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The first year of life is a crucial period during which the composition and functionality
of the gut microbiota develop to stabilize and resemble that of adults. Throughout
this process, the gut microbiota has been found to contribute to the maturation
of the immune system, in gastrointestinal physiology, in cognitive advancement and
in metabolic regulation. Breastfeeding, the “golden standard of infant nutrition,” is a
cornerstone during this period, not only for its direct effect but also due to its indirect
effect through the modulation of gut microbiota. Human milk is known to contain
indigestible carbohydrates, termed human milk oligosaccharides (HMOs), that are
utilized by intestinal microorganisms. Bacteria that degrade HMOs like Bifidobacterium
longum subsp. infantis, Bifidobacterium bifidum, and Bifidobacterium breve dominate
the infant gut microbiota during breastfeeding. A number of carbohydrate active
enzymes have been found and identified in the infant gut, thus supporting the hypothesis
that these bacteria are able to degrade HMOs. It is suggested that via resource-sharing
and cross-feeding, the initial utilization of HMOs drives the interplay within the intestinal
microbial communities. This is of pronounced importance since these communities
promote healthy development and some of their species also persist in the adult
microbiome. The emerging production and accessibility to metagenomic data make
it increasingly possible to unravel the metabolic capacity of entire ecosystems. Such
insights can increase understanding of how the gut microbiota in infants is assembled
and makes it a possible target to support healthy growth. In this manuscript, we
discuss the co-occurrence and function of carbohydrate active enzymes relevant to
HMO utilization in the first year of life, based on publicly available metagenomic data.
We compare the enzyme profiles of breastfed children throughout the first year of life to
those of formula-fed infants.

Keywords: gut microbiota, human milk oligosaccharides, functional metagenomics, carbohydrate active
enzymes, glycoside hydrolases, microbial communities

INTRODUCTION

The relationship between humans and the gut microbiota starts directly after birth and continues
throughout life. The newborn gut is inoculated at birth with microorganisms that will be its first
inhabitants. Through ecological succession, the infant gut gets enriched with microorganisms, and
after the first year of life begins to reach a certain compositional stability (Lozupone et al., 2012).
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Several factors have been shown to influence the development of
the gut microbiota composition in infants. The mode of birth,
the gestation age, the type of feeding, the use of antibiotics,
the environment and the mother’s secretor status are major
components of this equation (Harmsen et al., 2000; Marques
et al., 2010; Fouhy et al., 2012; Azad et al., 2013; Lewis et al., 2015).
Even though the gut microbiota establishes a stable community
with similarities to that of an adult roughly after the first 12–
36 months (Lozupone et al., 2012; Bäckhed et al., 2015; Bokulich
et al., 2016; Stewart et al., 2018), the infant microbiota preceding
this period can affect lifelong health (Cox et al., 2014; O’Mahony
et al., 2014; Serino et al., 2017; Carlson et al., 2018). The
microbiota-mediated health effect in children is highly driven by
the feeding in early life and sets breastfeeding as an important
steering wheel of this process. The breast-milk derived palette of
the infant gut microbiota has been associated, among others, with
limited tendency to develop obesity (Luoto et al., 2011; Forbes
et al., 2018), atopy (Fujimura et al., 2016) as well as various
immunomodulatory factors (Schwartz et al., 2012; Fujimura
et al., 2016). Even though bold associations are still controversial,
several studies have found links between breastfeeding and lower
occurrence of diseases like asthma (Silvers et al., 2012; Ahmadizar
et al., 2017; Xue et al., 2019; Harvey et al., 2020) and eczema (Chiu
et al., 2016; Elbert et al., 2017; Flohr et al., 2018), limited tendency
for obesity (Yamakawa et al., 2013; Yan et al., 2014; Bider-
Canfield et al., 2017; Modrek et al., 2017) and better cognition
development (Angelsen et al., 2001; Boucher et al., 2017; Lenehan
et al., 2020). Research endeavors focus on human milk because
the “golden standard” of feed could also be the “golden ticket” for
improving alternative infant nutrition.

