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A B S T R A C T

Serosurveys are an important tool to estimate the true extent of the current SARS-CoV-2 pandemic. So far, most
serosurvey data have been analyzed with cutoff-based methods, which dichotomize individual measurements
into sero-positives or negatives based on a predefined cutoff. However, mixture model methods can gain
additional information from the same serosurvey data. Such methods refrain from dichotomizing individual
values and instead use the full distribution of the serological measurements from pre-pandemic and COVID-19
controls to estimate the cumulative incidence. This study presents an application of mixture model methods
to SARS-CoV-2 serosurvey data from the SEROCoV-POP study from April and May 2020 in Geneva (2766
individuals). Besides estimating the total cumulative incidence in these data (8.1% (95% CI: 6.8%–9.9%)),
we applied extended mixture model methods to estimate an indirect indicator of disease severity, which is
the fraction of cases with a distribution of antibody levels similar to hospitalized COVID-19 patients. This
fraction is 51.2% (95% CI: 15.2%–79.5%) across the full serosurvey, but differs between three age classes:
21.4% (95% CI: 0%–59.6%) for individuals between 5 and 40 years old, 60.2% (95% CI: 21.5%–100%) for
individuals between 41 and 65 years old and 100% (95% CI: 20.1%–100%) for individuals between 66 and
90 years old. Additionally, we find a mismatch between the inferred negative distribution of the serosurvey
and the validation data of pre-pandemic controls. Overall, this study illustrates that mixture model methods
can provide additional insights from serosurvey data.
1. Introduction

Serological surveys (serosurveys) are an important tool to esti-
mate the cumulative incidence of SARS-CoV-2 infections in various
geographic locations or risk groups during the current pandemic (Koop-
mans and Haagmans, 2020). Based on the estimated cumulative inci-
dence, one can even calculate several related parameters such as: the
ascertainment rate, i.e. the fraction of cases detected, the relative risk
of infection for sub-groups (Stringhini et al., 2020), and the infection
fatality rate (Levin et al., 2020). In 2020, many serosurveys have been
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conducted in a wide variety of geographic locations (Chen et al., 2021).
The vast majority of these serosurvey studies have been analyzed with
cutoff-based methods, meaning that each individual serological mea-
surement has been dichotomized into sero-negative or positive based on
a predefined cutoff value. This cutoff value has been defined based on a
receiver operating characteristic (ROC) curve constructed from samples
from pre-pandemic controls and known SARS-CoV-2 infections.

The cutoff-based method for analyzing serosurveys has two main
challenges. Firstly, the cutoff depends on validation data from known
vailable online 7 May 2022
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SARS-CoV-2 infections, which are often not representative of the full
spectrum of possible infections. Instead, cases used for the validation
data are, especially at the beginning of an epidemic, biased towards
severe infections and early convalescent periods (Føns and Krogfelt,
2021). However, it is known that disease severity influences the anti-
body level after infection (Serre-Miranda et al., 2021) and that antibody
levels wane over time (den Hartog et al., 2021). This can lead to overly
confident estimates of the sensitivity and specificity of the serological
test and therefore bias the estimated cumulative incidence. Secondly,
the amount of information obtained from the serosurvey is reduced by
dichotomizing the continuous measurements. As a result, the cutoff-
based method does not allow to differentiate between several types of
SARS-CoV-2 infections (for instance mild and severe infections), nor to
detect or correct for a possible mismatch between the cases included in
the validation data and those in the serosurvey.

Both of the posed challenges can be circumvented by using mixture
model methods. Instead of dichotomizing the individual serological ob-
servations, mixture model methods estimate the cumulative incidence
directly based on the full distribution of serological measurements for
the pre-pandemic controls and known SARS-CoV-2 infections (Bouman
et al., 2021). As a result, this inference framework can also be used
to determine whether the cases included as positive COVID-19 con-
trols are a good representation of the cases in the serosurvey data or
whether cases with a distinct distribution of serological measurements
(such as measurements from individuals with an asymptomatic or mild
infection) are missing in the validation data. Moreover, mixture model
methods allow to use multiple distinct distributions of cases separately
in the analysis. Even though mixture models have been successfully
applied to serosurvey data for several pathogens (Vyse et al., 2006; Rota
et al., 2008; Vink et al., 2015; van Boven et al., 2017), they are rarely
used to analyze serosurvey data from SARS-CoV-2 studies (Bottomley
et al., 2021).

