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Introduction
High-throughput “-omics” technologies, such as microarray, 
sequencing, and quantitative real-time polymerase chain reac-
tion (PCR), have been widely applied in basic biological and 
biomedical research for more than a decade. Advances in 
these techniques have enabled a broad spectrum of applica-
tions in genomic, transcriptomic, proteomic, metagenomic, 
and metabolomic studies.1–8

Two important challenges accompany these technol-
ogies: (1) How do we best manage the enormous amount 

of “-omics” data? (2) What are the most appropriate 
choices among the available computational methods and 
analysis tools9? In this review, we f irst present an over-
view of next-generation sequencing (NGS) technologies, 
highlight some of the issues associated with NGS data 
analysis, and then survey the current bioinformatics strat-
egies and computational tools for whole exome variant 
detection. Based on our evaluation of the major analysis 
tools, we present our recommendations for the selection of 
variant analysis tools for specif ic research tasks. We will 
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also discuss challenges in large-scale NGS data analysis 
and management.

First-generation sequencing such as Sanger and shotgun 
sequencing techniques were successfully employed for the cre-
ation of the human genome project (HGP). The HGP required 
3.4 billion USD, 13 years, and collaboration of hundreds of 
international labs to complete the first human genome assem-
bly. Since the introduction of NGS technologies in 2007, the 
price for sequencing a whole human genome has dropped 
rapidly. In early 2014, Illumina Inc. introduced the HiSeq 
X platform into the market, claiming a 1,000 USD personal 
genome price (experimental cost). With this new machine, 
16 human genomes can be sequenced in 3 days at a depth of 
30×.10 Several new initiatives have been established to take 
advantage of this dramatic price drop to sequence thousands 
of human genomes. For instance, the Genome England proj-
ect will sequence 100,000 genomes by 2017 and attach it to 
the medical record data as part of the UK medical system. 
In early March, Human Longevity Inc., founded by J. Craig 
Venter and two other partners, announced that it will build 
the world largest human genome sequencing center with the 
capacity of sequencing up to 40,000 human genomes per 
year.11 The drop in per-base sequencing price is expected to 
drive the generation of immense amount of NGS data, creat-
ing a big data challenge in bioinformatics.

NGS sequencing experiments produce millions to 
billions of short sequence reads at a high speed. Current NGS 
platforms including Illumina, Ion Torrent/Life Technologies, 
Pacific Bioscience, Nanopore, and GenapSys can generate 
reads of 100–10,000 bases long,12,13 allowing better coverage 
of the genome at lower cost. However, these platforms also 
generate huge amounts of raw data. For example, the raw data 
produced by Illumina HiSeq2500 platform add up to 1TB 
per run, covering 150–180 human whole exome sequencing 
(WES) samples at a depth of 50× or higher (Illumina Inc.). 
For tumor samples, a sequencing depth of at least 125× is rec-
ommended accounting for intra-tumor heterogeneity.14,15

Common NGS applications include DNA-seq, RNA-
seq, ChIP-seq, and methyl-seq. DNA-seq can be applied to 
the whole genome sequencing (WGS), WES, or a specific 
targeted region of the genome. In general, the goal of DNA 
sequencing is to discover genomic variations in the form of 
single nucleotide variants (SNVs), small DNA insertions or 
deletions (indels), copy number variations (CNVs), or other 
structural variants (SVs), with the ultimate goal of associat-
ing those variations to human disease. RNA-seq that mea-
sures gene expression changes can be used to discover new 
transcripts including noncoding RNAs and detect transcript 
splicing or gene fusion events. ChIP-seq detects genome-wide 
transcription factor binding sites and chromatin-associated 
modifications. Methyl-seq is used to profile various types of 
DNA methylation such as 5-methylcytosine and 5-hydroxym-
ethylcytosine at single nucleotide resolution. In this review, we 
focus primarily on WES techniques and data analysis. This 

evaluation of established bioinformatics tools covers the variant 
analysis workflow from the quality control (QC) of raw reads 
to prioritization of biologically meaningful or clinically rel-
evant variants. We also explore current solutions for the man-
agement of big data and its applications in bioinformatics.

A typical workflow of WES analysis consists of the 
following steps: raw data QC, preprocessing, mapping, 
post-alignment processing, variant calling, annotation, and 
prioritization (Fig. 1).