Human milk derives its nutritious value from its complex
composition. It is a conglomeration of energy storing
macromolecules, namely proteins, carbohydrates and fat,
and bioactive compounds, such as immune cells, hormones,
antimicrobials, vitamins, and glycans of various sizes (Ballard
and Morrow, 2013). The glycans are commonly termed as
human milk oligosaccharides (HMOs). The bonds holding the
structure of HMOs are not degraded in the upper gastrointestinal
tract, thus they are indigestible carbohydrates. More than 95%
of the HMOs reach the infant’s gut undigested (Engfer et al.,
2000; Gnoth et al., 2000). There they can be utilized by certain
bacteria that can degrade them, and quickly after the beginning
of lactation, the gut microbiota is dominated by taxa belonging
to the phylum Firmicutes, Bacteroidetes, Actinobacteria and
Proteobacteria (Stark and Lee, 1982; Penders et al., 2006;
Adlerberth and Wold, 2009; Albrecht et al., 2013; Bäckhed
et al., 2015). Bifidobacteria, especially the Bifidobacterium
bifidum, Bifidobacterium breve, and Bifidobacterium longum
subsp. infantis, have proven to be ample HMO-degraders, and
a number of their enzymes have been isolated (Møller et al.,
2001; Wada et al., 2008; Yoshida et al., 2012). Genomic-based
analysis and in vitro experiments have shown that the enzymatic
repertoire related to HMO degradation is probably species or
even strain-specific (Pokusaeva et al., 2011; James et al., 2016;
Sakanaka et al., 2020). Since the complete dismantling of HMOs
dictates enzymes for transportation, degradation, and utilization
a certain collaboration is suggested. Indeed, different strains of

the same species have been identified as being part of microbial
communities, intra- and inter- individually (Asnicar et al., 2017;
Lawson et al., 2019), thus adding to the known collaborative
substrate utilization between bifidobacteria (Milani et al., 2015).
Moreover, other species such as Bacteroides spp., Ruminococcus
gnavus, Lactobacillus spp., Akkermansia muciniphila, Clostridium
spp., and Escherichia coli have also been found to possess the
ability to degrade certain HMOs or parts of them in mono- and
cocultures (Marcobal et al., 2011; Yu et al., 2013; Thongaram
et al., 2017; Kostopoulos et al., 2020; Wu et al., 2020; Salli et al.,
2021). Metabolic products are exchanged between bacteria via
cross-feeding, creating a microbial network that collaboratively
thrives in the presence of human milk carbohydrates (Bunesova
et al., 2016; Schwab et al., 2017).

However, the gut microbiota composition of formula-fed
infants has been found to be more diverse with higher prevalence
and/or abundance of bacteria such as Clostridium difficile,
E. coli, Veillonella spp., Clostridioides (formerly Clostridium),
Streptococcus spp., Enterococcus spp., and adult-associated
bifidobacteria (Penders et al., 2006; Fallani et al., 2010; Azad
et al., 2013; Gomez-Llorente et al., 2013; Bäckhed et al., 2015;
Ma et al., 2020). However, for taxa such as those from the
genus Bacteroides and Lactobacillus there is not a clear consensus
in literature (Fallani et al., 2010; Gomez-Llorente et al., 2013;
Bäckhed et al., 2015; Ma et al., 2020). Introduction of solid food
is also a factor that has been shown to shift the microbiome
toward a more adult-like state (Bergström et al., 2014; Bäckhed
et al., 2015) and was recently associated with taxa such as
A. muciniphila, Bacteroides spp., Erwinia spp., Streptococcus spp.,
and Veillonella spp. (Differding et al., 2020). These findings
demonstrate that human milk can be a major driver for the
gut microbiota during this critical window. It is suggested that
these profiles of infants, receiving or not receiving, human milk
derive from the metabolic pressure applied by the presence and
absence of HMOs, respectively. Therefore, it is of interest to
explore the Carbohydrate Active Enzymes (CAZymes) profiles
of the gut microbiota in milk-fed infants that are relevant to
HMO-degradation. In this analysis review we focus on glycoside
hydrolases related to HMO-degradation within the first year
of life and current advances concerning their presence and
importance. We compared these profiles to that of children
who were formula fed. To assist our objective, we employed
publicly available Metagenome Assembled Genomes (MAGs;
Nayfach et al., 2019) based on metagenomic data from infants
up to 12 months old (Bäckhed et al., 2015) with various
feeding backgrounds.

ENERGY STORING GLYCANS OF
HUMAN MILK AND ALTERNATIVE
INFANT FEEDING

Human milk oligosaccharides are the second most abundant
carbohydrate in human milk after lactose (60 g/L) (Urashima
et al., 2017). Total HMO concentrations can vary dependent on
time, starting from 20 to 25 g/L in foremilk and reaching 5–20 g/L
in hindmilk (Coppa et al., 1993; Thurl et al., 2010; Xu et al., 2017;
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FIGURE 1 | Structural backbone of (A) HMOs, (B) GOS, and (C) FOS.

