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Abstract: Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The
respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The
virus can also infect many organs and tissues in the body, including the reproductive system. The
consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented.
Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and
Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as
a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to
impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely
require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to
giving birth prematurely and having their newborns admitted to the neonatal intensive care unit.
Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system
(RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the
regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and
associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge
about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses.
Furthermore, we describe the effects of COVID-19 vaccination on reproduction.

Keywords: SARS-CoV-2; COVID-19; ACE2; RAS; fertility; reproduction; neonatal life

1. Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic, caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, is a significant,
exponentially developing global public health emergency, with new abnormalities being
diagnosed and reported on a daily basis [1]. The pandemic touched the entire globe and
overwhelmed the medical system [2]. The viral infection shares some epidemiological and
clinical features with other coronaviruses, such as severe acute respiratory syndrome (SARS-
CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) (reviewed in [3]). COVID-19
can range from asymptomatic cases, to moderate flu-like symptoms, to severe respiratory
illness. The main symptoms of the SARS-CoV-2 infection disease include a dry cough,
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dyspnea, and fever. Fatigue, musculoskeletal discomfort, headaches, gastrointestinal
problems, and a loss of smell and taste are also well-documented [4–6]. More studies
are now investigating the effects of a SARS-CoV-2 infection on systems other than the
respiratory system [7]. Among these, whether the coronavirus can harm the male and
female reproductive systems is currently being considered.

Angiotensin-converting enzyme 2 (ACE2) acts as a cellular attachment site to the
SARS-CoV-2 spike protein which anchors the virus to the target cells [8]. ACE2 is expressed
on several different organs or tissues and is an important component of Renin-Angiotensin
System (RAS). Angiotensin-2 (AngII), a product of the cleavage of angiotensin-1 (AngI) by
ACE, acts as a potent vasoconstrictor, pro-inflammatory, and pro-fibrotic [9]. AngII can
further be cleaved by ACE2 to form the peptide Ang1-7, which counteracts the activity
of AngII and has vasodilatory, anti-inflammatory, and anti-fibrotic effects [10]. The bal-
ance between these two faces of RAS is therefore assured by ACE2 (For review see [11]).
However, SARS-CoV-2 invasion and cellular internalization lead to the down-regulation
of membrane-bound ACE2 and increase serum ACE2, which leads to Ang1-7 depletion
and an unopposed AngII activity [9] (Figure 1A). Since the RAS is known to be of great
importance in regulating different physiological processes (such as vasoconstriction, in-
flammation, angiogenesis, oxidative stress, and apoptosis) [5], the complications following
the SARS-CoV-2 infection are likely due to RAS impairment [12–14]. ACE2 can be found
at the surface of many cell types, including respiratory epithelial cells, cardiac fibroblasts,
cardiomyocytes, endothelial cells, vascular smooth muscle cells (VSMCs), kidneys, gut, the
central nervous system (CNS), and the reproductive system [15]. This ubiquitous expres-
sion of ACE2 makes different organs susceptible to SARS-CoV-2 infection and explain the
multiple-organ damage seen with COVID-19. Notably, the expression of RAS components
in both the male and female reproductive systems indicates that they are susceptible to
SARS-CoV-2 infection (Figure 1B).
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Figure 1. SARS-CoV-2 interaction with ACE2 receptor and impairment of RAS leads to deleterious
effects (vasoconstriction, profibrosis, proapoptosis, oxidative stress, proinflammation, proangiogenesis,
prothrombosis, and prohypertrophy) in different biological systems (A) and potentially procreation (B).

In this review, we summarize the literature reporting the effects of COVID-19 on
the male and female reproductive systems. Whether the viral infection affects both men
and women’s fertility, and how it impacts pregnancy will be also discussed. We will also
address whether the COVID-19 vaccines have any effect on the reproductive systems.
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2. COVID-19 Effect on Fertility
2.1. Does COVID-19 Affect Male Fertility? What Is the Possible Role of RAS?

