 1 Percent of county’s population whose education level is less than a High School diploma. Annually

Education Group 2 Percent of county’s population whose education level is a High School diploma only. Annually

Education Group 3 Percent of county’s population whose education level is some college of Associates degree. Annually

Education Group 4 Percent of county’s population whose education level is a Bachelor’s degree or higher. Annually

DP10 Number of days with� 1.00 inch of precipitation in the month. Monthly

DT00 Number of days with minimum temperature � 0 degrees Fahrenheit. Monthly

DX32 Number of days with maximum temperature� 32 degrees Fahrenheit. Monthly

DX70 Number of days with maximum temperature� 70 degrees Fahrenheit. Monthly

DX90 Number of days with maximum temperature� 90 degrees Fahrenheit. Monthly

EMXP Extreme maximum daily precipitation total within month. Values are given in inches (to hundredths). Monthly

CDSD Cooling degree days (season-to-date). Running total of monthly cooling degree days through the end of the most recent month.

Each month is summed to produce a season-to-date total. Season starts in July in Northern Hemisphere and January in Southern

Hemisphere.

Monthly

HDSD Heating degree days (season-to-date). Running total of monthly heating degree days through the end of the most recent month.

Each month is summed to produce a season-to-date total. Season starts in July in Northern Hemisphere and January in Southern

Hemisphere.

Monthly

https://doi.org/10.1371/journal.pone.0258824.t002
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fit is selected as the final model in this paper. Finally in Step (iii), leveraging the selected

model, we analyzed the suicide disparity across large and medium/small metropolitan areas, in

relation to socio-environmental factors, using the variable importance ranking and partial

dependence plots.

Supervised learning

Supervised learning method is applied to estimate a regression function capable of predicting

the response variable Y conditioned on a set of inputs X, such that the loss function for mea-

suring errors is minimized. The generalized form can be mathematically written as Y = f(X)+�,

where � is the irreducible error follows ∊ � N ð0; s2Þ [49, 50]. The loss function L, represent-

ing the deviation of observed values from the estimated values of Y, typically can be calculated

through the absolute error (L1 norm) or squared error (L2 norm). That is,

LðY; f̂ ðXÞÞ ¼

1

N

XN

i¼1

jyi � f̂ ðxiÞj mean absolute error ðMAEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � f̂ ðxiÞÞ
2

s

root mean squared error ðRMSEÞ;

8
>>>>><

>>>>>:

where N is the total number of data points.

Note that supervised statistical learning models can be parametric, semi-parametric or non-

parametric. Parametric models generally assume a particular functional form that relates the

input variables to the response. The assumed functional form helps with the ease of estimation

and model interpretability, but comes at the cost of predictive accuracy since the assumptions

(such as normality and linearity) often do not hold for real cases. On the other hand, non-

parametric models that make no assumption about the distribution of the response variable or

the shape of the function relating the response to the predictors, are free to learn any functional

form of the response from the training data. By utilizing data in novel ways to estimate the

dependencies, the non-parametric models often have a superior predictive power than

parametric models. However, the non-parametric methods are data-intensive and highly

dependent on the quality of the data.

In this study, the response variable Y is represented by the normalized suicide rates, and

rest of the variables in the dataset are denoted as the predictor variables X. The function f is

construct through a library predictive models including generalized linear models (GLM) [51],

ridge and lasso regression [52], generalized additive models (GAM) [53], multi-adaptive

regression splines (MARS) [54], and ensemble tree based models including random forest

(RF) [55] and Bayesian additive regression trees (BART) [56]. By implementing a series of

experiments, RF outperforms all the models in terms of both goodness-of-fit and predictive

accuracy and thus, we select RF as our final model to assess socio-environmental affects on sui-

cide mortality rates in the metropolitan counties. Details of random forest algorithm and

model selection techniques are provided in the following subsections.

Random forest: Algorithm description. Random forest technique uses a bootstrap aggre-

gating approach combined with feature randomness while building each tree, and attempts to

create a multitude of decision trees. For regression problems, the overall model performance is

given by averaging predictions from each of the single tree that usually produces low bias yet

high variance, to render a more accurate and robust prediction (associated with low bias and

low variance). Random forest is an ensemble tree-based learning model that consists of B boot-

strapped regression trees Tb, where the interactions of the variables can be well captured by the

PLOS ONE A data-driven predictive approach to compare suicide disparities in large vs. medium/small metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0258824 November 24, 2021 10 / 27

https://doi.org/10.1371/journal.pone.0258824


dependencies in constructing a single tree; and the details are exhibited in the Algorithm 1

[55].