In this study, we apply mixture model methods to serosurvey data
from the SEROCoV-POP study that was performed in Geneva in April
and May of 2020 (Stringhini et al., 2020). In addition to corroborating
previous estimates of the cumulative incidence for these data (4.6% in
first week (95% CI: 2.4%–8.0%) to 10.9% in the fifth week (95% CI:
8.2%–13.9%)) – we estimated a cumulative incidence of 8.1% (95% CI:
6.8%–9.9%) over the whole period of sampling –, our aim is to show
how mixture model methods can be used to extract more information
from serosurveys. We use an extended mixture model that takes into
consideration the distribution of antibody levels of both hospitalized
COVID-19 patients and outpatients. This results in an estimate of what
we call the indirect indicator of severity, which is defined as the
fraction of individuals in the serosurvey that display a distribution of
antibody levels similar to that of the hospitalized patients in the control
data. This fraction is not a direct estimate of the fraction of cases in the
serosurvey that were treated in a hospital, as the validation data does
not contain positive control data from asymptomatic and mild cases.
Therefore, we rather refer to this quantity as the indirect indicator of
disease severity.

2. Methods

2.1. Data

We used the pre-pandemic and COVID-19 control data from Meyer
et al. as the validation data in this study (Meyer et al., 2020). The
pre-pandemic control data consists of 326 samples, 276 of these orig-
inated from adults and 50 from children (Meyer et al., 2020). They
were collected in 2013, 2014 and 2018 at the University Hospitals of
Geneva (Meyer et al., 2020). 84 of the samples came from healthy
individuals and 242 from patients consulting the hospital (Meyer et al.,
2020). The COVID-19 control data was collected from 181 individuals
at the University Hospitals of Geneva. The severity of their infection is
indicated by either ‘hospitalized’ (n=91) or ‘outpatient’ (n=90) (Meyer
2

et al., 2020). Both hospitalized and outpatient individuals displayed at
least mild symptoms.

We also used data from the SEROCoV-POP study from April and
May 2020 from Stringhini et al. (2020). Each week of the study, 1300
participants of the Bus Santé study were invited to participate via email
and were asked to invite any household members (Stringhini et al.,
2020). The Bus Santé study is an annual cross-sectional study of adults
residing in Geneva state (Switzerland) that, at the time of the study,
had 17 225 participants on record (Morabia et al., 1997; Guessous
et al., 2012, 2014; Mestral et al., 2020; Stringhini et al., 2020). The
invitation process resulted in the participation of 2766 individuals of
which 52.6% are female (Stringhini et al., 2020). Individuals aged
between 50 and 64 were over-represented compared to the general
population of Geneva and the age groups 5–9, 20–49 and 80–104
were under-represented (Stringhini et al., 2020). Recruited partici-
pants have a higher educational level than the general population of
Geneva (Stringhini et al., 2020). The data from the 2766 recruited
participants contains age, measured IgG OD ratio of the Euroimmun
SARS-CoV-2 serological assay and sex. Additionally, the household
structure between the individuals is indicated.

The serological assay measurements for all sera in both datasets
were obtained with the Euroimmun SARS-CoV-2 serological assay
which quantifies the IgG antibodies against the S1-domain of the
spike protein of SARS-CoV-2 (Meyer et al., 2020). The IgG OD ratio
is the result of the immunoreactivity of the sample measured at an
optical density of 450 nm (OD450) divided by the OD450 of the
calibrator (Meyer et al., 2020; Okba et al., 2020).