The interaction of the SARS-CoV-2 viral spike protein with angiotensin converting
enzyme 2 (ACE2) on cells co-expressing ACE2 and the cellular transmembrane protease
serine 2 (TMPRSS2) has been identified as the SARS-CoV-2 virus’s cellular entry mecha-
nism. Since the testes express ACE2 receptors, researchers are investigating the effects of
COVID-19 on male fertility [16]. Endocrinologically, the hypothalamic–pituitary–gonadal
(HPG) axis connects the brain and the testes. The production of gonadotropins and testos-
terone, as well as the HPG feedback loop, are responsible for this connection. The effects
of COVID-19 on the hypothalamic–pituitary–gonadal axis are still under investigation;
however, aberrant gonadotropin levels have been reported in COVID-19 patients [17].

Maintaining a normal testosterone production requires a healthy HPG axis. Several
studies reported that COVID-19 influences testicular hormone production. In fact, re-
searchers discovered high luteinizing hormone (LH) levels and reduced testosterone to LH
ratios in COVID-19 patients. These findings were linked to systemic inflammation in the
patients examined [18]. Moreover, when compared to more moderate cases, 12.9 percent of
patients who died or had severe COVID-19 had reduced total and free testosterone and
raised LH [19].

Researchers related circulating gonadotropin levels in COVID-19 patients to neu-
ropathology. Neuroimaging of a single patient indicated hyperintense signals, which
could indicate hypothalamic abnormalities as well as an expanded pituitary gland [20].
Even though these data are preliminary, they suggest that hypothalamic perturbation in
COVID-19 patients may disrupt gonadotropin release regulation, resulting in a drop in
testosterone levels.

Furthermore, it has been proven that SARS-CoV-2 can cross the blood–brain barrier
and infect ACE2-expressing cells, causing neuroinflammation [17,21]. Normal physiologic
activities like temperature regulation and hormone balance can be disrupted by inflam-
mation [20,22]. Fever is the body’s reaction to systemic inflammation and one of the most
reported symptoms of COVID-19 [23]. A temperature higher than 39 ◦C for more than
three days has been linked to a considerable drop in semen concentration and motility [24].
Therefore, the possible effect of COVID-19 on male fertility can be an indirect consequence
of associated fever.

The blood–testes barrier offers the testicles special immunity. Inflammation, both
systemic and local, can enhance permeability and allow immune cells to invade [25].
A SARS-CoV-2 infection generates a proinflammatory response in the body and can trigger
cell pyroptosis, a programmed cell death associated with the production of proinflamma-
tory cytokines. Inflammatory cytokines induce immune cell recruitment, which might
lead to a cytokine storm and uncontrolled systemic inflammation affecting various organ
systems [26]. Inflammatory markers such as interleukine-6 (IL-6), IL-8, and tumor necrosis
factor-alpha (TNF-α) have been detected in semen samples from individuals recovering or
suffering from COVID-19 [27,28]. Inflammatory cytokines and oxidative stress have both
been shown to harm testes’ biological components [29]. In fact, oxidative stress damages
Leydig cells, impairing testosterone synthesis and spermatogenesis [30]. Therefore, the
testicular damage reported in COVID-19 patients has been linked to oxidative stress as
a possible cause. For example, in an autopsy investigation of COVID-19 patients, a statisti-
cally significant increase in reactive oxygen species (ROS) and a reduction in glutathione
disulfide (GSH) levels [31].

Furthermore, the membrane-bound ACE2, a significant component of the RAS, is the
human gate that allows the SARS-CoV-2 virus to enter host cells [32,33]. Since RAS appears
to have various effects on male fertility, it could be possible that COVID-19 consequences on
male fertility is linked to RAS impairment. In fact, in human and mammalian animal models,
typical components of the RAS have been identified in the testis and epididymis [34–36]
(Figure 2A). In humans, ACE2 expression is high in the spermatogonia, Leydig, and Sertoli
cells of adult human testis in the testes [37,38]. In addition, an abnormal expression of