Algorithm 1 Random Forest Algorithm [49, 55]
1: Input: Data set with dimension (N, M) where N is the number of data

points & M is the number of input variables; Ensemble tree size B
2: for b = 1 to B: do
3: Build a bootstrap sample Nb from data set of size N by randomly

sampling |Nb| data points with replacement.
4: Treat Nb as the training data set, while the remaining data is

used as validation set to estimate tree’s prediction error.
5: Fit a regression tree model Tb on the training data set Nb by

recursively repeating the following steps for each terminal node
of the tree, until the minimum node size nmin is reached.
i) Select m variables randomly from the M variables (m � M).
ii) Pick the best variable/split-point among the m.
iii) Split the node into two daughter nodes.

6: end for
7: return {Tb j 1 � b � B}
8: Output: Ensemble tree model whose prediction is given by average of

predictions across all trees:

f̂ RF ¼
1

B

XB

b¼1

Tb ð1Þ

Predictive accuracy vs. model interpretability. Generally speaking, the flexible non-

parametric methods have higher predictive power than the “rigid” parametric methods. How-

ever, the improved predictive power comes at the cost of easier interpretability. To make infer-

ences based on non-parametric ensemble tree-based methods, “partial dependence plots”

(PDPs) are applied to help in understanding the effects of the predictor variable of interest xj
on the response in a “ceteris paribus” condition to control all the other predictors. Mathemati-

cally, the estimated partial dependence can be represented as [56, 57]:

f̂jðxjÞ ¼
1

n

Xn

i¼1

f̂jðxj; x� j;iÞ: ð2Þ

Here, f̂ represents the statistical model (in this case random forest); x−j denotes all the variables

except xj; n denotes the number of observations in the training data set. The estimated PDP of

the predictor xj provides the average value of the function f̂ when xj is fixed and x−j varies over

its marginal distribution.

Bias variance trade-off and model selection. Bias variance trade-off is the key to model

selection in supervised learning theory. Optimal generalization performance of a predictive

model hinges on the ability to simultaneously minimize the bias and variance of the model,

thus controlling the complexity of the model. Cross validation is the most widely used tech-

nique for balancing models’ bias and variance [49]. Thus, we leveraged a percentage random-

ized holdout technique to estimate the predictive accuracy of the models. More specifically,

out-of-sample predictive accuracy of each model was calculated by implementing 30 iterations

where in each iteration, 20% of the data was randomly held out to test model and the model

was trained on the remaining 80% data. The optimal model can be selected in such a way that

it outperforms all the other models in terms of in-sample goodness-of-fit and out-of-sample

predictive accuracy.
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Results

In this section, we present a comparative assessment of the in-sample and out-of-sample per-

formances of all the statistical learning models, identify and evaluate the key influencing socio-

environmental predictors associated with the suicide mortality rate based on the final model,

and compare those factors in contribution to disparity of suicide rate in both the large and

medium/small metropolitan counties in the U.S.

Comparative assessment of model performance and final model selection

A summary of the models’ performances, developed for both the large metropolitan and the

medium/small metropolitan counties, are provided in Tables 3 and 4 respectively. Perfor-

mance of the models, in terms of in-sample model fit and out-of-sample predictive accuracy, is

evaluated using three statistical metrics (i.e. R2, RMSE, MAE) that averaged across the 30 itera-

tions. Model’s in-sample fit indicates it’s ability to capture the underlying structure of the data

and explains response as a function of the predictors, while the predictive accuracy measures

the model’s ability to make future predictions.

From Table 3 that presents the performances of the models developed for the large metro-

politan counties, we observe that random forest and gradient boosting method are the two

most competitive algorithms that outperform all the other models in terms of goodness-of-fit.

However, in terms of predictive accuracy, random forest outperforms the gradient boosting

method. Thus, we selected random forest model to capture and predict suicide mortality rate

in the large metropolitan counties. Similar patterns can be found in Table 4 that exhibit the

performances of the models developed for the medium/small metropolitan counties. Gradient

boosting method tops the list in terms of goodness-of-fit followed by random forest, however

random forest outperforms the gradient boosting method with regard to predictive accuracy.

This phenomenon indicates gradient boosting method is overfitting the training data. Note

that, BART model has a slightly higher predictive accuracy than random forest model, but it

also demonstrates much higher loss in fitting training data to the model. Therefore, we selected

random forest as our final model to make further inferences of key socio-environmental

impacts on suicide disparities in metropolitan areas.