Raw data QC and Preprocessing
FASTQ and FASTA are standard formats for representing 
biological sequence data. The FASTA format is a text-based 
representation of sequences, which begins with the sequence 
name followed by lines of single-letter coded nucleotides or 
amino acids. FASTQ format was developed to incorporate the 
Phred-scaled base quality scores to facilitate the assessment 
of sequence quality. It is widely accepted as the standard file 
format for NGS raw data.

Several tools have been developed to assess the quality 
of raw NGS data. Some of the commonly used ones include 
FastQC,16 FastQ Screen,17 FASTX-Toolkit,18 NGS QC 
Toolkit,19 PRINSEQ ,20 QC-Chain,21 and recently published 
QC3.22 FastQC is a java application that generates many use-
ful data diagnosis and plots such as Phred score distribution 
along the reads, GC content distribution, read length distri-
bution, and sequence duplication level. It also detects over-
represented sequences that may be an indication of primer or 
adaptor contamination. With a comprehensive raw reads QC 
report generated by FastQC, researchers are able to determine 
whether any preprocessing steps such as base trimming, read 
filtering, or adaptor clipping are necessary prior to alignment.

Standard preprocessing procedure includes 3′ end adapter 
removal and trimming of low quality bases at the ends of the 
reads. Depending on the study design and use of the data, 
redundant reads and undesired sequences such as contamina-
tion from primers, adaptors, or other species may be removed 
at this point. Several tools are available to perform those tasks, 
such as Cutadapt23 and Trimmomatic.24 PRINSEQ20 and 
QC3,22 on the other hand, provide both QC and preprocess-
ing functions as a suite. In addition to generic preprocessing 
functions as listed above, each program is equipped with their 
own custom features. For example, Cutadapt allows detec-
tion of adaptor sequences anywhere in the read and performs 
clipping afterwards. Trimmomatic is a java application that 
provides useful functions for handling paired-end reads. QC3 
offers multi-perspective evaluation of data quality from the raw 
reads, mapped reads, and detected variants, with the unique 
feature to detect batch effects and cross-contamination.

Sequence Alignment 
After raw data QC and preprocessing, the next step is to map 
the reads to the reference genome and with high efficiency 
and accuracy. Alignment mapping is a classical “string match” 
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task in computer science. For example, most web browsers 
and text editors provide a “Find” function to search for the 
perfect matching string with a given query. However, finding 
the optimal alignment for a sequence read requires an align-
ment algorithm that is tolerant to imperfect matches, where 
genomic variations may occur. Moreover, the algorithm needs 
to be able to align millions of reads at a reasonable speed. As 
a first step to address this challenge, the reference genome is 
usually indexed in a hash table for efficient querying.

Many different tools have been developed for short reads 
mapping. They use Burrows–Wheeler Transformation (BWT) 
compression techniques, Smith–Waterman (SW) Dynamic 
programing algorithm or the combination of both in order to 

find the optimal alignment match within an acceptable com-
putational time.

Bowtie225 and BWA26 are two well-known short reads 
alignment tools that implement BWT algorithm. SW is a 
score-based dynamic programming algorithm that provides 
at least one optimal local alignment even though the solution 
might not be unique. This algorithm is tolerant to mismatches 
and gaps at the expense of increased computational time. 
MOSAIK,27 SHRiMP2,28 and Novoalign (http://www.
novocraft.com) are implementations of SW algorithms with 
increased alignment accuracy. Multithreading and/or MPI 
implementations are employed in those mapping tools allow-
ing significant reduction in the runtime.
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Figure 1. A general framework of WES data analysis. Five major steps are shown: raw reads QC, preprocessing, alignment, post-processing, and variant 
analysis (variant calling, annotation, and prioritization).  
Notes: FASTQ, BAM, variant call format (VCF), and TAB (tab-delimited) refer to the standard file format of raw data, alignment, variant calls, and 
annotated variants, respectively. A selection of tools supporting each analysis step is shown in italic.
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Evaluation of short-read aligners. Using simulated 
datasets of 5  million 100-bp reads, we evaluated four com-
monly used alignment tools, Bowtie2, BWA, Novoalign V3, 
and genomic mapping and alignment program (GMAP).25,29 
Those reads were randomly generated from the human genome 
assembly hg19 with various types of genomic variations intro-
duced. These include 1–5 bp SNVs, insertions only, deletions 
only, and mixed insertions and deletions (indels), as well as a 
mixture of SNVs and indels. If a read is aligned to the expected 
target region, we consider this as a true alignment. Sensitivity 
was calculated as the percentage of true alignments out of the 
total 5 million reads, and precision as the ratio of the number 
of true alignments to the total number of aligned reads.
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Figure 2. Comparison of alignment tools in terms of sensitivity (A) and precision (B) with 1–5 bp genomic variations per simulated read. Five sets of 
alignment are shown with introduction of errors categorized by types of errors (deletions only, insertions only, insertions and deletions (indels), SNVs, and 
a mixture of indels and SNVs (mixed)).  
Notes: Sensitivity is represented by the percentage of true alignments out of all simulated reads (5 million in total), and precision is the ratio of the number 
of true alignments to the number of aligned reads.