Biomedicines 2022, 10, 1775 4 of 14

genes implicated in mitochondrial function and testicular steroidogenesis was observed
in knockout mammalian models of RAS components [34,39]. Together, the RAS and its
ACE2 receptor play an important role in male reproduction by regulating steroidogenesis,
testosterone production, and spermatogenesis in the testis in human males (Figure 2B).
Since COVID-19 impairs these pathways, it is not surprising that male fertility is affected
after SARS-CoV-2 infection. In addition, since ACE2 is expressed on endothelial cells, the
SARS-CoV2 infection of these cells can lead to endothelial dysfunction and inflammation
affecting male fertility (inducing erectile dysfunction) [40].
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Figure 2. Expression of RAS components in different localizations of the human male reproductive
system (A) and throughout spermatozoa (B). tACE: testicular angiotensin converting enzyme; AT1R:
angiotensin II type 1 receptor; AT2R: angiotensin II type 2 receptor; MAS: Mas receptor; TMPRSS2:
transmembrane protease serine 2; ACE: angiotensin-converting enzyme; sACE: somatic ACE. 1: vas
deferens; 2: prostate; 3: epididymis; 4: seminal plasma; 5: Testis.

2.2. The Effect of COVID-19 on Female Fertility

Women that were infected by SARS-CoV-2 reported changes in menstrual cycle fre-
quency and regularity, altered menstrual duration and volume, worsening premenstrual
syndrome, and increased dysmenorrhea. Therefore, questions were raised about the impact
of COVID-19 on female reproduction after the viral infection.

The abundance of RAS components in the female reproductive system suggests its
vulnerability to SARS-CoV-2 infection. ACE2 is widely expressed in the ovary, uterus,
vagina, and placenta [15]. ACE2 controls follicular development and ovulation, as well as
luteal angiogenesis and degeneration, along with endometrial tissue alterations and embryo
development [15]. Other components of RAS are abundant in the female reproductive
system such as the Ang1-7 that is expressed in theca-interstitial cells. The presence of
ACE2 and Ang1-7 in all phases of follicular development suggests that they may play
an important role in fertility [15,36]. Based on these evidence, SARS-CoV-2 infection may
disrupt female fertility by damaging ovarian tissue, granulosa cells, and endometrial
epithelial cells [41]. By downregulating ACE2 levels, the infection results in higher levels
of AngII, which has been linked to proinflammatory, profibrotic, and proapoptotic effects.
Consequently, this could influence ovarian function and lead to an increase in ovarian
oxidative stress [42]. Of note, SARS-CoV-2 was not identified in vaginal fluid and cervical
exfoliated cells, suggesting that the lower female genital tract may not be a transmission
route for SARS-CoV-2 [43]. These findings were contradicted in another study in which
SARS-CoV-2 was detected using vaginal RT-PCR in some patients [44]. Whether there is



Biomedicines 2022, 10, 1775 5 of 14

a link between viral load and the detection threshold of the virus vaginal levels should
be investigated further. Taken together, the findings suggest that the female reproductive
system, which expresses ACE2, is vulnerable to SARS-CoV-2 infection, and thus fertility
could be affected.

The dynamic expression of RAS in the stromal and epithelial cells of the endometrium
during the cycle could explain the changes in the menstrual cycle observed during SARS-
CoV-2 infection [15,45,46]. In fact, the RAS is effective for controlling menstrual cycles,
enabling blood vessel renewal, and triggering menstruation [15]. The balanced expres-
sion of the stimulatory factor AngII and the inhibitory factor Ang1-7 regulates these pro-
cesses [15]. Since SARS-CoV-2 infection affects RAS, complications touching RAS-regulated
physiological systems are possible.

SARS-CoV-2 encodes proteins that can activate the NOD-, LRR-, and pyrin domain-
containing protein 3 (NLRP3) inflammasome assembly [47,48]. In fact, one of the first
defenses against viral infections is the inflammasome, which is a key player of the innate
immunity. When NLRP3 is activated, it attracts Caspase-1, which boosts the expression of
interleukins IL-1β and IL-18 [49,50]. Since women with a history of recurrent miscarriages
have higher levels of NLRP3 and proinflammatory cytokines in their endometrium [51], it
is possible that SARS-CoV-2-associated inflammation affects female fertility.

