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Abstract: Neutrophil gelatinase-associated lipocalin
(NGAL), a protein belonging to the lipocalin superfamily
initially found in activated neutrophils, is expressed by sev-
eral cell types, including kidney tubule. The increase in
NGAL production and release from tubular cells in
response to various insults has been proven to predict
acute kidney injury (AKI). For this reason, it has emerged
as a valuable noninvasive biomarker of AKI in clinical
nephrology. Also in the renal transplant setting, different
studies have indicated NGAL as a valuable tool, especially
in the early postoperative period, since the currently avail-
able clinical and laboratory parameters remain poorly sen-
sitive to monitor immediate posttransplant graft function.
This is an analysis of the recent literature to assess the util-
ity of plasma and urinary NGAL, exosomal mRNA for
NGAL, and NGAL levels in the perfusate of machine-

perfused kidneys for the prediction of graft function recov-
ery in the early postsurgery phase after renal transplanta-
tion. We found that NGAL appears as a promising
troponin-like biomarker to detect short-term impairment
of graft function after renal transplant, but there are still
some limitations in its clinical application, essentially
related to its low specificity. Moreover, comparing NGAL
assayed in serum, urine, machine-perfusate, or as exosomal
mRNA, each one has shown limitations and benefits in
terms of predictive performance for DGF, according to
various existing studies, feasibly due to different cut-off
levels, designs and patient sample sizes. Key Words:
Biomarker—Neutrophil gelatinase-associated lipocalin—
Kidney transplantation—Plasma NGAL—Urinary
NGAL.

The necessity of early biomarkers in acute kidney
injury and renal allograft outcomes

Acute kidney injury (AKI), is a common prob-
lem in critically ill patients, and is defined as the
abrupt (e.g., within 48 h) and sustained decrease in
renal function. In current clinical practice, the

diagnosis and classification of AKI stages relies on
serum creatinine, glomerular filtration rate (GFR),
and urine output (1).

However, there are some major limitations to the
use of creatinine, since it is an unreliable and delayed
indicator of the deterioration of kidney function. To
overcome these difficulties, an extensive search for
more suitable and timely laboratory markers moni-
toring impaired renal function is required.

In renal transplant recipients, the need of nonin-
vasive and early biomarkers to detect delayed graft
function (DGF), defined as the need for dialysis
during the first posttransplant week, is of para-
mount importance in current research.
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The large interindividual differences in clinical
outcomes immediately after renal transplantation
can range from early recovery observed after living
donation to slow or delayed recovery of graft func-
tion, and primary allograft failure in the worst cases
(2). DGF can be viewed as a form of AKI follow-
ing kidney transplantation, and has been associated
with 40% higher risk of graft loss at one year post-
transplant (3), increased susceptibility to acute and
chronic rejection and poorer long-term outcomes
(4,5). However DGF diagnosis can be complicated
because there are several definitions based on a
variety of clinical parameters (6). Although the use
of dialysis in the first postoperative week is the
most widely adopted to define DGF in both clinical
practice and scientific literature, it is important to
underline that this criterion might be misleading in
those cases when a single postoperative dialysis is
performed for the management of hyperkalemia,
volume overload or for the safe administration of
blood products, or when dialysis is avoided due to a
good urine output from the native kidney (7).

Moreover, clinicians have still to deal with the
poor performance of serum creatinine and creatinine-
based equations to estimate GFR and to predict graft
and patient survival in kidney transplant recipients
(8,9). The main limitations with use of serum creati-
nine in the very early posttransplant phases are
related to the effect of dialysis sessions immediately
prior to or after surgery, or native urine output.

The Cockcroft-Gault formula (10) and the Modi-
fication of Diet in Renal Disease (MDRD) equa-
tion (11) are the most widely used to assess kidney
function also in the transplant setting, but with
some well-known limitations, particularly in the
elderly patients (<65 years) and those with extreme
body mass indexes (BMIs).

In addition, an important point to consider is that
the applicability of these formulas in renal transplant
recipients can be reduced by some factors affecting
serum creatinine levels: possible changes in muscle
mass due to steroid treatment, enhanced creatinine
catabolism triggered by opportunistic infections, and
the effect of certain drugs such as cimetidine, tri-
methoprim, pyrimethamine, phenacemide, salicy-
lates, corticosteroids, and active vitamin D
metabolites, able to determine a rise in serum creati-
nine without influencing glomerular filtration (12).