Figure 2A and 2B shows the sensitivity and precision of 
the four tools with 1–5  bp variants introduced in each read. 
Bowtie2, Novoalign, and GMAP show high accuracy for all 
simulated genomic variations and are tolerant to various num-
bers of errors in a read. Bowtie2 and Novoalign have a similar 
level of sensitivity and precision between 94% and 97%. Com-
pared with Bowtie2 and Novoalign, a 2–5% increased speci-
ficity and 4–10% reduced sensitivity were observed in GMAP 
alignment. The sensitivity of Novoalign drops to between 77% 
and 85% when a read contains 5  bp deletions. On the other 
hand, BWA performs well when there is at most one error in 
a read, and its sensitivity and specificity are reduced by 10% to 
66% when attempting to align reads with more than one error.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Review of bioinformatics analysis of whole exome sequencing

71Cancer Informatics 2014:13(S2)

As for the running time of each tool, Bowtie2 and BWA 
are dramatically faster than the other two. Bowtie2 took 
approximately 8–25 minutes to finish aligning 5 million reads 
in each alignment, which is two to four times faster than 
BWA. A 5- to 10-fold increase in runtime was observed for 
GMAP compared to Bowtie2 and BWA. Novoalign took 
almost 3 hours to finish, which is probably due to its imple-
mentation of SW alignment algorithm as it usually takes 
longer time than BWT-based aligners. All tools were tested 
using one single processor on Northwestern University’s Quest 
high-performance computing cluster.

Post-alignment Processing
After mapping reads to the reference genome, a three-
step post-alignment processing procedure is recommended 
to minimize the artifacts that may affect the quality of 
downstream variant calling. It consists of read duplicate 
removal, indel realignment, and base quality score recali-
bration (BQSR).

In the alignment, reads aligned with exact mapping 
coordinates are considered “read duplicates,” which represent 
either true DNA materials or PCR artifacts. The two cases, 
however, cannot be distinguished solely based on sequence or 
alignment information. Before sequencing, a library of DNA 
fragments from genomic regions of interest is prepared. Those 
fragments are amplified via certain amount of PCR cycles to 
provide a sufficient amount of DNA materials for sequencing, 
while limiting the duplication level of templates introduced 
by rounds of amplifications. For WES analysis, it is recom-
mended to remove duplicates before variant calling, with the 
purpose of eliminating PCR-introduced bias due to uneven 
amplification of DNA fragments. Programs such as Picard 
MarkDuplicates (http://picard.sourceforge.net) and SAM-
tools26 determine read duplicates based on their identical 5′ 
mapping coordinates and orientation on the genome. 3′ Coor-
dinates are usually not considered due to two reasons. First, 
the quality of bases generated by sequencers tends to drop 
down toward the 3′ end of a read; thus its alignment is less 
reliable compared to the 5′ bases. Second, if reads are trimmed 
at 3′ low-quality bases before alignment, they will have differ-
ent read lengths resulting in different 3′ mapping coordinates. 
It should also be noted that read sequence information is not 
taken into account during duplicate removal. PCR duplicates 
do not necessarily have the identical sequence due to errors 
introduced in PCR amplification or sequencing processes. 
However, this may introduce bias in the calculation of variant 
frequency with de-duped read alignment. The bias becomes 
more severe in ultra-deep sequenced tumor samples (500× 
or higher), where removing large amounts of duplicates may 
affect allele frequency-based tumor subclone discovery and 
CNV detection. To address this issue, Zhou et al.27 proposed 
a quantitative solution, DupRecover, which systematically 
estimates the degree of PCR-introduced bias and corrects for 
allele fractions.