3. The Effect of COVID-19 in Pregnant Women

According to the World Health Organization (WHO, Geneva, Switzerland), pregnant
women do not seem to have higher risk of getting a SARS-CoV-19 infection, and they do
not show an increased risk of mortality when infected [52]. However, a study showed
that most infected pregnant women required hospitalization compared to non-pregnant
women [53]. These findings showed that pregnancy confers substantial additional risk
of morbidity.

Increased risk of serious outcomes of COVID-19 have been linked to pregnant women
who are older, overweight, or have preexisting medical conditions (especially hyperten-
sion and diabetes). Out of various maternal characteristics evaluated (including maternal
age, gestational age at delivery, gravidity, nulliparity, multiparity, and medical comor-
bidities), both gestational age at delivery and medical comorbidity showed a statistically
significant difference between SARS-CoV-2-negative and SARS-CoV-2-positive pregnant
women [54]. However, none of the obstetric complications including anemia, gestational
diabetes mellitus, pregnancy-induced hypertension, intrahepatic cholestasis, antepartum
hemorrhage, and postpartum hemorrhage showed a statistically significant difference
between SARS-CoV-2-positive and SARS-CoV-2-negative pregnant women admitted for
delivery [54].

The clinical manifestation of COVID-19 in pregnant women included common symp-
toms such as fever, cough, myalgia, diarrhea, dyspnea, headache, and chest tightness. Some
cases of pregnant women were asymptomatic at the time of admission, whereas others
developed severe pneumonia, therefore requiring mechanical ventilation and admission
into the intensive care unit (ICU). Mortality cases of COVID-19-positive pregnant women
were reported due to severe pneumonia and multiple organ dysfunction [55]. In addition,
comparing SARS-CoV-2-positive to SARS-CoV-2-negative pregnant women showed that
mild COVID-19 was associated with preeclampsia, preterm birth, and stillbirth. However,
severe COVID-19 lead to preeclampsia, preterm birth, gestational diabetes, and low birth
weight [56]. These findings suggest that the complications observed in pregnant women
could be linked to the severity of the viral infection.

COVID-19 was also linked to increased complications in pregnant women, such as
coagulation and respiratory systems (Figure 3). In the following sections, we focus on the
perturbation of these two systems during COVID-19, while focusing on pregnancy and
the RAS.
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3.1. Pregnancy, COVID-19, and Coagulopathy

The RAS has an important role in the pathophysiology of coagulopathy in COVID-19
patients. Many reported thromboembolic complications were seen in SARS-CoV-2 positive
patients [57]. As such, 29.4% of ICU patients with COVID-19 within a large New-York City
health system had a thrombotic event (13.6% venous and 18.6% arterial), whereas 11.5%
of non-ICU patients had thrombotic events (3.6% venous and 8.4% arterial) [58]. Another
study of hospitalized patients with COVID-19 in China found that 46% developed lower
extremity deep venous thrombosis [59].

Since pregnancy is a hypercoagulable state (pregnancy-induced hypercoagulability),
COVID-19 can also affect the coagulation cascade in pregnant patients. In pregnancy, there
is an increase in thrombin production and in intravascular inflammation that serve as
an adaptive mechanism to prevent post-partum bleeding. Several prothrombotic factors
such as factors VII, VIII, X, XII, von Willebrand factor and fibrinogen are increased, whereas
protein S decreases, in addition to altered fibrinolysis [60]. In addition, during pregnancy,
there is an overexpression of many RAS components, such as Ang1-7, which has a vasodila-
tor role [61]. Contrarily, the ACE is decreased during normal pregnancy [62], suggesting
a perturbation of the RAS. Together, these findings highlight the possible emergence of
coagulopathies in COVID-19 pregnant patients due to an accentuated downregulation of
the ACE.

Thus, the hypercoagulable state in both pregnancy and COVID-19 patients may have
synergistic risk factors for thrombosis in pregnant women with COVID-19. This conclusion
is further supported by the fact that in patients with symptomatic COVID-19, the levels
of D-dimer and C-reactive protein (CRP) were about 2.5 and 6 times higher, respectively,
compared to pregnant women without SARS-CoV-2 infection [63]. Moreover, a case report
describes the first maternal death of a 29-year woman of Pakistani origin at 29 weeks
of pregnancy with COVID-19 due to a large pulmonary embolism and basilar artery
embolism [64].