Meemken and Qaim, 2018). These oligosaccharides consist of a
lactose core decorated with N-acetyl-D-glucosamine (GlcNAc),
D-galactose (Gal), N-acetylneuraminic acid (Neu5Ac) and L-
fucose (Fuc) (Wu et al., 2010) (Figure 1). Up to date, more than
200 structures have been identified in human milk, all of which
are an elongation product of 19 core structures (Urashima et al.,
2017). The core structures can be categorized depending on the
bond formed between galactose and N-acetyl-D-glucosamine. In
lactose, Gal and glucose (Glc) are connected with β1-4 linkage
creating a disaccharide. Lactose is elongated with the addition
of a disaccharide with a β1-3 or β1-6 bond. These can be
Lacto-N-biose, where GlcNAc is connected to Gal with a β1-
3 bond, or N-acetyllactosamine, where GlcNAc is connected
to Gal with a β1-4 bond. These lead to a Type I or Type II
chain, respectively. The tetrasaccharide can be further decorated
with Fuc or Neu5Ac or the Lacto-N-biose/N-acetyllactosamine
disaccharide. The configuration of the HMO can be either linear
or branched. When a disaccharide is attached to the 3N of
Gal, the 6N is available and its decoration leads to a branched
structure, and vice versa (Urashima et al., 2017). Up to date, there
have not been any characterized structures with an additional
Glc or lactose in their structure. The variability of HMOs
in mothers additionally depends on their Secretor Status and
Lewis blood type which is defined by the presence or absence
and position of the fucose residues on the HMOs (Scheneel-
Brunner et al., 1972; Viverge et al., 1990; Kelly et al., 1995; Yip
et al., 2007; Underwood et al., 2015). Some HMO structures
are also sialylated, thus resulting in 8–21% of the total HMO
concentration (Totten et al., 2012). Fuc residues can be attached

by an α1-2, α1-3, or α1-4 linkage and Neu5Ac by an α2-3 or α2-6
linkage.

On the other hand, infant formula, a common breast milk
analog, does not contain HMOs. Some products, however,
contain plant-based indigestible carbohydrates such as galacto-
oligosaccharides (GOS) and fructo-oligosaccharides (FOS) to
mimic some of the benefits of HMOs (Figure 1). GOS are made
out of a lactose core elongated by Gal monomers (β1-3-Gal, β1-
4-Gal, or β1-6-Gal) reaching a degree of polymerization (DP)
from 2 to 8 (Verkhnyatskaya et al., 2019). FOS are made of
the addition of repetitive fructose moieties to a glucose unit
with a DP from 2 to 60. Dependent on the number of fructose
molecules the FOS are characterized as inulin (DP = 2–60),
oligofructose or long chain fructooligosaccharides (DP < 20)
or short chain fructooligosaccharides (DP < 5) (Sabater-Molina
et al., 2009; Akkerman et al., 2019). Inulin type FOS (Figure 1)
are considered here due to their popularity as infant formula
ingredients (Sorour et al., 2017).

GLYCOSIDE HYDROLASES TOWARD
MILK ASSOCIATED
OLIGOSACCHARIDES IN INFANCY:
PRESENCE AND IMPORTANCE

Characterized Glycoside Hydrolases
The HMOs found in human milk are an excellent substrate
for bacteria that possess the suitable enzymatic abilities to
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degrade them. This is suggested to stir the microbial community
toward the dominance of bifidobacteria in early life gut
microbiota. Research in the last decade has focused majorly
on the characterization of bifidobacterial (B. breve, B. longum,
B. bifidum) enzymes to elucidate the complete degradation
pattern of HMOs. Similarly, respective focus has been applied
to enzymes that degrade the common prebiotics, GOS and FOS,
that are added in infant formulas. Glycoside hydrolases are
necessary to break the bonds that withhold the structures of
these oligosaccharides. These are enzymes of hydrolytic capacity,
meaning that they react with water to abolish glycosidic bonds
in a retaining or inverting manner. According to their primary
structure, they are classified into 167 families up to this date
(Lombard et al., 2014). For this review, we have summarized
the GH families that are related to the degradation of HMOs,
GOS and FOS based on experimentally acquired data (Table 1).
The results are restricted to enzymes that have been currently
characterized by the following means in bacteria that are highly
abundant in infant gut: isolation and purification, knock-out of
gene and research of function, gene expression micro-arrays,
proteomics or patent.