After duplicate removal, the second step is to identify 
genomic regions that contain indels and improve the align-
ment quality in the target region. Compared to reads that 
contain only SNVs, mapping reads composed of indels requires 
gapped alignment which is more prone to noise. When align-
ing reads to the genome (discussed in the previous section), 
most short-read aligners walk through the reads one by one 
and the optimal alignment is determined for each read inde-
pendently. As a result, the introduction of gaps in each align-
ment may be different among overlapping reads. The quality 
of the resulting gapped alignment can be improved by con-
sidering all aligned reads in the same region after mapping. 
Two algorithms have been developed to achieve this task: (1) 
local realignment of gapped reads to the reference genome 
or alternative candidate haplotypes; (2) local de novo assem-
bly of the reads aligned around the target region followed 
by construction of a consensus sequence for indel discovery. 
Programs that implement one algorithm or a mixture of the 
two include SRMA28 and IndelRealigner from the Genome 
Analysis Toolkit (GATK).30 Some aligners and variant callers 
incorporate indel alignment improvement as part of the map-
ping or variant calling procedure. For example, Novoalign 
internally performs local SW alignments in addition to the 
hash-table based “seed” string searching to determine the 
optimal alignment for each read. The newly published GATK 
HaplotypeCaller program conducts a local de novo assembly 
of aligned reads prior to indel calling, which demonstrates 
to greatly improve the quality of indel calls.31 Dindel imple-
ments a Bayesian approach to detect indels by calculating the 
posterior possibility of a haplotype after realigning reads to a 
number of candidate haplotypes constructed from the target 
region.32 It is designed to accurately call indels correcting for 
mapping errors, base-calling errors, and sequencing errors in 
homopolymer-rich regions.

In the sequencing reads, each base is assigned with 
a Phred-scaled quality score generated by the sequencer, 
which represents the confidence of a base call. Base quality 
is a critical factor for accurate variant detection in the down-
stream analysis. However, the machine-generated scores 
are often inaccurate and systematically biased.33 Therefore, 
BQSR is recommended to improve the accuracy of confi-
dence scores before variant calling. It takes into account 
all reads per lane and analyzes covariation among the raw 
quality score, machine cycle, and dinucleotide content of 
adjacent bases. A corrected Phred-scaled quality score is 
reported for each base in the read alignment, assuming that 
all observed differences between the aligned reads and the 
reference genome are sequencing errors. One of the most 
commonly used BQSR programs is BaseRecalibrator from 
the GATK suite, which takes alignment files and reca-
librates base scores across multiple sequencing runs. After 
base score recalibration, the variant calling accuracy was 
shown to be significantly improved and the bias was greatly 
reduced (GATK Best Practices recommendations31,34).  
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Other well-established programs include Recab from the 
NGSUtils suite,35 which provides similar functions as 
GATK BaseRecalibrator,30 and the Bioconductor package 
ReQON,36 which uses logistic regression for recalibration 
of the base quality scores. In addition, ReQON outputs a 
set of diagnostic data and plots before and after recalibra-
tion to illustrate the improved accuracy. Some aligners, 
such as Novoalign, implement BQSR as one of the internal 
post-alignment processing options and the output contains 
aligned reads with improved base score accuracy. It is impor-
tant to exclude known variants before score recalibration, as 
those represent true genomic variations and should not be 
considered as sequencing errors. Most programs take a list of 
known variants in addition to the alignment files for recali-
bration. For genomes without known variants available, it is 
recommended to run the variant calling without BQSR first 
to generate a list of variants, filter for high-quality ones, and 
then re-run BQSR with the list of high-confidence variants 
as the known genomic variations. Furthermore, in case of 
targeted sequencing where only a small region of the genome 
is sequenced, BQSR is not recommended, as it will not be 
able to accurately estimate the errors with limited coverage 
of the genome.