3.2. Complications of COVID-19 on the Pulmonary System of Pregnant Women

During a healthy pregnancy, several physiological changes occur in the respiratory
tract through biomedical and mechanical pathways. Both estrogen and progesterone in-
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crease during pregnancy. Estrogen upregulates progesterone receptors within the hypotha-
lamus and medulla, the central neuronal respiratory-related areas, and further increases
these receptors’ sensitivity. High progesterone increases both oxygen consumption and
tidal volume, leading to an increase in minute ventilation which, in turn, increases the
arterial partial pressure of oxygen PO2 and decreases the arterial partial pressure of carbon
dioxide [65]. The enlarging uterus acts mechanically in displacing the diaphragm superi-
orly and altering the thoracic configuration. Although there is a 30–40% increase in tidal
volume, there is a reduction in functional residual capacity (FRC) and expiratory reserve
volume (ERV) [65,66]. Thus, the altered total lung capacity (TLC) during pregnancy may
raise women’s susceptibility to pneumonia and respiratory distress syndrome following
a SARS-CoV-2 infection.

Furthermore, the AngII/Ang1-7 imbalance during COVID-19 leads to increased vascu-
lar permeability, leading to further recruitment of neutrophils into the lung parenchyma [9].
Neutrophil accumulation can lead to alveolar epithelial cell loss through its prooxidative
role and the development of acute respiratory distress syndrome (ARDS) [67]. Therefore,
pregnant women required extensive follow up and monitoring since severe infection and
pulmonary deterioration lead to preterm birth in many reported cases [5]. That was the case
of a COVID-19-positive pregnant woman, at 34 weeks, who developed severe ARDS after
4 days of fever and dyspnea. Respiratory failure on the fourth day of admission required
an emergency cesarean section. Furthermore, mechanical ventilation was initiated after
delivery due to severe distress [68].

On the other hand, a meta-analysis conducted on SARS-CoV-2-positive pregnant
women indicated that most women had only a mild form of the disease, and the recovery
rate was estimated to be 99.9% [69]. No severe cases of COVID-19 pneumonia were reported.
In fact, pneumonia was reported as mild or moderate in 78% of total cases, and 31% were
asymptomatic [69].

4. The Debate about Vertical Transmission of SARS-CoV-2

Whether vertical transmission occurs during SARS-CoV-2 infection is still under de-
bate, and the risk of fetal infection has not yet been established. Several studies aimed to
gather statistical evidence of possible vertical transmission and determine whether the virus
impacts the normal development of the fetus. In a normal pregnancy, the placenta acts as
a barrier and prevents fetal infection from several microorganisms. Both syncytiotro-
phoblasts and cytotrophoblasts act as a barrier to infections through complex architecture
and innate immune mechanisms [70]. Other immunological defenses are also present in
the decidua, including maternal natural killer (NK) cells, decidual macrophages, and T
cells, which provide further immunity against pathogens [71].

To assess whether the vertical transmission of SARS-CoV-2 is possible, it is vital to
check whether the virus can cross the placenta. As previously mentioned, ACE2 is the main
receptor of the virus along with transmembrane serine protease 2 (TMPRSS2), a protease
that is essential for SARS-CoV-2 entry and replication in the cells [72]. In several studies,
ACE2 expression was detected in syncytiotrophoblasts in COVID-19-positive pregnant
women and controls, whereas TMPRSS2 expression was absent in the two groups [72].
Since ACE2 is required for viral entry and replication, syncytiotrophoblasts could be vul-
nerable to SARS-CoV-2. However, the absence of TMPRSS2, a protease that is also ‘key’ for
viral entry makes the hypothesis of viral transmission through this pathway less likely [73],
although an TMPRSS2-independent endosomal pathway of SARS-CoV-2 entry into tar-
gets cells, via a furin- or cathepsin-based spike protein cleavage (spike protein priming),
does exist.