Table 3. Large metropolitan counties: Model performance comparison.

Large Metropolitan County Model

# Models Goodness-of-fit Predictive accuracy

R2 RMSE MAE R2 RMSE MAE

1 Generalized Linear Model 0.507 0.265 0.206 0.470 0.268 0.211

2 Ridge Regression 0.505 0.265 0.207 0.470 0.268 0.210

3 Lasso Regression 0.487 0.270 0.209 0.459 0.271 0.211

4 Generalized Additive Model 0.557 0.250 0.194 0.475 0.267 0.208

5 Multi Adaptive Regression Splines [degree = 1] 0.527 0.259 0.201 0.472 0.267 0.207

6 Multi Adaptive Regression Splines [degree = 2] 0.532 0.258 0.200 0.462 0.270 0.211

7 Multi Adaptive Regression Splines [degree = 3] 0.577 0.245 0.191 0.402 0.285 0.220

8 Multi Adaptive Regression Splines [degree = 3; penalty = 2] 0.506 0.264 0.206 0.442 0.275 0.213

9 Random Forest 0.886 0.127 0.098 0.437 0.276 0.217

10 Gradient Boosting Method 0.887 0.126 0.100 0.365 0.293 0.229

11 Bayesian Additive Regression trees 0.574 0.246 0.190 0.484 0.265 0.205

12 Null Model (Mean-only) NA 0.377 0.296 NA 0.369 0.292

https://doi.org/10.1371/journal.pone.0258824.t003
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Compared to the “null model” (a.k.a. “mean-only” model), which is often used as a bench-

mark model in statistical analyses, the random forest algorithm offered an improvement of

66.3% on in-sample RMSE and 66.9% on in-sample MAE, while for the predictive accuracy it

offered an improvement of 25.2% on out-of-sample RMSE and 25.7% on out-of-sample MAE

for the large metropolitan counties dataset. On the other hand, for the medium/small metro-

politan counties dataset, the random forest algorithm provided an improvement of 74.5% on

in-sample RMSE and 73.2% on in-sample MAE, while from the predictive accuracy perspec-

tive, it offered an improvement of 42% on out-of-sample RMSE and 38.9% on out-of-sample

MAE.

Models’ diagnostics. To validate our finally selected random forest in capturing the sui-

cide variations between both the large and medium/small metropolitan counties, we analyzed

the Q-Q plots of the model residuals as depicted in Figs 3(A) and 4(A). A residual Q-Q plot is

a graph that plots quantiles of the models’ residuals versus quantiles of the standard normal

distribution. From Figs 3(A) and 4(A), we observe that the residuals mostly fall along the 45

line of the normal quantile plot, with slight deviations at the tails. The deviated tails at the

extremes indicate that there are unobserved heterogeneities, most likely associated with non

socio-environmental factors (e.g., victim-level information on pre-existing clinical conditions,

health behaviors, family issues, etc.) which could not be captured in our model. The higher R2

values of the models—e.g., R2 = 0.886 and R2 = 0.934 for large metro and medium/small metro

counties models respectively, the higher values of Pearson correlation coefficients (ρ = 0.950 in

large metro; ρ = 0.972 in medium/small metro) between the actual and the fitted values, and

the residuals Q-Q plots indicate that the selected random forest model can adequately capture

the variation in the data and model the suicide mortality rates as a function of the various

socio-environmental factors.

Key predictors identification and ranking

Variable importance is calculated based on “variable inclusion proportion”, which is the frac-

tion of times a given predictor was used in growing a regression tree (see more details in the

description of random forest algorithm 1). In this paper, the variable importance ranking can

be used to indicate the main influencing factors by their relevance of suicide mortality rates.

Table 4. Medium/Small metropolitan counties: Model performance comparison.