Variant Analysis
Variant analysis consists of genotyping, variant calling, anno-
tation, and prioritization. Different types of genomic variants 
including SNVs, indels, CNVs, and large SVs can be detected 
from the sample by comparing the aligned reads to the refer-
ence genome. In cancer studies, it is important to distinguish 
somatic from germline variants as the two classes of variants 
often play distinct roles in tumor development. Germline 
variants are inherited mutations present in the germ cells, 
which are related to patient family history. Somatic variants 
are mutations that are present only in somatic cells and can be 
tissue-specific.

Variant calling. With a reasonable number of samples 
available, multiple sample variant calling is usually recom-
mended. By taking into account all reads from one genomic 
region across multiple samples, it reduces the possibility of 
calling randomly presented sequencing errors and increases 
the possibility of calling alleles of low frequency or low cov-
erage in a single sample. As a result, the accuracy and sen-
sitivity of multi-sample variant calling are in general much 
higher than single sample variant calling.37–39 In some circum-
stances, however, multi-sample calling becomes less practical. 
If the sample size is large, the requirement of computational 
resources and time for multi-sample variant calling increases 
dramatically. Furthermore, if one project is executed at mul-
tiple stages where a subset of the samples are sequenced each 
time, multi-sample calling would require re-running the vari-
ant calling step when new samples are added. Therefore, it may 
be more feasible to conduct single sample variant calling under 
those circumstances. Alternatively, large amounts of samples 

may be pooled into smaller groups and called per group. It 
should be noted that the results may be different from calling 
all the samples together.

Programs available for germline variant calling include 
GATK [38],30,31 SAMtools,26 FreeBayes,40 and Atlas2.41 
GATK is a NGS analysis suite that employs a MapReduce 
framework to accelerate the processing of large amounts of 
sequence alignment files in parallel. It implements a simple 
Bayesian model to estimate the likelihood of genotype in the 
sample based on the observed sequence reads that cover the 
specified locus.30,31,34 GATK consists of two main variant 
calling programs, UnifiedGenotyper and HaplotypeCaller. 
UnifiedGenotyper calls SNVs and indels separately with the 
assumption that each variant locus is independent. Haplo-
typeCaller simultaneously detects SNVs, indels, and some SVs 
with increased accuracy by performing a local de novo assem-
bly of the aligned reads (discussed in the previous section).

SAMtools contains a set of utilities for the manipula-
tion of aligned sequence reads in the SAM/BAM format.26 
One of the available utilities, mpileup, scans every position 
along the covered genome, computes possible genotypes from 
the aligned reads, and calculates the likelihood that each of 
these genotypes is truly present in the sample. Another tool, 
bcftools, then uses the genotype likelihoods to call the SNVs 
and indels. The main difference of the variant calling models 
between SAMtools and GATK is the estimation of the geno-
type likelihood of SNVs and indels. The differences also lie 
in the filtering step, where SAMtools uses predefined filters 
while GATK learns the filters from the data.

FreeBayes is a haplotype-based short polymorphism 
caller that can simultaneously detect SNVs, indels, multi-base 
mismatches, polyallelic sites, polyploidy, as well as CNVs in 
a single sample, pooled samples, or mixed populations.40 It is 
built on a Bayesian statistical framework.

Compared to the three tools discussed above, Atlas2 is quite 
different in the implementation of variant calling algorithms.41 
For data generated by SOLiDTM platform, it uses logistic regres-
sion models trained on validated WES data to detected SNVs 
and indels. For Illumina data, it uses logistic regression mod-
els for calling indels and a mixture of logistic regression and a 
Bayesian model for SNV detection. Atlas2 consists of two sepa-
rate programs, Atlas2-SNV and Atlas2-InDel.

Somatic variant detection. A major application of NGS 
variant analysis in cancer research is to distinguish somatic 
mutations in tumor cells from germline polymorphisms pres-
ent in normal tissue. However, sequencing errors, insufficient 
variant coverage, sample contamination, and misclassifica-
tion of germline variations often pose significant challenges 
in the detection of somatic variants. A number of tools have 
been developed to identify somatic mutations with paired 
tumor–normal samples, with their algorithms classified in 
two categories.