Human milk oligosaccharides are complex structures, and
this trait is also depicted in the enzymatic repertoire needed to
dismantle them (Table 1). When glycans are linked to peptides
in the form of glycoproteins, the GH18 or GH85 endo-β-N-
acetylglucosaminidases are needed to free the oligosaccharides.
GlcNAc residues, termed also as sialic acid, residues are
cleaved by 2,3-2,6-a-sialidases of the GH33 family. Decorated
fucose, in milk of Secretor mothers, is removed via α-L-
fucosidases which belong to GH29 and GH95, dependent on
their specificity. In the main HMO chain, hydrolysis of the β1-3
bond in Lacto-N-biose and the β1-4 bond in N-acetyllactosamine
is catalyzed by LNB/GNB phosphorylases of the GH112
family. The release of lactose from the adjacent GlcNAc is
performed by lacto-N-biosidases of the GH20 and GH136
families or β-hexosaminidases/β-1,6-N-acetylglucosaminidases
of GH20. The remaining lactose from HMOs as well as free
human milk lactose is targeted by β-galactosidases able to
hydrolyze β1-4 linkages. To date, all experimentally characterized
β-galactosidases belong to the GH2 and GH42 families.
There are not any characterized GH1 family β-galactosidases
from highly abundant bacterial inhabitants of the infant gut.
However, putative in silico characterized β-galactosidases from
this family may prove their ability to target HMOs in the
future. Accordingly, GH35 β-galactosidase activity has been
described for the less abundant mucus associated bacterium
Akkermansia muciniphila, able to catalyze the removal of Gal
from the GlcNAcβ1-3Gal and GlcNAcβ1-6Gal disaccharides
(Guo et al., 2018; Kostopoulos et al., 2020; Xu et al., 2020).
The inherent differences in the β-galactosidases of the four
families in terms of structure and substrate handling were
recently explained (Kumar et al., 2019). The ability of GH2
to accumulate distinct domains and the evidence of its β-
galactosidases to successfully bind lactose as well as the capacity
of GH42 to actively interact with broadly linked Gal could
be a possible explanation for their presence in successful
utilization of HMOs.

The degradation of common infant formula oligosaccharides,
GOS and FOS, requires an alternate and more concise glycoside
hydrolase profile (Table 1). GOS have a less complex structure,
and their degradation relies on the previously explained enzymes
of the GH2 and GH42 families. The utilization of FOS
requires mainly enzymes that cleave the Fuc moieties from the
oligosaccharides and belong to the GH13, GH32, and GH68
families. However, agreeing to previous exploratory attempts
(Chia, 2018) there were no available data for characterized GH68
enzymes in known infant gut bacteria.

Human Milk and Alternative Feeding
Enrich Pre-weaning Infants With
HMO-Related GHs
The first diet humans come in contact with is milk. The
breastfeeding lasts approximately 6 months, but depending on
other factors such as the availability of the breast milk or
the societal context, it can last up to 12 months or 2 years
(Figure 2) (Gianni et al., 2019; World Health Organization and
United Nations Children’s Fund, 2019). During that period, for
many children across the globe, milk consumption also means
alternative forms of feeding like infant formula. Almost 75% of
infants in the western world and 60% globally will receive infant
formula within the first six months (Theurich et al., 2019; World
Health Organization and United Nations Children’s Fund, 2019).

Infants quickly gain microbial communities that are capable
of utilizing the increased concentrations of milk carbohydrates
such as lactose and HMOs (Bäckhed et al., 2015). Bäckhed
et al. (2015) found that the HMO-relevant GH2, GH18, GH29,
GH35, GH42, GH85, and GH95 were more enriched in breastfed
compared to formula-fed children of 4 months, but in a non-
significant manner. Agreeingly, Ye et al. (2019) demonstrated no
significant differences in GHs based on the same cohort. These
results contradict the image of differential species abundances
between the two groups. The general nature of some GHs
like GH2, GH13, and GH42 regarding the targeted substrate
can be a factor leading to that result. It should also be
taken into consideration that the enzymatic capabilities of the
community have been found to be determined by its members
(Bäckhed et al., 2015; Lawson et al., 2019; Ye et al., 2019). In
general, bifidobacteria contain the highest amount of genetically
identified CAZymes related to human milk consumption (Ye
et al., 2019). This ability has been attributed to different
species or even different strains of this genus within the
same subject. For example, the GH29 family that includes the
enzymes relevant to cleavage of fucose was only present in
Bifidobacterium infantis strains and not B. longum, B. breve
or Bifidobacterium pseudocatenulatum in infant metagenomes
(Lawson et al., 2019). Current studies show data that justify
the enzymatic contribution of more taxa that is yet to be
fully elucidated (Milani et al., 2015; Turroni et al., 2016;
Borewicz et al., 2020).