Medium/Small Metropolitan County Model

# Models Goodness-of-fit Predictive accuracy

R2 RMSE MAE R2 RMSE MAE

1 Generalized Linear Model 0.626 0.398 0.300 0.570 0.402 0.307

2 Ridge Regression 0.626 0.398 0.300 0.570 0.402 0.308

3 Lasso Regression 0.591 0.416 0.312 0.537 0.418 0.317

4 Generalized Additive Model 0.779 0.305 0.233 0.645 0.364 0.274

5 Multi Adaptive Regression Splines [degree = 1] 0.750 0.325 0.249 0.655 0.359 0.272

6 Multi Adaptive Regression Splines [degree = 2] 0.760 0.319 0.246 0.627 0.371 0.280

7 Multi Adaptive Regression Splines [degree = 3] 0.790 0.297 0.230 0.587 0.391 0.287

8 Multi Adaptive Regression Splines [degree = 3; penalty = 2] 0.724 0.340 0.264 0.617 0.379 0.286

9 Random Forest 0.934 0.166 0.122 0.656 0.359 0.269

10 Gradient Boosting Method 0.967 0.117 0.090 0.620 0.376 0.284

11 Bayesian Additive Regression trees 0.804 0.287 0.218 0.667 0.354 0.266

12 Null Model (Mean-only) NA 0.650 0.456 NA 0.619 0.440

https://doi.org/10.1371/journal.pone.0258824.t004
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For the sake of brevity, we selected top 15 variables in predicting suicide rates in the large and

medium/small metropolitan counties. Table 5 exhibits those 15 variables and their sign of the

correlation coefficients with the response variable.

As we observe from Fig 5, socio-demographic factors (race, gender, age, and education)

have a different yet significant influence on the suicide mortality rate in both large and

Fig 3. Large metropolitan counties: Model diagnostics of final random forest model. (A) Residuals QQ plot (the

blue dashed lines represent 95% confidence intervals); (B) Predicted versus actual suicide counts, normalized per

100,000 of population.

https://doi.org/10.1371/journal.pone.0258824.g003

Fig 4. Medium/Small metropolitan counties: Model diagnostics of final random forest model. (A) Residuals QQ

plot (the blue dashed lines represent 95% confidence intervals); (B) Predicted versus actual suicide counts, normalized

per 100,000 of population.

https://doi.org/10.1371/journal.pone.0258824.g004
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medium/small metropolitan areas. Economic factors (i.e., unemployment rate and the median

household income) have more impacts on suicide rates in the median/small metropolitan

regions than in the large metropolitan regions. In addition, suicide rates in the large metros

are found to be more sensitive to specific climatic variables (DX90—number of days higher

than 90 F, DX70—number of days higher than 70 F, HDSD—season-to-date heating degree

days, and EMXP—extreme maximum precipitation in a month); while suicides in the

Table 5. Summary of top 15 variables in large and medium/small areas.

Variable Description Large Metros Medium/Small Metros

Rank Correlation Rank Correlation

AA Percentage of Asian population. 1 Negative 2 Negative

BA Percent of Black population. 12 Mixed 1 Negative

NH Percent of non-Hispanic population. 9 Positive 15 Positive

IA Percent of American Indian, Alaska native population. 10 Mixed 5 Negative

NA Percent of Native Hawaiian, Pacific Islander population. 13 Positive 6 Negative

Female Percent of female population. 7 Mixed 4 Negative

Age_1 Percent of young adults aged below 14 years old. 6 Mixed 14 Mixed

Age_2 Percent of adolescents aged 15–29 years old. 4 Positive 8 Negative

Age_6 Percent of elder people aged above 75 years old. - - 7 Mixed

Education_1 Percent of people with less than a high school degree. 11 Mixed 11 Positive

Education_2 Percent of people with a high school degree. 8 Mixed 3 Positive

Education_3 Percent of people with an associate degree. 14 Negative 10 Negative

Unemployment Percent of unemployed workers in the total labor force. - - 9 Positive

Income Median household income. - - 13 Mixed

DX90 Number of days with temperature� 90˚F. 2 Positive - -

DX70 Number of days with temperature� 70˚F. 3 Positive - -

HDSD Seasonal heating degree days. 5 Mixed - -

EMXP Extreme maximum daily precipitation total within month. 15 Mixed - -

CDSD Seasonal cooling degree days. - - 12 Positive

Note that, positive correlation denotes the relationship between predictor and response variable that changes in the same way (either increasing or decreasing), while

negative correlation denotes this relationship changes in the opposite way. Otherwise, a mixed correlation indicates a combination of positive and negative relationship

between predictor and response variable.

https://doi.org/10.1371/journal.pone.0258824.t005

Fig 5. Variable importance ranking of top 15 predictors. Top 15 socio-environmental factors selected from random forest in relation to suicide rates

are shown in (a) and (b) with respect to large metros and medium/small metros.

https://doi.org/10.1371/journal.pone.0258824.g005
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medium/small metros are more sensitive to season-to-date cooling degree days (CDSD). The

rational behind our findings is explained in the following subsections.

Model inference: Comparative assessment across large and medium/small

metropolitan counties

The disparities of suicide mortality rate across large and medium/small metropolitan areas are

examined based on the key factors identified in Table 5. The relative influences of those key

socio-demographic, climatic and economic factors on the suicide mortality are illustrated

using partial dependence plots (PDPs) (see the Eq 2), where in each plot the y-axis represents

the averaged suicide mortality rate influenced only by the predictor variable in the x-axis, con-

sidering all the other predictor variables to be constant [58].