2.2. Mixture model methods

We have assembled all observations of the SEROCoV-POP study
from April and May and apply the mixture model described by Bouman
et al. (2021). All analyses are performed in R (Team R. Core et al.,
2013). The basic mixture model maximizes the likelihood Eq. (1). Here,
𝑈 is the vector of observed IgG OD ratios in the serosurvey data, 𝜎
is a binary vector of length 𝑛 with their underlying true serological
status (1 for past infection and 0 for no past infection). The probabilities
𝑝(𝑈𝑖|𝜎𝑖 = 0) and 𝑝(𝑈𝑖|𝜎𝑖 = 1) capture the empirical distributions of
gG OD ratios for the pre-pandemic and COVID-19 control measure-
ents, and 𝜋 is the cumulative incidence. The empirical distributions

re obtained by smoothing the observed distributions. This is done
ith the ‘density’-function in R using the default kernel setting, ‘gaus-

ian’. Team R. Core et al. (2013). The use of this smoothing function
as been validated with simulated data in Bouman et al. (2021). The
pecific smoothing algorithm does influence the results, even though
he differences are small. For example, the kernel ‘cosine’ results in a
oint estimate of the cumulative incidence of 8.7% (95%𝐶𝐼 ∶ 6.9% −
0.3%). More extensive data would allow us to determine the antibody
istribution more reliable.

𝑙(𝑈 ) =
𝑖=𝑛
∑

𝑖=1
log

(

𝑝(𝜎𝑖 = 1|𝜋) 𝑝(𝑈𝑖|𝜎𝑖 = 1) + 𝑝(𝜎𝑖 = 0|𝜋) 𝑝(𝑈𝑖|𝜎𝑖 = 0)

)

(1)

The likelihood is extended for the model where the outpatient and
ospitalized cases are estimated separately, see Eq. (2). Here, 𝜋𝑜𝑢𝑡 is

the cumulative incidence of outpatient cases and 𝜋ℎ𝑜𝑠𝑝 the cumulative
incidence of hospitalized cases, 𝜎𝑖 can be 0 (no past infection), 1 (past
outpatient infection) or 2 (past hospitalized infection).

𝑙𝑙(𝑈 ) =
𝑖=𝑛
∑

𝑖=1
log

(

𝑝(𝜎𝑖 = 1|𝜋𝑜𝑢𝑡) 𝑝(𝑈𝑖|𝜎𝑖 = 1)+

(𝜎𝑖 = 2|𝜋ℎ𝑜𝑠𝑝) 𝑝(𝑈𝑖|𝜎𝑖 = 2) + 𝑝(𝜎𝑖 = 0|𝜋𝑜𝑢𝑡, 𝜋ℎ𝑜𝑠𝑝) 𝑝(𝑈𝑖|𝜎𝑖 = 0)

)

(2)

The 95% confidence intervals are estimated by bootstrapping the
ontrol distributions as well as the observations from the serosurvey.
he various mixture models are compared with a likelihood ratio test.
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Fig. 1. Histograms of IgG OD ratios of the Euroimmun SARS-CoV-2 IgG from the SEROCoV-POP study from April to May (Stringhini et al., 2020) and the validation data from
Meyer et al. (2020). Solid lines indicate the empirical distributions. The purple solid line shows the inferred additional distribution that is an indication of the mismatch between
the pre-pandemic controls and the serosurvey data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
We applied the extended model described above to the serosurvey
data segregated into three age categories: 5–40 years, 41–65 years
and 66–90 years. Even though the ages of the outpatient and hospi-
talized case populations are significantly different, we used the whole
distribution of both populations for these analyses.

Testing for a mismatch between serosurvey and validation data. To test
if there is a mismatch between the observed serosurvey data and the
validation data, we extend Eq. (2) with an additional class (see Eq. (3)).
Thus, 𝜎 can now take one of four categorical values where the new
one represents an additional, yet unknown, category of cases. The
distribution of this additional category (𝑝(𝑈𝑖|𝜎𝑖 = 3)) is modelled to
be a normal distribution, where the mean and standard deviation are
under optimization.