The first type of algorithms treats both samples as the 
same type, performs multi-sample variant calling on all 
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samples, applies genotype-based subtraction methods with 
integration of sample pair information, and retrieves variants 
that are only present in tumor samples (somatic) or in both 
samples (germline). This approach is prone to false positives 
if a germline variant is not called due to low frequency in 
the normal sample and false negatives if the tumor samples 
possess low mutation levels that cannot be distinguished from 
sequencing error. However, this type of caller has been well 
established and has demonstrated high accuracy and sensitiv-
ity in calling variants, such as GATK,30 SAMtools mpileup,42 
and Isaac variant caller.43

The other type of algorithm treats tumor and normal as 
paired samples from the onset and detects variants simulta-
neously on both samples using joint diploid genotype like-
lihoods or shared allele frequency between the samples.  
A number of somatic mutation tools have emerged in the 
past 2 years, including deepSNV,44 Strelka,45 MutationSeq,46 
MutTect,47 QuadGT (http://www.iro.umontreal.ca/~csuros/
quadgt), Seurat,48 Shimmer49 and SolSNP (http://source-
forge.net/projects/solsnp), jointSNVMix,50 SomaticSniper,51 
VarScan2,51 and Virmid.52 Each of them is equipped with 
unique features and applications. For example, deepSNV44 
was specially designed for detection of subclonal variants in 
ultra-deep sequenced tumor samples. Most of the above tools 
require matching tumor–normal samples as mandatory input. 
We discuss five of them in detail.

JointSNVMix implements a probabilistic model for 
somatic mutation discovery. It utilizes the joint genotype 
information across the paired tumor/normal samples and 
treats them as being conditionally independent. This leads 
to an increase in specificity while the sensitivity stays nearly 
unchanged.50

Strelka is built on a novel Bayesian model where the nor-
mal sample is represented as a mixture of diploid germline 
variation with noises and the tumor sample is represented as a 
mixture of the normal sample with somatic variations through 
allele frequencies.45 A score derived from the joint probabil-
ity of a somatic variant and a specific genotype in the normal 
sample is used to make the variant call. This algorithm com-
putes allele frequency variation in samples at any level without 
requiring an estimation of tumor purity.

SomaticSniper is a tool that compares the diploid geno-
type likelihood in the tumor and normal pair for the somatic 
variant calling.51 The likelihood is computed using the ger-
mline genotyping algorithm adopted from the MAQ program 
with the consideration of the dependency between the tumor 
and normal genotypes from the sample patient.42 A set of 
somatic detection filters is applied to the calls from the MAQ 
genotyping. The current tool does not take into account tumor 
purity or copy number state.

Varscan2 applies a heuristic and statistical algorithm to 
identify variants as germline or somatic and detects loss of 
heterozygosity events from the variant calls.53 The genotype 
for each sample is first determined from mpileup calling of the 

variants, and then one-sided Fisher’s exact test is applied to 
call somatic or germline variants. Tumor purity can be added 
to the program explicitly. This provides the robustness when 
the sample is contaminated or alternate ploidy exists in the 
normal sample.

Virmid uses the level of impurity in the sample to improve 
the somatic variation detection.52 The algorithm estimates the 
sample contamination level and the disease genotypes using 
the maximum likelihood estimation. A Bayesian model uti-
lizes the joint genotype probability of tumor and normal sam-
ples to call the variant. The unique design of the algorithm 
allows the program to recalibrate the genotype probabilities 
with varied contamination levels. This procedure reduces the 
running time and greatly improves the accuracy. The method 
also takes into account other types of noise such as sequencing 
and mapping errors, mapping bias, and CNV stage.

Evaluation of variant callers. Previous studies reported 
that the accuracy and robustness vary among variant calling 
methods.54,55 Liu et  al.38 evaluated the performance of four 
variant callers, SAMtools, GATK, glftools, and Atlas2. They 
recommended GATK for general-purpose variant analysis. 
Xu et  al.56 compared the performance of five somatic SNV 
calling methods (GATK UnifiedGenotyper followed by 
simple subtraction, MuTect, Strelka, SomaticSniper, and 
VarScan2) for matched tumor–normal sequencing data. They 
used the NIST-GIAB gold standard dataset to demonstrate 
that the sensitivities of these methods vary in regard to the 
allelic fraction of the mutation in the tumor sample. Roberts 
et al.57 conducted a comparison between VarScan, Somatic-
Sniper, JointSNVMix2, and Strelka. Their results revealed 
substantial discordance among the called variants. To facili-
tate the method evaluation process, Talwalkar et  al.58 pro-
posed a benchmarking methodology for the evaluation of the 
human genome variant callers. Their SMASH toolkit consists 
of three components: (1) short reads from NGS experiments; 
(2) reference genome; and (3) the validation data in standard 
VCF format are used to measure the algorithm performance. 
A set of evaluation metrics is defined to measure the accuracy 
of the variant calls and the computational performance of the 
algorithm.