Neonatal COVID-19 status was examined in several reports. According to the Ameri-
can Academy of Pediatrics (AAP) Perinatal COVID-19 Registry, about 2% of infants from
more than 3000 deliveries tested positive within 96 h of birth from mothers who tested
positive for SARS-CoV-2 around the delivery time. Of 18 newborns with positive tested
mothers, 15 tested negative, 2 had unclear results on day of life 0 but then turned out nega-
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tive when repeated on day 1, and the remaining newborn showed an indeterminate test
result that was considered to be negative [74]. In several other studies, vertical transmission
was not detected since all neonates tested negative [69,75], creating serious confusion about
vertical transmission. Of note, there were no differences in birth weight and presence of
asphyxia in neonates when compared between COVID-19-positive and COVID-19-negative
mothers [75].

Other studies reported positive neonatal cases and raised the suspicion of vertical
transmission [76]. Although the real-time reverse transcriptase-polymerase chain reaction
(RT-PCR) for SARS-CoV-2 nucleic acid was negative, several studies assessed the presence
of antibodies (Immunoglobulin G (IgG) and Immunoglobulin M (IgM)) in neonates as
a possible indicator for intrauterine infection transmission. In one study, six COVID-19-
positive mothers had elevated serum IgG and IgM levels. Moreover, 3 of the infants had
elevated IgG and elevated IgM. The remaining 3 infants had elevated IgG but normal IgM
levels [77]. Similar results showing elevated antibody and cytokine levels (with negative
SARS-CoV-2 RT-PCR) obtained 2 h after the birth of a healthy neonate from a COVID-19-
positive mother having elevated antibody levels [78]. The reliability of antibodies to assess
the possible vertical transmission remains under question, especially given that maternal
IgG pass to the fetus via the placenta, which may lead to false positive results. Contrarily,
in normal conditions, IgM are less likely to cross the placenta [79], except in the presence of
infection, in which mother-to-fetus IgM transfer is increased [79].

5. Complications of Neonates Born to SARS-CoV-2 Infected Mothers

As discussed earlier, most of the statistical studies have shown that neonates born
to infected mothers had negative RT-PCR results and were asymptomatic. Furthermore,
the possibility of vertical transmission occurring is not well defined. However, possible
neonatal comorbidities that might occur due to maternal SARS-CoV-2 infection are well
documented. In fact, two neonates born to previously healthy mothers, having positive
nasopharyngeal swab for SARS-CoV-2, had negative nasopharyngeal swabs for SARS-
CoV-2. However, the first baby developed a low-grade fever with abdominal distention and
lymphopenia, and the second neonate developed lymphopenia and mild pneumonia [80].

Another study also revealed the effect of maternal COVID-19 infection on 10 newborns
with negative RT-PCR results. The newborns showed several symptoms including fever,
thrombocytopenia, dyspnea, rapid heart rate, and vomiting. Five neonates were cured
and discharged, four remained in the hospital but were stable, and 1 died due to various
factors including shock induced by viraemia, multiple organ failure, and disseminated
intravascular coagulation [81].

6. Vaccination Effect

Multiple COVID-19 vaccines are being developed, licensed, and manufactured quickly
due to the severity of the disease. Among these, mRNA vaccines are seen as great options
because of their distinctive features. However, certain serious adverse effects have been
documented following their administration, raising concerns about the vaccines’ safety
and efficacy [82]. Although various fertility associations have stated that COVID-19 mRNA
vaccines are unlikely to influence fertility, the existing research is relatively limited, which is
one of the causes for vaccine apprehension among the public, particularly among pregnant
women. Since the vaccination produces a native-like conformation of the spike protein
that can interact with ACE2, it is imaginable that the vaccine impairs RAS and therefore
affects fertility. Given the important role of RAS in spermatogenesis (discussed above), the
overactivation of AngII and deficiency in Ang1-7, which counteracts the deleterious effects
of AngII, could affect male fertility. Further studies should be conducted to investigate
this hypothesis.

Both of the COVID-19 mRNA vaccines that have been granted emergency use autho-
rization (mRNA-1273 and BNT162b2) show the potential to promote Th1 immunity and
stimulate interferon+ CD8+ T-cell responses in males and non-pregnant women [83]. Given
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how important a proper balance of Th1/Th2 immunity is for good obstetric outcomes,
these findings led to questions about whether the vaccine’s effect on the cellular immune
system could pose a risk to pregnancy. Several studies found that vaccinated gravidas and
the general population have similarly low rates of pregnancy problems and unfavorable
obstetric outcomes like miscarriage and premature birth [84,85]. In addition, no differ-
ences were reported in neonatal complications (such as newborn respiratory complications)
between vaccinated and unvaccinated groups [86].