𝑙𝑙(𝑈 ) =
𝑖=𝑛
∑

𝑖=1
log

(

𝑝(𝜎𝑖 = 1|𝜋𝑜𝑢𝑡) 𝑝(𝑈𝑖|𝜎𝑖 = 1) + 𝑝(𝜎𝑖 = 2|𝜋ℎ𝑜𝑠𝑝) 𝑝(𝑈𝑖|𝜎𝑖 = 2)+

𝑝(𝜎𝑖 = 3|𝜋𝑎𝑑𝑑 ) 𝑝(𝑈𝑖|𝜎𝑖 = 3) + 𝑝(𝜎𝑖 = 0|𝜋𝑜𝑢𝑡, 𝜋ℎ𝑜𝑠𝑝, 𝜋𝑎𝑑𝑑 ) 𝑝(𝑈𝑖|𝜎𝑖 = 0)

)

(3)

This model is then compared to the model of Eq. (2) to test if
the additional distribution has significantly improved the likelihood of
observing the serosurvey data.

We have also used an adjusted version of the method described
above, where we summarized all observations below 0.34 into a point
mass for the empirical distribution. The value of 0.34 is two standard
deviations larger than the mean of the inferred mismatch in the dis-
tribution of pre-pandemic controls, to make sure that this mismatch
is not included in the new distributions. The model is then performed
with these distributions instead of the original empirical distributions
of the negative and positive controls.
3

3. Results

3.1. Distributions of IgG OD ratios significantly differ for hospitalized and
outpatient SARS-CoV-2 positive controls

Meyer et al. (2020) validated the diagnostic accuracy of the Eu-
roimmun SARS-CoV-2 IgG and IgA immunoassay for SARS-CoV-2 infec-
tion (Meyer et al., 2020). For this validation, they used a pre-pandemic
negative control group (negative controls, 326 individuals) and two
clinically distinguishable positive control groups: individuals who were
hospitalized in the University Hospitals of Geneva (COVID-19 hospital-
ized, 91 individuals), and individuals who were treated in outpatient
clinics (COVID-19 outpatients, 90 individuals). All positive controls
tested positive for SARS-CoV-2 by PCR and showed at least mild
symptoms. The observed IgG OD ratios of the Euroimmun SARS-CoV-
2 immunoassay are shown in Fig. 1 for the negative controls and
both groups of positive controls. The distribution of the IgG OD ratios
for the hospitalized positive controls is significantly different from
the outpatient positive controls (two-sample Wilcoxon test, 𝑝-value =
1.122e−05).

3.2. Model that separately estimates the cumulative incidence for hospital-
ized and outpatient control data is significantly better than model based on
one type of controls only

The significant difference between the distributions of the IgG OD
ratios for the hospitalized and the outpatient controls allows the mix-
ture model method to simultaneously estimate the cumulative inci-
dence of both types of cases in the data from the SEROCoV-POP
study from April and May 2020 (see Eq. (2)). We find a cumulative
incidence of 4.0% (95% CI: 0.8%–7.4%)) for cases with a distribution
of antibody levels similar to hospitalized controls and 4.2% (95% CI:
1.4%–7.4%)) for cases with a distribution of antibody levels similar to
outpatient controls. As a result, the fraction of cases in the serosurvey
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Table 1
Overview of cumulative incidence estimates based on various positive control data. The p-values
are the result of a likelihood ratio test.
Type of positive control data Cumulative incidence

estimate
p-value compared with
separate outpatient and
hospitalized data

Outpatient data only 8.4% (6.9%–10.1%) 4.1e−08
Hospitalized data only 7.7% (6.3%–9.6%) 5.0e−07
Outpatient and hospitalized
data treated as separate
distributions

8.1% (6.8%–9.9%) –
Fig. 2. The indirect indicator of disease severity per age class, including the 95% confidence intervals.
that can be explained with the distribution of the IgG OD ratios from
the hospitalized controls, which we refer to as the indirect indicator of
disease severity, is 51.2% (95% CI: 9.9%–83.7%). The large 95% CI of
this indicator of disease severity is caused by the overlap in the two
positive control distributions.