Role of NGAL in renal and nonrenal clinical
settings

Neutrophil gelatinase-associated lipocalin (NGAL),
also known as lipocalin 2, uterocalin, siderocalin,

or oncogene 24p3, was initially isolated from the
supernatant of human activated neutrophils (13).

In year 2000, a young graduate student David
Goetz at the University of California in San Fran-
cisco, under the supervision of Professor Roland
Strong, first described the three-dimensional struc-
ture of NGAL, revealing a high sequence similarity
to a protein superfamily called lipocalins. Professor
Strong defined lipocalins as “small proteins that cells
send out to bind things and carry them back” (14).
Successive studies proved the ability of NGAL to
bind with high affinity bacterial siderophores or
endogenous compounds in mammals (15,16), its key
role in iron transport into cells, and iron-mediated
downstream cellular responses (17,18). Afterwards,
NGAL has been implicated in several pathways,
including bacteriostasis, control of apoptosis, and
induction of renal tubule proliferation, a possible
mechanism of NGAL-mediated renal protection
during AKI (19,20). NGAL expression has been
reported in different human cell types, including kid-
ney tubular cells, in response to various insults,
highlighting the multifaceted role of NGAL in both
renal and nonrenal clinical settings (21–29).

Within this framework, NGAL has also emerged,
among the many candidate molecules, as a promis-
ing early predictor of AKI. Thus, NGAL has been
regarded as the “troponin of the kidney” (30,31).

In renal transplant settings, different studies have
indicated NGAL as a valuable tool to monitor allo-
graft function, especially in the early postoperative
period.

NGAL is involved in cellular immunity, for its
ability to induce immune tolerance by upregulating
HLA-G expression and expansion of T-regulatory
cells in healthy donors, providing the basis for fur-
ther studies to evaluate its possible role in immuno-
modulation and tolerance induction in transplant
recipients (32).

A cornerstone in the field of kidney transplant
research was laid by Mishra et al. (25) who used
immunochemical staining of protocol biopsy speci-
mens from renal allografts obtained at approxi-
mately one hour of reperfusion after surgery to
demonstrate a correlation of increased NGAL
expression with prolonged cold ischemia time, ele-
vated serum creatinine levels, and DGF. These
findings suggested that enhanced local production
of NGAL by the tubular epithelium of DGF allog-
rafts results in increased plasma and urine NGAL
levels, as a consequence of the ischemia/reperfusion
stress applied to the transplanted kidney before
organ withdrawal, during the ischemic storage and
successive reperfusion. However, there are
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different mechanisms underlying the rise of NGAL
in urine and plasma. The main fraction of urinary
NGAL (uNGAL) during AKI is likely to be
related to an impaired reabsorption of the filtered
NGAL by the proximal tubule together with an
increased local synthesis by the distal nephron.
Conversely, it is known that the injured kidney is
not the main source of plasma NGAL (pNGAL),
but increased NGAL mRNA expression by other
distant organs, mainly liver and lungs, gives the
most substantial contribution to NGAL plasma
pool (31).

Urinary NGAL and DGF
A large proportion of current research is focused

on the urine medium, since it represents an ideal
model to reflect the molecular constitution of the
transplanted organ. However, the changes in urine
levels of a given molecule might result from differ-
ent underlying mechanisms, namely passive or
active release, filtration across the glomerular base-
ment membrane, and resorption or catabolism.

The main utility of uNGAL as a biomarker for
predicting kidney injury in the early posttransplant
period is its potential applicability for a timely
detection of kidney injury, since NGAL rise occurs
rapidly and is detectable within a few hours after
the initial insult, anticipating by several hours the
rise in serum creatinine. It has been reported that
kidney epithelia express and excrete large quanti-
ties of NGAL into urine following acute injury,
reaching up to 1000-fold induction of NGAL
mRNA and protein in the most severe cases (33).
There is a large body of literature to indicate that
uNGAL increases during the first posttransplant
week in renal transplant recipients with DGF, espe-
cially in the very early urine samples collected
within six h postsurgery (34–36). Thus, the main
potential advantage arising from this finding is the
possibility to identify and stratify patients according
to their risk of dialysis need after transplant, prior
to the diagnosis of DGF. Most of the studies,
including one from our group, concur to suggest
that patients with higher uNGAL values in the
early posttransplant phases are more prone to
develop DGF and tend to maintain increased
uNGAL levels, or even experience a further rise in
the following days, different from patients with
prompt function (25,34,37,38). However, contrast-
ing results by Hollmen et al. (39), even if the higher
initial uNGAL levels in DGF patients is confirmed,
it showed a rapid decline on the following day,
similar to transplant recipients with immediate
recovery of graft function.