Socio-demographic factors. A detailed insight on socio-demographic impacts on suicide

rates across metropolitan areas is provided here. Specific racial groups such as Asian (AA),

Black (BA), American Indians and Alaska natives (IA), native Hawaiian and Pacific Islander

(NA) and Non-Hispanic (NH) are all ranked as top 15 predictors, but with different impacts

on suicide rates across large and medium/small metropolitan areas.

The trend between the proportion of Asian population (AA) and suicide rate can be

observed in Fig 6. This graph demonstrates that, as a growing AA, the averaged suicide rate

first drops quickly and then stabilizes at a certain point. Specifically, suicide rate stabilizes at

1.28 per 100,000 population as the AA reaches above 11% in the large metros; while in the

medium/small metros, suicide rates stabilizes at 1.9 per 100,000 population as the AA reaches

above 6%. This can infer that a community with higher Asian population (under certain

threshold) could have a lower suicide rate. In general, Asian population is less likely to commit

suicide. Previous study also indicated Asians were at low risk for suicide mortality compared

to other racial groups such as White non-Hispanics and Black non-Hispanics [59]. The associ-

ation between the proportion of Black population (BA) and the suicide rates is demonstrated

in Fig 6. In large metropolitan counties, we observed that suicide mortality rate increases as

the BA grows, and declines as the BA exceeds 40%. On the contrary, this relationship is differ-

ent in the medium/small metropolitan areas, where a higher BA is related to a lower suicide

rates—the average suicide rate goes down from 2.5 to 1.9 counts per 100,000 population of the

county as the BA grows over 15%. This opposite relation of suicide rates and Black population

across different urbanized regions could be explained by the previous studies implying that

Black population living in urban areas might feel more stressed and strained of the urban life

due to unaccustomed social isolation or difficulty acculturating to middle-class suburban liv-

ing [6, 60].

From Fig 6, we observe that higher proportion of Non-Hispanic population (NH) is also

associated with increasing suicide mortality rate, and this relationship is consistent in both the

large and medium/small metropolitan counties. Note that, with a higher NH, the average sui-

cide rate also increases. From the x-axis of Fig 6, the NH is a major group in the population

and can account for the overall suicide rates, which is lined up with the existing research [2].

Similarly, the relationship of suicide rates and the proportions of American Indian and Alaska

natives (IA) can be observed from Fig 6. For the large metros, the relationship depicts a step-

function. More specifically, with IA ranging between 0.0–1.5% and greater than 2%, the suicide

mortality rate shows an increasing trend, with an exception of a decreasing trend in the range

of 1.5–2.0Ḟor the medium/small counties, we observe an increasing trend where the IA ranges

between 0.0–1.0%, but after that the trend is slightly decreasing. Fig 6 demonstrates the rela-

tionship of suicide rates and the proportions of Native Hawaiian or Pacific Islander (NA) pop-

ulation. More specifically, the suicide mortality rate shows an increasing trend with an
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increasing NA in the large metropolitan counties, whereas, in contrast it shows a decreasing

trend with an increasing NA in the medium/small metropolitan counties.

Gender plays a crucial role in understanding the variations in suicide mortality rates across

the large and medium/small metropolitan regions. From Fig 7, we found that in the large

Fig 6. Suicide mortality rate and race: (A) Large metro areas; (B) Medium/small metro areas. Rug lines on the x
axis indicate prevalence of data points; black curve is the average marginal effect of the predictor variable; red lines

indicate the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g006

Fig 7. Suicide mortality rate and gender: (A) Large metro areas; (B) Medium/small metro areas. Rug lines on the x
axis indicate prevalence of data points; black curve is the average marginal effect of the predictor variable; red lines

indicate the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g007
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metros, as the proportion of females increases, the suicide rate increases up until a certain

point (around 1.45 per 100,000) and then it starts to drop sharply. In the medium/small met-

ros, the suicide rate decreases monotonically as the growing of female populations. On average,

counties having a higher proportion of females typically witness a lower suicide mortality rate.

Previous studies stated that females have higher rates of suicidal ideations and attempts

whereas males are more successful in completing a suicide, which is also known as the well-

established concept of “gender paradox in suicides” [23, 24].