To investigate if the model improves by including a separate esti-
mate for both types of positive controls, we compared the likelihood
of the estimates above to the likelihood from a model that is based
on either the hospitalized or outpatient control data only (see Eq. (1)
and Table 1). The p-values in Table 1 indicate that the model is
indeed significantly improved by estimating two cumulative incidences
separately. Table 1 also shows that the point estimate of the total cu-
mulative incidence estimate is higher if the mixture model is based on
the outpatient controls only and lower if it is based on the hospitalized
controls only, compared to the model that uses both distributions. This
is expected, as the distribution obtained from the COVID-19 hospital-
ized controls is more distinguishable from the pre-pandemic controls
than the COVID-19 outpatient controls.

3.3. Indirect indicator of disease severity differs between age groups

It is known that there is a correlation between the age of an infected
individual and the severity of a SARS-CoV-2 infection (Liu et al., 2020).
To validate our methodology, we estimated the indirect indicator of
disease severity for three age-classes: 5 to 40 years, 41 to 65 years
and 66 to 90 years. These estimates, together with the total cumulative
incidence estimates for the age-classes, are shown in Table 2. Indeed,
the indirect indicator of disease severity is highest for the oldest age
class: we estimated that 100% of the cases in the serosurvey can be
explained by the distribution of the hospitalized COVID-19 controls,
for the middle and young class this is 60.2% and 21.4%, respectively
4

(see Fig. 2). Fig. 3 shows that the maximal observed IgG OD ratio
as well as the median of all values above the cutoff provided by
the manufacturer (red dots) increase with age. However, the overall
median of the distribution does not increase with age (black dots). This
illustrates that the observed increase in the indirect indicator of disease
severity is driven by the upper part of the IgG OD ratio distributions.
The model that separately considers the age classes is significantly
better than the model without these age classes after correcting for the
increased amount of parameters (likelihood-ratio test, 𝑝-value = 0.009).

Men, compared to women, are more likely to suffer from a severe
SARS-CoV-2 infection (Peckham et al., 2020). Again, this can also
be found by applying the mixture model method to the serosurvey
data (see Table 2). The point estimate of the indirect indicator of
disease severity is higher for males compared to females, although
this difference is not significant. The 𝑝-value of a likelihood-ratio test
for the model that separates female and male participants with the
original model is 0.046. The age distribution of the males and females
are comparable in the serosurvey (two-sample Wilcoxon test, 𝑝-value =
0.18).

3.4. Mismatch between pre-pandemic controls and individuals without pre-
vious SARS-CoV-2 infection in the serosurvey

Mixture model methods give unbiased results when the pre-
pandemic control data represent individuals without previous COVID-
19 infection and the COVID-19 control data span the whole range of
COVID-19 severity and their relative occurrence. The method presented
in this manuscript can be used to test whether there is a mismatch
between the validation and serosurvey data. This is done by testing
if there is more statistical support for a extended mixture model that
assumes an additional, hidden distribution of antibody levels (see
Methods) (Bouman et al., 2021).
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Fig. 3. Violin plots of the distributions from the validation data (pre-pandemic controls, COVID-19 outpatient cases and COVID-19 hospitalized cases) and age-stratified serosurvey
data. The black dots indicate the median of the full distribution and the red dots the median of all values larger than the cutoff of seropositivity provided by the manufacturer
(1.1).
Table 2
Cumulative incidence and indicator of disease severity for three age-classes.
Sub-population Number of