Furthermore, maternal Abs, whether produced after infection or vaccination, may protect
neonates from infection, reducing pregnant women’s reluctance to be vaccinated [87–89]. In
fact, IgG against the spike protein (both S1 and S2) and receptor-binding domain (RBD) of
the spike protein of the virus are produced in response to the COVID-19 vaccine, whereas
IgG against the spike protein (both S1 and S2), RBD of the spike protein, and other viral
proteins are produced following COVID-19 infection. [90]. The antibodies generated in
response to COVID-19 vaccination are passed on to the fetus during pregnancy. Blood
antibodies from the mother and the fetus were found to be nearly identical [91]. Antibodies
to IgG were discovered in 98.5% of babies born to moms who had received two doses of
the Pfizer-BioNTech vaccine. On the other hand, 43.6% of neonates whose mothers had
received one dose of the Pfizer-BioNTech vaccination developed COVID-19-specific IgG
antibodies in their blood [92].

Even though COVID-19 vaccination has been shown to be more or less effective
in up to 90% of cases, only about three-quarters of non-pregnant women agreed to get
vaccinated, compared to around 50% of pregnant women [93]. In both the Moderna
and Pfizer-BioNTech vaccines, the most common consequence in pregnant mothers is,
reportedly, injection site discomfort [94].

The incidence of systemic adverse events of Moderna and Pfizer-BioNTech vaccines
increased after the second dose of immunization [85]. The most reported systemic adverse
effects included fatigue, headaches, shivering, malaise, rash, and vomiting. The majority
of these were only transient, and only a few lasted more than three days. The frequency
of such systemic adverse events was substantially higher after the second dose than it
was after the first dose. The Moderna vaccination group had more participants with these
systemic adverse effects than the Pfizer-BioNTech group in terms of numbers.

When compared to unvaccinated expecting mothers, vaccination has apparently no
effect on gestation or delivery. No significant changes in the prevalence of gestational
hypertension or thrombosis were found when comparing vaccinated and unvaccinated
pregnant women [95]. In addition, there was no substantial negative influence on the
incidence of premature birth, endometrial rupture, or unexpected ICU hospitalization
among vaccinated expecting mothers when it came to delivery [96]. Together, these findings
suggest that the administered vaccines might have limited secondary effects on pregnant
woman. This information could potentially change as we expect to have more data about
the long-term effect of COVID-19 vaccines in the upcoming few years.

7. Conclusions

Studies about COVID-19 are increasing exponentially, whereby several researchers
are eager to unravel unanswered questions regarding fertility, pregnancy, and fetal out-
come. COVID-19 is described as just a mild-to-moderate condition in some articles, but as
a severe disease in others. The negative impacts of SARS-CoV-2 infection and associated
RAS dysfunction were evident in both male and female fertility; however, whether the
effect is due to direct effect of the virus or a consequence of the inflammatory state of the
patient is still debated. The virus has also shown an increased morbidity among pregnant
patients. This group was especially susceptible to respiratory and coagulation problems.
Considering maternal physiological changes during pregnancy with the SARS-CoV-2 in-
fectious process will help researchers better understand the potential consequences for
both the mother and the fetus. ACE2, a major key player of RAS, is a critical component of
the pathophysiology of SARS-CoV-2 in the reproductive system and has garnered signifi-
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cant attention. The vertical transmission of COVID-19 is not yet established and remains
an important question to be answered. In addition, the safety and effectiveness of
COVID-19 vaccination on pregnant women and their fetus need further investigation.
To answer all these questions, larger studies are still required, and global united efforts
are needed to collect reliable and large-scale data. In fact, these speculations need to be
supported by evidence-based studies. To this end, multicentric retrospective studies and/or
cohort studies could be conducted to investigate the possible consequences of SARS-CoV-2
infection on fertility, pregnancy, and neonatal life.
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