We, therefore, proceeded to summarize the presence of
HMO-, GOS- and FOS-related GHs (Supplementary Material,
In silico Analysis Method) per phylum in the gut microbiota
from infants up to 12 months of age (Bäckhed et al., 2015;
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TABLE 1 | GH families of the infant gut microbiota and their identified specific enzymes that have been found to take part in HMO, GOS and FOS degradation. Enzymes
are associated with their target and the bacteria from which they have been isolated.

GH family Enzyme EC number Target Bacteria Genea References

HMO related GH18 Endo-β-N-
acetylglucosaminidase/
Endoglycosidase

EC 3.2.1.96 Galβ1-3GlcNAc2

Galβ1-4GlcNAc2

B. longum subsp. infantis
ATCC 15697

EndoBI-1 Parc et al., 2015; Karav
et al., 2016; Garrido et al.,
2018

B. longum subsp. infantis
157F/SC142

EndoBI-2 Fukuda et al., 2011;
Garrido et al., 2018

GH20 lacto-N-biosidase EC 3.2.1.140 GlcNAcβ1-3Gal
GlcNAcβ1-6Gal

B. bifidum JCM1254 lnbB Wada et al., 2008

β-hexosaminidase/β-
1,6-N-
acetylglucosaminidase

EC 3.2.1.52 B. bifidum JCM1254 BbhI, BbhII Miwa et al., 2010

EC. 3.2.1.- B. longum subsp. longum
JCM1217

BLLJ_1391 Honda et al., 2013

B. longum subsp. infantis
ATCC 15697

Blon_0459,
Blon_0732,
Blon_2355

Garrido et al., 2012;
Kavanaugh et al., 2013

GH29 α-L-fucosidase EC 3.2.1.51 Fucα1-3Gal
Fucα1-4Gal
Fucα1-3GlcNAc
Fucα1-4GlcNAc

B. longum subsp. infantis
ATCC 15697

Blon_0248,
Blon_0426,
Blon_2336

Sela et al., 2012; Kim et al.,
2013

B. longum subsp. infantis
ATCC 15697

Blon_2336 Sela et al., 2012

α-1,3/1,4-L-fucosidase EC 3.2.1.111 B. bifidum JCM1254 afcB Ashida et al., 2009

GH33 2,3-2,6-a-sialidase EC 3.2.1.18 Neu5Acα2-3Gal
Neu5Acα2-6Gal
Neu5Acα2-
6GlcNAc

B. longum subsp. infantis
ATCC15697

nanH1, nanH2 Sela et al., 2011

B. bifidum JCM1254 SiaBb2 Kiyohara et al., 2011

B. longum subsp. infantis
ATCC 15697

Blon_2348 Kim et al., 2013

GH85 Endo-β-N-
acetylglucosaminidase/
Endoglycosidase

EC 3.2.1.96 Galβ1-3GlcNAc2

Galβ1-4GlcNAc2

B. longum NCC2705
B. longum DJO10A
B. breve

EndoBB Schell et al., 2002; Garrido
et al., 2018

GH95 α-1,2-L-fucosidase EC 3.2.1.63 Fucα1-2Gal B. longum subsp. infantis
ATCC 15697

Blon_2335 Sela et al., 2012

B. bifidum JCM1254 afcA Ashida et al., 2009

GH112 GNB/LNB
phosphorylase

EC 2.4.1.211 Galβ1-3GlcNAc B. breve UCC2003 lnbP James et al., 2016

B. bifidum JCM1254 LnpA1, LnpA2 Nishimoto and Kitaoka,
2007; Nishimoto et al.,
2012

GH136 lacto-N-biosidase EC 3.2.1.140 GlcNAcβ1-3Gal B. longum subsp. longum
JCM1217

LnbX Sakurama et al., 2013

HMO and
GOS related

GH1 β-1,4-galactosidase EC 3.2.1.23 Galβ1-4Glc Putative

GH2 β-1,4-galactosidase EC 3.2.1.23 Galβ1-4Glc B. longum subsp. infantis
ATCC15697