Our studies also found that different age groups have certain impacts on suicide rates across

the large and medium/small metropolitan counties. In Fig 8, the suicide trend can be roughly

represented in the form of step-function (decreasing first, reaches a plateau, and then increas-

ing), with the increasing of the proportion of children and teenagers (aged under 14). And this

trend can be observed in the both large and medium/small metros. It is not surprising that pre-

pubescent children are at risk of conducting suicidal behaviors, as previous studies suggested

that by the age of eight or nine children have already formed a thorough understanding of sui-

cide and do have intent to cause self-injury to possibly avoid their emotional pain such as

break-ups [61]. Fig 8 relates to the proportion of adolescents aged between 15 to 29 years. In

the large metros, the suicide rate has a tipping point when adolescent population is around

22.2% of the population. This indicates that suicide rate have a sharp increase from 1.4 to 1.5

per 100,000 population at the tipping point. Suicides among adolescents are growing in the

last decades, and higher proportion of adolescents in the community could be linked to a

higher suicide risks. Intriguingly, the suicide rate in the medium/small metros exhibits a

downward trend with the increases as adolescent population grows. Note that, suicide rates

eventually stabilize at 1.5 and 2.0 per 100,000 population for the large and medium/small met-

ros respectively, indicating the suicide disparities still need to be explained by other factors.

Our analysis also suggests that elderly people belonging to the age group of over 75 years

and living in the medium/small metropolitan areas are vulnerable to committing suicides (see

Fig 8. Suicide mortality rate and age: (A) Large metro areas; (B) Medium/small metro areas. Rug lines on the x axis

indicate prevalence of data points; black curve is the average marginal effect of the predictor variable; red lines indicate

the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g008
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Fig 8). We observe that as the proportion of elderly population in a county increases beyond

7%, the suicide mortality rate steadily increases. On the contrary, this factor does not appear to

be significant (not ranked among the top 15 factors) for the suicide mortality rates in the large

metropolitan areas. Thus, the elderly population living in medium/small metropolitan settings

has a higher risk of suicide, mostly due to the unavailability of sufficient mental health services

or accessibility to the healthcare system [62].

The educational attainment of the population is an another key factor that can explain the

suicide disparities across different urbanized regions. In the medium/small metropolitan

counties, suicide rate shows an overall increasing trend with the growing proportion of people

with a high school diploma only or lower (see Fig 9B1 and 9B2), but exhibits an decreasing

trend with growing proportion of people having college associate degree (see Fig 9B3); this

indicates that people with a lower educational attainment living in the medium/small counties

are more vulnerable to suicide risks. However in the large counties, the partial effect of educa-

tional attainment on suicide rates is more fluctuating (see Fig 9A1 and 9A2). This can be

mostly attributed to the fact that only few large metropolitan counties contain higher percent-

ages of population with lower educational attainment, thus the trend cannot be generalized.

We also observe that the suicide rate has a steady downward trend as the percentage of people

with college or associate degree increases in the large counties (see Fig 9A3).

Based on those findings about educational attainment, our analysis demonstrates that peo-

ple with low levels of education are more likely to be linked to higher suicide rates. This educa-

tion gradient in the suicide mortality rate, in both the large and medium/small metropolitan

areas, can reflect the importance of education in changing the risk perception and health-

related behaviors of a population which in turn could improve the overall mental health condi-

tion and emotional well-being of a community. This finding is consistent with a cross-national

research report showing that the suicide rate is relatively high among group with only a high

school degree, and relatively low among people having at least a college degree [29]. To some

extent, education is more than enriching knowledge, providing a platform/resource for

Fig 9. Suicide mortality rate and education: (A) Large metro areas; (B) Medium/small metro areas. Rug lines on

the x axis indicate prevalence of data points; black curve is the average marginal effect of the predictor variable; red

lines indicate the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g009
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individuals to improve their coping skills and maintain their physical, mental and social well-

being.

Economic factors. This study also reveals the association of economic factors and suicide

mortality rates across the large and medium/small metropolitan regions. We note that two

economic factors (unemployment rate and median household income) that ranked as top 15

factors are of significant importance in influencing the suicide rates in the medium/small met-

ropolitan areas. However, those two economic factors were not found to be important in the

large metropolitan areas. As presented in Fig 10, the suicide mortality rate has an increasing

trend with the growing of unemployment rate in the medium/small metros. This finding is

lined up with one previous research that examined an increase in the relative risk of suicide

was linked to the unemployment status [63]. From Fig 10, we also found that the suicide mor-

tality rate can be represented as a step-function of the median household income in the

medium/small counties. The suicide mortality rate shows an decreasing trend as the median

household income grows within the range from 40,000 to 80,000 USD annually. However, as

the median household income increases above 80,000 USD annually, we observe an increasing

trend in the suicide mortality rates. Note that, since only few observations fall in a range above

80,000 USD annually, we could consider that for the most cases, the relation between median

household income and suicide rates are negative correlated if the median household income is

below 80,000 USD annually.