Plasma NGAL and DGF
The prognostic value of pNGAL after renal

transplantation has been also extensively investi-
gated. Recently, Pezeshgi et al. (40) reported that
pNGAL, particularly 12 h after kidney transplant,
appears to be a very sensitive and specific bio-
marker for predicting AKI. Comparing the changes
in serum creatinine measured daily within the first
week after transplant with pNGAL levels immedi-
ately before and at 6 and 12 h postsurgery, the
authors found that pNGAL at 12 h was the most
reliable predictor of AKI and graft rejection (sensi-
tivity: 100%; specificity: 92%; cut-off value: 309 ng/
mL), far better than the prognostic accuracy of cor-
responding serum creatinine (sensitivity: 66.7%;
specificity: 61.9%).

The role of pNGAL as an early and accurate
indicator of DGF and tacrolimus (Tac) toxicity and
as a mediator of tissue regeneration in kidney
transplant recipients from marginal donors was
investigated by Cantaluppi et al. (41) The data con-
firmed previous evidence on the predictive value of
plasma levels of NGAL in DGF group. Moreover
in patients with no DGF, NGAL was able to dis-
criminate between slow or immediate graft func-
tion. The rise in NGAL plasma concentration
following Tac introduction seems to indicate a fur-
ther role as marker of drug toxicity.

Which one between uNGAL or pNGAL might
represent the best biomarker for graft outcome
remains an open issue. In Table 1, we have summa-
rized the main published studies performed in renal
transplant recipients, where the predictivity of
uNGAL and pNGAL in terms of cut-off levels,
sensitivity and specificity were available
(34,36,38,40–52).

NGAL as a perfusion marker in kidney preserved
by hypothermic machine perfusion

NGAL has been also evaluated as a hypothermic
machine perfusion biomarker for assessing organ
quality in deceased donor kidney transplantation
(53–55).

A first pilot ex vivo animal experiment was car-
ried out by Jochmans at al. to evaluate the perfor-
mance of biomarkers AST, H-FABP, and NGAL
in the perfusates of 6 porcine kidneys exposed to
incremental intervals of warm ischemia prior to a
22-h machine perfusion. The results reveled that all
the selected biomarkers were detectable in the cold
acellular perfusate and their release was in propor-
tion to the degree of warm injury. In particular,
NGAL increase in perfusate was directly related to
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the extent of graft ischemic damage, independent
of neutrophil activation (53).

Successive clinical studies on patients who
received a kidney from a donation after circulatory
death donor showed that perfusate NGAL, but not
kidney injury molecule 1 (KIM-1), correlated with
some well-established donor risk factors for DGF,
specifically donor age, serum creatinine, and car-
diac cause of death (54).

Recently, a large multicenter cohort study by
Parikh et al. investigated prospectively the associa-
tions of NGAL, KIM-1, interleukin-18 (IL-18) and
liver-type fatty acid-binding protein (L-FABP) and
pump parameters (resistance and flow) with DGF
and estimated GFR (eGFR) at six months after
kidney transplant. The results proved a release of
all kidney injury biomarkers into perfusate and a
rise over time in their concentration. However,
one-hour flow was found to be associated with
DGF, but no other independent correlations
between the injury biomarkers and DGF were

observed. In spite of the poor predictivity of the
selected perfusate biomarkers for short-term graft
outcomes, perfusate NGAL and L-FABP measured
near the end of machine perfusion as well as pump
parameters (resistance and flow) were modestly
associated with six-month eGFR. Although the
study found lacking or weak prognostic utility of
the most known biomarkers of ischemia-
reperfusion injury in the perfusate, additional can-
didate molecules involved in other pathways might
deserve further research, especially in view of the
growing organ shortage and the critical issue rela-
tive to kidney allocation acceptance or refusal deci-
sions (55).