Bga2A Yoshida et al., 2012

B. longum subsp. infantis
ATCC 15697

Blon_2334,
Blon_0268

Garrido et al., 2013; Kim
et al., 2013

B. breve UCC2003 lacZ6 James et al., 2016

B. breve UCC2003 lacZ(2) O’Connell Motherway et al.,
2013

B. bifidum DSM20215 BIF1, BIF2, BIF3 Møller et al., 2001

B. bifidum JCM1254 BbgIII Miwa et al., 2010

B. bifidum NCIMB4117 BbgI, BbgIII, BbgIV Goulas et al., 2009

GH35 β-galactosidase EC 3.2.1.23 Galβ1-4Glc Other species

(Continued)
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TABLE 1 | Continued

GH family Enzyme EC
number

Target Bacteria Genea References

GH42 β-galactosidase EC
3.2.1.23

Galβ1-4Glc
Galβ1-3Gal
Galβ1-4Gal
Galβ1-6Gal

B. breve UCC2003 galG, lntA James et al., 2016

B. breve UCC2003 galG, gosG O’Connell Motherway et al.,
2013

B. longum subsp. infantis
ATCC15697

Bga42A, Bga42B,
Bga42C

Yoshida et al., 2012;
Garrido et al., 2013; Viborg
et al., 2014

B. infantis DSM20088 INF1 Møller et al., 2001

B. longum subsp. infantis
ATCC 15697

Blon_2016,
Blon_2416

Kim et al., 2013

B. bifidum NCIMB4117 BbgII Goulas et al., 2009

GOS related GH53 Endo-galactanase EC
3.2.1.89

Galβ1-4Gal B. breve UCC2003 galA O’Connell Motherway et al.,
2013

FOS related GH32 β-fructofuranosidase EC
3.2.1.26

Glcβ1-2Fru B. breve UCC2003 fosC Ryan et al., 2005

β-
fructofuranosidase/fructan
β-fructosidase

EC
3.2.1.80
EC
3.2.1.26

Fruβ1-2Fru
Glcβ1-2Fru

B. longum ATCC 15697 B.longum_l1 Ávila-Fernández et al.,
2016 Warchol et al., 2002

Exo-inulinase EC
3.2.1.80

Fruβ1-2Fru B. longum subsp. infantis
ATCC 15697

Blon_2056,
Blon_0787

Kim et al., 2013

GH13 Sucrose
phosphorylase/inulinase

EC 2.4.1.7 Glcβ1-2Fru B. longum subsp. infantis
ATCC 15697

Blon_0128,
Blon_1740,
Blon_0282,
Blon_2453

Kim et al., 2013

*The enzymes for which the gene name is not provided are recorded by their genetic locus.

Nayfach et al., 2019; Supplementary Figure 1). Our analysis
illustrates that as infants reach the first 4 months of age,
their gut microbiota becomes more diverse, thus contributing
their GHs toward oligosaccharide utilization (Figure 3). The
GH profile of formula-fed newborns is greatly depleted,
which could be attributed to underrepresentation as only
one out of the 98 newborns in the cohort fall within
that type of feeding. At 4 months, the GHs demonstrate
a coherent presence in the differently fed infants with no
absent GHs. However, in children who are exclusively breastfed,
Bacteroidetes, Actinobacteria and Proteobacteria contribute
activity from the GH85, GH18, and GH35 families, respectively,
as opposed to the exclusively formula-fed infants. These
enzymatic capabilities are attributed in silico to: Byturicimonas
spp., Prevotella copri, and Bacteroides salyersiae (Bacteroidetes),
Actinomyces_A neuii_A (Actinobacteria), Klebsiella oxytoca and
Citrobacter HGM20797 (Proteobacteria). Future metagenomic
data from infants are needed to assess whether these traits are
detected in other cohorts as well. Consistency of such results
would add to the current questions on how the microbial
taxa dominate the infant gut microbiota and affect physiology,
initiated from feeding.

The effects of this enzymatic utilization are evident on the
infants of few months old to later life. Degradation of HMOs
as well as GOS and FOS leads to the production of Short Chain
Fatty Acids (SCFAs), lactate and succinate. Lactate is especially
dominant in the infant microbiome (Bridgman et al., 2017)

and its benefits span from the cross-feeding of other bacteria
(Pham et al., 2016) to the protection against pathogens (Fayol-
Messaoudi et al., 2005; Duar et al., 2020) or the rejuvenation
of gut epithelial cells (Lee et al., 2018). Especially breastfed
infants have a higher concentration of acetate (Bridgman et al.,
2017). It is interesting that Differding et al. (2020) found that
the microbial communities during the milk-feeding period can
get projected on the metabolome of 1-year-olds, especially for
infants to which solid food is introduced early and have a
more “mature” microbiota composition. Butyrate and propionate
have been linked with lower occurrence of atopy coupled with
experimentation on mice where SCFAs showed a promising
annihilation of allergic airway inflammation (Roduit et al., 2019).
The link is also evident on metagenomic data, where children
whose microbiota had a lower percentage of GHs, in general
as well as those related to HMO utilization, had a higher
incidence of atopy (Cait et al., 2019). The same study linked
those profiles with lower detection rate of genes implicated
in butyrate fermentation. This agrees with the accumulated
evidence on the protective nature of breastfeeding against allergy
related manifestations.