We evaluated the performance of four variant callers 
(GATK UnifiedGenotyper, SAMtools mpileup, Atlas2, and 
FreeBayes) with read alignment generated by three aligners 
(BWA, Bowtie2, and Novoalign V3) using the NIST-GIAB 
benchmark genotype calls.59 It contains 2,915,731 high-confi-
dence SNVs, indels, and homozygous reference genotype calls 
for NA12878 (version 2.18) after integrating 14 datasets from 
five sequencing platforms. For the tool evaluation, we down-
loaded 100× NA12878  WES data generated by University 
of Washington (SRX079575). A total of 170,987,444 50 bp 
paired-end reads were preprocessed and mapped to the hg19 
reference genome using the three aligners. On average, over 
85% of the reads were mapped with mapping quality higher 
than 30.42 The read alignment was post-processed for duplicate 
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removal using Picard and indel realignment and base score 
recalibration using GATK.

Twelve sets of variants were generated from the three 
aligners and four callers, with low-quality calls removed. Vari-
ants not located in the targeted regions and/or with read depth 
lower than 6× were excluded from further consideration. The 
variants were further filtered to exclude those located within 
genome regions where no confident calls could be made.59  
A total of 21,661 calls were kept and compared to the bench-
mark set, which consists of 23,294 on-target calls covering 
approximately 31.9 Mb of the human exome. 95.3% of the vari-
ants were detected by at least two callers in reads mapped by 
at least two aligners (referred to as filter “2Aligner×2Caller”), 
yielding a final variant list with high sensitivity (99.04% for 
SNVs and 87.28% for small indels), specificity (.99.99%), and 
precision rate (.99%) with overall performance better than 
any single algorithm (Fig. 3). When comparing variants called 
from the alignment generated by each of the three aligners, 
close to 80% of the united variant set is concordantly detected 
by all four callers in each alignment. Furthermore, 83–93% of 
the united variant set was concordantly detected in all three 
alignments. When comparing SNVs with indels in between 
callers, indels showed a lower fraction of consistently called 
variants, which may be due to difficulties in gapped alignment 
and noises from variants present in the neighborhood regions 
(Fig. 4A and 4B).

In summary, these results suggest that by integrating 
multiple aligners and callers, variants of high confidence and 
high sensitivity are obtained. Among all 12 variant sets, vari-
ants called by FreeBayes from Novoalign-mapped reads are 
associated with the highest sensitivity (SNVs: 95.97% and 
indels: 83.39%) and precision rate (SNVs: 99.70% and indels: 
99.57%). Therefore, if only one aligner and one caller to be 
chosen, a combination of Novoalign and FreeBayes is recom-
mended for data analysis.

Variant annotation. Even with the increasing amount of 
sequencing data, identification of disease-causing mutations 
from a background of random errors and polymorphisms 
remains challenging. After variants are detected, annotation 
attributes such as genomic feature, gene symbol, exonic func-
tion, and amino acid change can be attached to the variant 
list. Most studies focus on the non-synonymous SNVs and 
indels in the protein-coding regions, which account for 85% 
of the discovered disease-causing mutations in Mendelian 
disorders60,61 and many disease-associated mutations in com-
plex diseases. Synonymous SNVs are important for estimating 
the background mutation rate in the genome. For example, 
the background mutation rate in the melanoma patients was 
discovered to be approximately 10–20 mutations per MB of 
human exome, indicating a low mutation rate in the mela-
noma genome.62,63