Urinary exosomal mRNA for NGAL and kidney
transplant

The usefulness of NGAL in predicting AKI
could be limited by its poor specificity, as several
nonrenal diseases can also induce NGAL. In the
last few years, mRNA extracted from urinary

TABLE 1. Literature review on predictivity of urinary NGAL and plasma NGAL on delayed graft function in renal
transplant recipients

Marker Number of patients Cut-off level Sensitivity (%) Specificity (%) Author (Ref.)

uNGAL 176 KTR 560 ng/mL (day 1) 68 73 Hollmen (39)
uNGAL 124 KTR 97 ng/mL (day 1) 71.8 100 Lacquaniti (42)

105 ng/mL (day 1) 95.8 91.9
uNGAL 123 KTR 521.7 ng/mL (4 h) 80 68.7 Cui (43)

559.2 ng/mL (12 h) 80 68.7
688.3 ng/mL (24 h) 70 93.7
295.2 ng/mL (48 h) 80 96.9
297.4 ng/mL (72 h) 80 100

uNGAL 91 KTR 45 ng/mL (day 1) 97 26 Hall (36)
350 ng/mL (day 1) 77 74
800 ng/mL (day 1) 65 94

uNGAL 79 KTR >120 ng/mL (48 h) 75 71 Nieto-R�ıos (44)
uNGAL 71 KTR >33.1 lg/mmol sCr (24 h) 68 93 Pajek (45)
uNGAL 69 KTR 188.4 ng/mL (day 2) 64 8 Choi (46)
uNGAL 53 KTR (23 living donor,

30 deceased donor)
1000 ng/mg sCr (day 0) 90 83 Parikh (38)

uNGAL 40 KTR 479 ng/mL (3–6 h) 77 88 Fonseca (34)
286 ng/mL (8–12 h) 100 76
277 ng/mL (day 2) 93 90
232 ng/mL (day 4) 93 95
63 ng/mL (day 7) 94 84

uNGAL 38 KTR 128 ng/mL (day 1) 85.7 61.5 Kanter (47)
124 ng/mL (day 3) 80 83

pNGAL 176 KTR 423 ng/mL (day 1) 87 77 Hollmen (48)
pNGAL 67 KTR (39 living related, 1 brain dead,

27 postcardiac death donors)
500 ng/ml (day 1) 91 97 Kusaka (49)
350 ng/ml (day 2) 86 90
300 ng/ml (day 3) 91 93

pNGAL 59 KTR 233.3 ng/mL (day 1) 76.6 77.8 Lee (50)
pNGAL 50 KTR patients from ECD 532 ng/mL (day 1) 90.9 80.6 Cantaluppi (41)
pNGAL 41 KTR >400 ng/mL (12 h) 93.3 88.5 Bataille (51)
pNGAL 37 KTR 309 ng/mL (12 h) 100 92 Pezeshgi (40)
pNGAL 27 KTR 174 ng/mL (day 1) 100 95.5 Rahimzadeh (52)

For each study, the optimal cut off levels achieving the best combination of sensitivity and specificity are reported.
ECD, extended criteria donors; KTR, kidney transplant recipients; pNGAL, plasma NGAL; sCr, serum creatinine; uNGAL, urinary

NGAL.
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exosomes has been proposed as a better source to
identify novel biomarkers of kidney injury. Exo-
somes are small membrane-bound 50–130 nm diam-
eter vesicles released into the urine from the
kidney epithelium and their molecular composition
feasibly mirrors the physiological or pathological
status of the kidney. Urinary exosomes have
acquired growing importance to predict DGF after
renal transplantation, since they have proven to
express increased levels of NGAL than the cellular
fraction in DGF patients compared to those with
an immediate recovery of their graft function.

Studies on mRNA expression in urinary exo-
somes of NGAL, IL-18, KIM-1, and cystatin C
revealed that, while the concentrations of all the
corresponding urinary proteins increase at 24 and
168 hours after kidney transplantation and corre-
late with the day 7 creatinine reduction ratio
(CRR), exosomal mRNA for NGAL, IL-18, and
cystatin C show no association with the day 7 CRR,
or urinary biomarker concentrations at any time
after transplantation. These results might indicate
that, even if mRNA for these biomarkers is detect-
able in urinary exosomes, their levels do not seem
to reproduce or predict urinary protein levels or
the CRR. A possible explanation might lie in the
fact that the incorporation of mRNA into exosomes
is a selective process, not necessarily representative
of mRNA in the parent cells responsible for bio-
marker production (56).