Cessation of Breastfeeding Introduces
GHs From a Wider Range of Phyla
After the first six months of life, introduction of solid food
becomes an important aspect of the infant diet. Breastfeeding
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FIGURE 2 | From feeding to health outcomes in the first year of life: feeding patterns and the respective available oligosaccharides, the change in phyla proportions,
the KO pathways related to the utilization of fed oligosaccharides, the metabolites produced and the possible health associations. Data adapted from Schwiertz
et al. (2010), Koenig et al. (2011), van der Aa et al. (2011), Bäckhed et al. (2015), Huang et al. (2017), Cait et al. (2019), Roduit et al. (2019), Venegas et al. (2019),
and Differding et al. (2020).

may or may not be performed during that period. This signifies
an important milestone in the composition and functionality of
the gut microbiota (Figure 2). During this period, the infant
microbiome has been found to mature and resemble more that
of adults. The species belonging to genera such as Bacteroides,
Clostridium, Faecalibacterium, Eubacterium, and Ruminococcus
are introduced to the gut of children that receive solid food
(Bergström et al., 2014; Bäckhed et al., 2015). However, genera
dominating the younger gut such as Bifidobacterium, have still
a pivotal role in the composition especially for the infants that
continue to breastfeed (Fallani et al., 2011; Bäckhed et al., 2015).
These reports further highlight the resource-pressure of human
milk in shaping the gut microbiota in the first year of life.

In terms of GHs relevant to HMO, GOS, and FOS utilization
(Table 1), no significant differences have been reported (Bäckhed
et al., 2015; Ye et al., 2019). Interestingly, 12-month-old infants
who were breastfed had a higher representation of these GHs,

nevertheless in a non-significant manner (Bäckhed et al., 2015).
Our previously described analysis highlights these findings and
adds to the understanding of phyla contribution (Supplementary
Figure 1). As seen in Figure 3, after cessation of breastfeeding,
bacteria from the Fusobacteria and Cyanobacteria introduce
GOS- and FOS-related GHs. However, HMO-related GHs are
not depleted. Keeping in mind that GH families include various
enzymes, this could be attributed to the effect of solid food on
introducing a wider range of species in the gut and thus possibly
increasing the overall GH genetic potential. Moreover, these
enzymes are still relevant in the adult gut microbiota because
they target plant- or host-derived glycans. Proteobacteria and
Bacteroidetes possess HMO-related GHs (GH18, GH20, GH29
and GH85, GH112, GH1, respectively) that are absent in 1-year-
olds that receive human milk as primary or side-feeding. These
are in silico attributed to the presence of genera like Enterobacter,
Citrobacter, Hafnia, and Sutterella from Proteobacteria and
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FIGURE 3 | GH profiles per phylum and feeding in (A) newborns, (B) 4-month-old infants, and (C) 12-month-old infants. GHs were detected in MAGs of Nayfach
et al. (2019) derived from the original dataset of Bäckhed et al. (2015). The identification method was based on domain-based Hidden Markov Models against the
dbCAN CAZyme domain HMM database (Lombard et al., 2014; Zhang et al., 2018). GHs are grouped into: (blue) HMO-related, (red) HMO- and GOS-related,
(green) GOS-related, (yellow) FOS-related. Presence of the GH family is signified with a black box and abscence with a white box.

Coprobacter, Butyricimonas, and Barnesiella from Bacteroidetes
in non-breastfed infants. Publicly available data on the coverage
of reads that constitute a GH domain within a certain species
could give an indication of gut microbiota composition and
relationships in terms of species functional enrichment.