observations
Total cumulative
incidence

Indirect indicator
of disease severity

age-range [5-40] 1077 10.1% (7.8%–12.7%) 21.4% (0%-59.6%)
age-range [41-65] 1355 7.6% (5.8%–9.6%) 60.2% (21.5%–100%)
age-range [66-90] 334 4.1% (0%–6.9%) 100% (20.1%–100%)
Females 1454 7.1% (5.3%–9.0%) 45.3% (4.1%–91.9%)
Males 1312 9.3% (7.3%–11.6%) 50.8% (16.7%–90.7%)
In the SEROCoV-POP serosurvey, we indeed infer such a mismatch
between the validation and the serosurvey data (𝑝-value likelihood
ratio test = 8𝑒 − 105). Fig. 1 shows the distribution of serological
measurements that are inferred to be present in the serosurvey data
but not in the validation data (purple line — ’additional distribution’).
This distribution is on the lower end of the range of antibody levels,
covering part of the distribution of the pre-pandemic control samples.
This indicates that the inferred mismatch is due to a discrepancy
between the measurements from the pre-pandemic control samples and
the individuals from the serosurvey study who likely did not have a past
SARS-CoV-2 infection.

The total cumulative incidence of SARS-CoV-2 infections for the
model that includes the additional case distribution is 9.3% (95%
CI: 6.7%–10.6%) and thus higher than without this distribution. The
reason for this is that the additional distribution is on the lower range of
the observed IgG OD ratios, hence some of the lower range values from
the serosurvey data are now inferred to be similar to the additional
distribution and thus also COVID-19 cases.

3.5. No evidence for an additional missing positive control distribution with
lower mean

The previous subsection describes the mismatch we identified be-
tween the negative controls and individuals with low serological mea-
surements in the serosurvey. We hypothesized that there is a further
mismatch between the distributions of serological measurements of
COVID-19 cases and the serosurvey because the COVID-19 cases in
the validation data were all symptomatic and relatively severe and the
cases in the serosurvey span the whole spectrum of severity. Specif-
ically, we expected to find evidence for an additional distribution
representing COVID-19 cases with a lower mean than the distributions
for the outpatient and hospitalized cases.
5

To test for such an additional case distribution, we lumped all IgG
OD ratios below 0.34 into a single point mass to direct the focus of the
analysis away from low serological measurements and investigated a
potential additional mismatch on the higher end of the observed IgG
OD ratios. However, we did not find any statistical support for such an
additional mismatch. This suggests that the individuals with high IgG
OD ratios in the serosurvey are well represented by the positive control
data.

4. Discussion

In this study, we present an application of mixture model meth-
ods to SARS-CoV-2 serosurvey data. Serosurvey data are currently
used to determine the proportion of seropositivity and to estimate
the cumulative incidence and the relative risk of seropositivity in
various sub-groups. This is usually done by introducing a cutoff for
seropositivity.

We show that mixture models that use the entire distribution of
the antibody levels rather than a cutoff for seropositivity, provide
additional insights into aspects of an epidemic that are usually not
addressed in serosurveys. Specifically, we have used mixture models to
infer the cumulative incidence from distinct serological distributions,
in this case those from hospitalized and outpatient COVID-19 positive
controls. We found that the indirect indicator of disease severity (the
fraction of individuals with antibody distributions similar to hospital-
ized cases) increases with age mirroring evidence from clinical studies.
Additionally, mixture model methods can be used to test for a mismatch
between the pre-pandemic and COVID-19 control data and the serosur-
vey data, which could indicate that the cases observed in the population
are not well represented by those included in the control data. While
we provide evidence for such discrepancies, they are not indicative of
a large fraction of cases with intermediate antibody levels that would
be expected for asymptomatically infected individuals.
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Other studies using mixture model methods to analyze SARS-CoV-2
serosurvey data have been conducted. Vos et al. (2021) used mixture
models to validate their cutoff value (Vos et al., 2021). They as-
sumed and inferred control and case distributions from the serosurvey
data (Vos et al., 2021). Our approach in contrast, is based on the
observed distributions of serological measurements in prepandemic
sera and sera of individuals with PCR-confirmed SARS-CoV-2 infection.
These observed distributions are not adequately captured by the normal
distributions Vos et al. assumed. Hence, our study represents a more
stringent and empirically-supported use of mixture models.