NGAL and other candidate biomarkers in kidney
transplant setting: benefits and limitations

In renal transplant settings, the ideal biomarker
with a noninvasive, safe and low-cost measurement,
and able to reflect allograft injury with 100% sensi-
tivity and 100% specificity has not been identified
yet. Whether urinary or plasma biomarkers are
more reliable predictors of graft outcome is also
matter of debate.

In the past years, besides NGAL, several AKI
and DGF biomarkers have been extensively investi-
gated, including urinary KIM-1, IL-18, heat shock
protein 72 (uHsp72), L-FABP, calprotectin,
CXCL9, CXCL10, CCL2, IL-18, cystatin C, T-cell
immunoglobulin, and mucin domain-3 (Tim-3), tis-
sue inhibitor of metalloproteinase 2 (TIMP-2),
insulin-like growth factor-binding protein 7
(IGFBP-7) (57–63).

However, every single molecule has advantages
and limitations. At present, none of the studied bio-
markers is being employed worldwide for diagnos-
tic use in the routine clinical practice, with some
local exceptions: NGAL, approved by the CE

(Conformit�e Europ�eene) and currently pending
Food and Drug Administration (FDA) approval in
the USA, L-FABP in Japan, a combination of
TIMP-2 and IGFBP-7 in some jurisdictions of the
USA (63,64). Moreover, urinary KIM-1, albumin,
clusterin, trefoil factor-3 (TFF3), total proteins, cys-
tatin C, ß2-microglobulin have been approved by
the US FDA, European Medicines Agency and
Pharmaceuticals and Medical Devices Agency for
preclinical drug development in acute rodent toxic-
ity models (65).

There are currently three CE-marked and
launched tests for diagnostic use in Europe for a
timely (10 to 35 min) determination of NGAL in
blood or urines. The Triage assay (Alere Triage
NGAL test, Alere Inc., San Diego, CA, USA) is a
blood point-of-care immunoassay, the ARCHI-
TECT (ARCHITECT analyzer, Abbott Diagnos-
tics Division, Abbott Laboratories, Abbott Park,
IL, USA) is a chemiluminescent microparticle
immunoassay for the quantitative determination of
NGAL in urine, and the NGAL Rapid ELISA Kit
037CE (BioPorto Diagnostics A/S, Gentofte, Den-
mark) is a particle-enhanced turbidimetric immuno-
assay for the measurement of both urine and blood
NGAL.

Based on manufacturers’ and literature informa-
tion the NGAL assay is more expensive (ranging
from £24 to £27 per test) than assaying serum creat-
inine alone by the Jaffe method (around £2/test).
The average cost per test for NGAL is estimated
according to the prices of the individual compo-
nents (NGAL Test Reagent kit: £1770; calibrator
kit: £213; control kit: £417), to be used for about
100 patients (66).

In a nutshell, even if NGAL is the most studied
and seems to emerge as an intriguing troponin-
like biomarker in the plasma and urine to assess
DGF risk after renal transplant, there are still
some limitations mainly related to its poor
specificity.

CONCLUSIONS

At the moment, it is not possible to draw any
firm conclusion about the best predictive perfor-
mance for delayed graft function between NGAL
elevation in serum or urine. Considering that
pNGAL levels result from release into circulation
by organs other than the kidney, theoretically
uNGAL might be expected to be more specific and
representative of kidney injury than sNGAL. How-
ever, beside the obvious inapplicability of uNGAL
in case of anuric patients, this concept is not fully
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corroborated by the currently available literature
data (Table 1), showing a large variability of sensi-
tivity and specificity for sNGAL versus uNGAL,
maybe related to the different cut-off levels, study
designs and patient sample sizes.

So, the challenge is currently open for ongoing
biomarker discovery studies in the fields of proteo-
mics and metabolomics, aimed at the identification
of patterns of reliable markers rather than a single
standalone molecule.
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