From the analysis, suicide rate in the medium/small metros is more sensitive to unemploy-

ment rate and median household income compared with suicide rate in the large metros. Liv-

ing in the medium/small metropolitan counties, people with less than average income or

under unemployment may encounter more physical and mental stress, which could act as a

trigger to underlying mental illness or chronic depression that can lead to committing suicide.

While in the large metros, there are more jobs opportunities. Moreover, some researchers

found that people were being unemployment in a society may be considered as lack of social

cohesion, which in turns is associated with the higher chance of committing suicide [64, 65].

Climate factors. Our findings show that suicide rate in the large metropolitan counties

are more sensitive to four climate factors—DX90, DX70, HDSD and EMXP, that ranked

among the top 15 factors. The suicide rate in the medium/small metropolitan counties, on the

other hand, is associated with the seasonal cooling degree days (CDSD). Variable descriptions

and partial dependencies are provided in Table 5 and Fig 11, respectively. In the large metro-

politan areas, we observe that the suicide mortality rate has an increasing trend with higher

extreme temperatures (i.e., DX90 and DX70) (see Fig 11(A1) and 11(A2)). In the medium/

small metros, the suicide rate has an upward trend with the increasing seasonal cooling degree

days (CDSD), which again clearly reflects that higher temperatures are associated with higher

suicide rates. Thus, there is not much disparity in the associations of suicide rates with the

Fig 10. Suicide mortality rate in economics for (B) Medium/small metro areas only. Rug lines on the x axis indicate

prevalence of data points; black curve is the average marginal effect of the predictor variable; red lines indicate the 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g010
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climate when large and medium/small metros are compared. These findings are consistent

with prior research studies, claiming a strong association between warmer temperatures and

suicide rates [17, 18]. In addition, our study demonstrates the nonlinear association between

the suicide rate in large metropolitan areas and number of days above 90˚F a year (i.e., DX90),

which is similar to the inverted J-curve observed between higher temperature and suicides in

the previous studies [66]. The linkage between warmer temperature and higher suicides could

possibly explained as side effects of thermoregulation or other neurological responses to tem-

perature that alter brain perfusion [67]. A recent study, analyzing around 600 million posts in

Twitter, also demonstrated that hotter months were linked to a higher chance of using depres-

sive languages during conversations, which was found to be the underlying cause of suicide

[18]. Additionally, our study found that the seasonal heating degree days (HDSD) and the

extreme daily maximum precipitation (EMXP) have positive associations with the suicide

rates in the large metropolitan areas. To the best of our knowledge, there is no existing

research that has examined the associations between HDSD/EMXP and the suicide risks in

large metropolitan areas. However, one existing research has demonstrated that higher precip-

itation is linked to increasing mental health issues [68]. Now, since it is well-recognized that

mental health issues can contribute to suicidal behaviors, it is not surprising to observe EMXP

having a positive correlation with the suicide rate.

Limitations

In this paper, we propose a data-driven predictive framework that can identify and evaluate

the various socio-environmental determinants of suicides, and thus would help the stakehold-

ers in informed suicide prevention strategies, and minimize suicide risks across metropolitan

areas. However, there are certain limitations of this study, which are acknowledged in this sec-

tion. First, the findings may not be sufficient to make conclusions at the individual-level, i.e.,

Fig 11. Suicide mortality rate and climate: (A) Large metro areas; (B) Medium/small metro areas. Rug lines on the

x axis indicate prevalence of data points; black curve is the average marginal effect of the predictor variable; red lines

indicate the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0258824.g011
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how socio-economic or demographic factors lead to suicidal behaviors among individuals in a

community. To better understand this causal relationship, extensive longitudinal studies based

on randomized control trials and other clinical methodologies need to be conducted. Second,

our study evaluates only the associations of the climate factors with the suicide rates, and not

necessarily explains their causal relationships. More specifically, future research could further

investigate the causal relationships of the climate variables (e.g., temperature, precipitation,

seasonal cooling degree days) identified as key factors in our study with the risk of suicide.

Third, behavioral characteristics (e.g., previous mental illness) and contextual effects (e.g.,

availability of health services, healthcare-related variables) which are found to be important in

designing the evidence-based suicide-focused clinical treatment, are not included in this study.