Bacteria that become more abundant at 1 year of age, such
as Bacteroides spp., are known to possess variable carbohydrate
degrading abilities. Moreover, evidence suggest that mucin
degradation, that can be inhibited earlier by B. longum subsp.
infantis (Karav et al., 2018), is performed by, for example,
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the increasing Bacteroides thetaiotaomicron, A. muciniphila
(Bergström et al., 2014; Bäckhed et al., 2015; Differding et al.,
2020) and the pre-established B. bifidum (Tsai et al., 1991;
Derrien et al., 2004; Ruas-Madiedo et al., 2008). These O-glycans
(Supplementary Figure 2) are targeted by some GHs that
are common with the previously mentioned HMO-related
CAZymes, namely fucosidases (GH29, GH95), sialidases (GH33),
sulfatases, and β-hexosaminidases (GH20) (Chia, 2018; Chia
et al., 2020; Kostopoulos et al., 2020). Absence of indigestible
carbohydrates in gnotobiotic mice shifted the intestinal bacteria
to transcriptional increase of CAZymes of mucin degradation
(Desai et al., 2016), possible evidence of the protective role of
prebiotics toward the integrity of the mucosal barrier. However,
it has been shown that the major functional pressure of solid
food is the wide range of substrates and the high amounts of
plant indigestible carbohydrates. As in adults, the gut microbiota
needs an array of GHs that can successfully degrade starch,
pectin, xylan, arabinoxylan, arabinogalactan and other complex
structures (Kaoutari et al., 2013; Bäckhed et al., 2015; Turroni
et al., 2016).

Solid food affects the composition of the gut microbiota,
and its results are evident in the first year and beyond. Total
SCFA concentrations and the proportions of butyrate and
propionate increase with solid food consumption and coincide
with the proportional decrease of the non-butyrate producing
bifidobacteria and the overall change in the proportion of
the major phyla (Koenig et al., 2011; Differding et al., 2020).
The role of microbial metabolites and the link to disease
induction or protection are promising, but still quite scarce
for infants, and sometimes controversial. SCFAs can have
molecular interactions with intestinal cells, thus contributing
to the regulation of inflammation (Venegas et al., 2019).
The fortification with Bifidobacterium-containing symbionts
protected the young intestinal cells (Zheng et al., 2020) and
decreased the chances of asthma in atopic infants (van der Aa
et al., 2011). SCFA-mediated effects of the gut microbiota are still
emerging, with possible connection to better sleep (Szentirmai
et al., 2019), protection against brain illness (Benakis et al., 2020)
and behavior (Johnson and Foster, 2018). However, increased
levels of SCFAs have also been correlated with obesity (Schwiertz
et al., 2010; Huang et al., 2017). What is unanimously agreed,
is that the first year of life is a critical timeframe for the
establishment of the gut microbiota and that it has strong health
implications for later life.

CONCLUSION AND PERSPECTIVES

In this analysis review, we have summarized the function, the
importance, and the presence of GHs related to human- and
formula-milk in infants up to 12 months old. We utilized publicly
available metagenomic data that profile the metabolic potential
of complete microbial communities. The adaptation pressure
that breastfeeding imposes on those communities is evident
in the contribution of phyla to these profiles. The GHs that
target HMOs and plant-based formula oligosaccharides show
that they both enrich the same bacterial phyla, but in a different

manner with possible effects on the composition of the gut
microbiota, the metabolic products, and the maturation process
of the microbiome.

Such data indicate that the entire microbial network, and not
only the dominant and widely characterized Bifidobacterium
spp., contribute to the functional effect of milk-related
oligosaccharides. HMO-utilizers thrive in this period and
produce a variety of by-products and metabolites that are
harvested by adjacent microorganisms, such as butyrate-
producers. Cross-feeding is suggested to generate the interactions
between the different members of the community leading to
the formation of a network. This is indispensable, as it lays
the ground for the mature gut microbiota. HMO-utilizers
could, thus, support the first indigenous inhabitants of the
adult gut microbiota. Further isolation and characterization of
GHs from intestinal bacteria will contribute to the knowledge
on the specificity of these enzymes, as well as the ecological
advantage they confer.

Currently, the emerging genomic and analytical chemistry
methods allow investigation of the composition within the gut
microbiota with high resolution, as well as the quantification
of its metabolic products. However, the methods capturing the
actual interplay between infant gut bacteria are scarce. Moreover,
the complexity of the system hinders the distinction between
the effect of diet and other factors, such as the delivery mode
or the surrounding environment. More metagenomics analyses
are needed to unravel the potential of the infant gut microbiota
to produce certain compounds and to profile the differences
dependent on feeding. Currently, this second part is only based in
in vitro experiments, leaving space for experimental procedures
that link the genetic potential with the metabolic products (via
meta-proteomics and meta-transcriptomics). Closed microbial
systems are a suggestion for modeling the structure to function
relationship that can expand the research to other species residing
in the infant gut.
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