Although the mixture model approach naturally allows to imple-
ment declining antibody levels and sero-reversion (Kadelka et al.,
2021), we have not corrected our estimate of the cumulative incidence
for the possible effect of sero-reversion. The reason for this is that
the serosurvey was conducted within 4 months of the start of the
pandemic. Current estimates of antibody half-lives IgG RBD are around
50–106 days (Dan et al., 2021). Therefore we expect the effect of sero-
reversion to be negligible. Furthermore, we did not correct the estimate
of cumulative incidence for age nor household structure because our
study was aiming to provide a proof of concept rather than additional
estimates for the sero-prevalence in Geneva. As a result, the estimates
presented here are only representative for the study population and
not for the general population of Geneva. Estimates for the cumulative
incidence of the general population of Geneva from these data can be
found in Stringhini et al. (2020) (Stringhini et al., 2020).

The presented estimates of the indirect indicator of disease severity
have wide confidence intervals. This is caused by the fact that while
the distributions of the antibody levels for COVID-19 hospitalized and
outpatient cases are significantly different, there is quite a lot of overlap
(see figure S1). This could potentially be improved if more detailed pos-
itive control data would be available to guide the construction of more
distinguishable distributions of IgG OD ratios based on characteristics
of the infections or infected individuals. Despite the large confidence in-
tervals, we found that the indirect indicator of disease severity increases
with age, corroborating previous reports (Liu et al., 2020). Similarly,
the point estimate of the indirect indicator of disease severity is higher
for males compared to females, consistent with reported sex differences
in ICU admission and death (Peckham et al., 2020).

Mixture model methods give unbiased results when both the neg-
ative and positive controls in the validation data represent the gen-
eral population well (Bouman et al., 2021). However, we know that
there are some issues with our validation data. First, the pre-pandemic
control data over-represent individuals with pathological conditions
and, for both the pre-pandemic and the COVID-19 controls, the age-
distribution is different from the general population (Meyer et al.,
2020). Second, all cases in the COVID-19 control group show at least
mild symptoms and half of them have been hospitalized. Therefore,
the severity of the selected cases is higher than expected in a random
group of COVID-19 patients and is not consistent with the estimated
fraction of 20% asymptomatic cases (Buitrago-Garcia et al., 2020). This
is likely to result in a different distribution of serological measurements
as severe cases have been shown to give rise to higher antibody levels
than mild cases (GeurtsvanKessel et al., 2020; Okba et al., 2020).
Third, the ratio of outpatient to hospitalized cases in the control group
is lower than expected, which could lead to an underestimation of
the cumulative incidence (Bouman et al., 2021). More extensive and
representative validation data could improve the cumulative incidence
estimates, however, such data are difficult to collect, especially at the
beginning of a pandemic, when asymptomatic and mild cases often go
undetected and their proportion is unknown.

Part of the aim of our approach was to identify potential biases
caused by any of the mentioned limitations in the validation data.
Interestingly, however, the mismatch we identify is not characterized
by an intermediate level of antibodies in between the level of the pre-
pandemic sera and the outpatients as we would expect for a missing
6

distribution of mild or asymptotic cases. Opposite to our expectation
we found that the serosurvey data display a narrower distribution at the
lower end of the antibody levels than the pre-pandemic, negative con-
trols — as if there were asymptomatic or mild SARS-CoV-2 infections
among the pre-pandemic controls. A more detailed characterization of
the individuals from whom the pre-pandemic control sera were sam-
pled, as well as the determination of antibody levels in asymptomatic
and mild cases could shed further light on this mismatch and thus fur-
ther improve the estimation of the cumulative incidence. An additional
improvement could be obtained when a quantitative immuno-assay
would be used, instead of the semi-quantitative Euroimmun that was
available at the beginning of the pandemic.
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