However, our framework is generalized enough that it can incorporate all these factors, given

the data is available. Finally, given the availability of data, suicide incidents from only the top

vulnerable US states are investigated. Future work can extend this to other states/regions of

interest, or even can be expanded to include the entire nation.

Conclusion

Evaluating the socio-environmental associations with the suicide rates at the community-/

region- level is instrumental to inform policy-makers and healthcare providers in devising

effective strategies that can help improve the mental health wellbeing as well as quality of life

for residents across the various geographical regions.

In this paper, we propose a data-driven predictive framework to examine the socio-envi-

ronmental factors associated with the suicide rate disparity at population level, across the large

and medium/small metropolitan areas. Unlike the existing study, our study unpacks the non-

linear associations of the various socio-economic, demographic and climatic factors with the

suicide rates. Not only that, our proposed framework and methodology is generalized enough

that can be applied to any other regions of interests (e.g., Nordic countries with higher suicide

rates) and other applications (e.g., disparities in substance abuse), provided relevant data is

available. The proposed generalized framework can eventually help the federal and state gov-

ernments, as well as the local communities to informed decision-making in planning for sui-

cide prevention strategies. The non-parametric nonlinear model—random forest, which

outperforms all the other models including the conventionally-used linear models in terms of

its generalization performance, establishes the fact that significant nonlinear interactions exist

among the socio-environmental factors and the suicide rates. Therefore, our study establishes

that it is essential to account for the nonlinearities in the associations of socio-environmental

factors with the suicide rates, which otherwise may lead to underestimation of the suicide rates

and subsequent sub-optimal decision making. Our findings can also reveal that the interaction

between suicides and the socio-environmental factors is not only nonlinear, but also varies sig-

nificantly across the metropolitan areas with different level of urbanization in the US.

In addition to methodological contributions and unraveling some of the complex associa-

tions of the socio-environmental factors with the suicide rates, our study also contributes to

the body of knowledge through some of the key findings. Although it is well recognized that

suicide risk is correlated with demographic characteristics such as age, gender, ethnicity and

race, we found that there is a difference in the associations of these factors with the suicide

rates across the various metropolitan areas. Race/ethnicity, gender, adolescents and adults

aged below 29, and low educational attainment are found to be the key factors in predicting

the suicide risks. Upon close examination of the suicide disparities between large metropolitan

and medium/small metropolitan areas, we observe that African Americans in the large metro-

politan areas are more vulnerable to suicides compared to those in the medium/small metros.
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Additionally, the young people aged 15–29 residing in the large metros are found to be more

vulnerable to suicides. However, a contrasting trend is observed in the medium/small metros

where the younger population is negatively associated with suicide rates. Our study also indi-

cated that the suicide rate in the medium/small metros is particularly sensitive to the elder peo-

ple aged above 75 years. Such suicide disparities among various demographics are well-

captured and quantified in our study. Potential suicide prevention programs can be tailored

differently between large metros and medium/small metros, and target more on the vulnerable

groups, according to their dependencies on suicide risks from our findings.

The association of economic factors with the suicide rates is demonstrated to be of more

significance in the medium/small metropolitan counties than in large metropolitan areas. Sui-

cide rate in medium/small metros is particularly sensitive to the unemployment rate and

median household income. We found that, with an increasing unemployment rate (from 2%

to 12%), the suicide rate also increases (from 2.0 to 2.06 per 100,000 population); on the other

hand, as the medium household income decreases from 80,000 USD to 40,000 USD, the sui-

cide rates increases from 2.01 to 2.02 per 100,000 population in a county per month. Although

this number seems small, it can account for a significant rise in the number of monthly sui-

cides on average in the US, with a population of 310 million residing in the urban and rural

areas. These economic factors also account for the disparity in suicide rates between the less

and the more urbanized areas. The local government could make use of our findings to effec-

tively subsidize public investments in less urbanized areas and/or provide government incen-

tives to those population who are having financial difficulties.

This study also illustrates that climate variables are correlated with suicide rates. In the large

metros, suicide rate is more sensitive to higher temperature, seasonal heating degree days and

extreme maximum precipitation; while in the medium/small metros, the suicide rate is more

sensitive to seasonal cooling degree days. This finding is supported by the existing studies

reporting higher ambient temperature is linked to increased self-reported mental distress [38,

69]. The weather variations may not account for direct motivation for people to commit sui-

cide, but knowing the correlation between climate changes and suicidal variations, it is neces-

sary to predict the trend of suicide rates in the face of climate change.
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