In addition to the basic annotation discussed above, many 
programs have been developed to integrate public databases 
for additional information of the variants, including minor 

allele frequency (MAF) in normal populations, experimental 
evidence from clinical assays, deleterious prediction of variant 
function, and collection of variant and genes in known cancer 
or genetic disease studies. Detailed genomic contents, includ-
ing tissue-specific expression, transcription factor binding 
sites, histone modifications, DNase I hypersensitive sites, 
enhancers, and eQTLs can be retrieved from the ENCODE 
project64 and public databases such as RegulomeDB65 and 
HaploReg66 and added to variant annotation. While most of 
those tools only provide a small number of annotations, a few 
programs were developed to combine the annotations from 
numerous sources. One of the most commonly used variant 
annotation programs is ANNOVAR, which provides three 
annotation modes, gene-based, region-based, and filter-based, 
with a collection of over 4,000 public databases for annota-
tion.67 It integrates dbSNP, 1000Genomes, ESP6500, Com-
plete Genomics personal genomes and NCI-60 human tumor 
cell line panel exome sequencing data for accessing MAF 
information, seven programs from the LJB23 database68 
plus Combined Annotation Dependent Depletion (CADD) 
database69 for deleterious prediction, Phylop70 and Genomic 
Evolutionary Rate Profiling (GERP)71 score for indicating 
conservation of the mutated site across 29 mammalian spe-
cies, as well as experimental evidence in pathogenesis of the 
variant from disease variant databases such as COSMIC72 and 
ClinVar.73 CADD uses a unified score for the potential delete-
riousness of all 8.6 billion possible human mutations by com-
paring variants that survived natural selection with simulated 
mutations.69 The database combines 63 annotations through 
a machine-learning framework. Those annotations consist 
of prediction scores from GERP, PolyPhen, and other pro-
grams. The simple metric provides a straightforward approach 
to interpret high-penetrance mutations in Mendelian disease 
and low-penetrance variants found in genome-wide associa-
tion studies. SeattleSeq, a web-based variant annotation sys-
tem, offers direct upload of variant lists through the website 
and annotates with public databases such as dbSNP and del-
eterious prediction programs such as PolyPhen.74 It integrates 
databases of KEGG Pathways, CpG islands, transcription 
binding sites, and protein–protein interactions and provides 
useful information regarding the gene regulatory network 
and regulation of the mutated genes. Other stand-alone vari-
ant programs include VariantAnnotator from the GATK30 
and SnpEff.75 They are equipped with various read filters 
or unique features such as gene set enrichment analysis for 
downstream analysis.

Variant filtration and prioritization. Exome sequencing 
of human samples with at least 100× coverage was estimated to 
detect approximately 20,000–30,000 SNV and indel calls on 
average.54 The number of candidate variants is reduced using 
a three-step filtration and prioritization strategy to generate a 
short candidate mutation list for experimental validation.

The first step is to remove less reliable variant calls. This 
includes variants with low coverage, low quality, strand biased, 
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located in SNV clusters, and/or supported by low-confidence 
read alignment.76 Depending on the quality settings, this step 
may reduce the variant list by 1.3× to 1.5× (unpublished data). 
Moreover, in the evaluation of family trios, variants detected 

in a child that could not have been inherited from both parents 
(Mendelian errors) can be identified, most of which are likely 
to result from sequencing artifacts.77 Improvement in accu-
racy of rare or novel variant calls was observed when multiple 
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Figure 3. Evaluation results of variant callers with alignment generated by three aligners for SNVs (A) and indels (B). Aligners used for mapping the reads 
to the genome include Bowtie2 (bt2), BWA, and Novoalign (novo).  
Notes: SNV callers include GATK UnifiedGenotyper, FreeBayes, SAMtools mpileup, and Atlas2. The first three were also used for calling indels. Gray 
background highlights the filter recommended for downstream variant analysis (“2Aligner × 2Caller”), which is shown to have better sensitivity than any 
single algorithm (99.94% for SNVs and 87.28% for indels) and high precision rate (99.78% for SNVs and 99.10% for indels). “Total score 5” represents 
variants detected in at least 5 out of 12 sets.
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family members are called simultaneously with knowledge 
of pedigree structure. Of note, the accuracy of error detec-
tion and variant identification increases with the number of 
relatives and generations sequenced per family.78,79 Filtering 
out these errors should be done with extra caution as this class 
of variants also includes de novo mutations in the child.

The second step is to restrict variants to those of rela-
tively low population frequency, assuming that common vari-
ants are less likely to cause disease than rare ones. The MAF 
threshold should be carefully chosen based on disease model 
of the studies. For germline variants, usually over 70% of the 
variants are removed at MAF ,1% (unpublished data). The 
filter does not have as dramatic effect as on somatic variants 
because most of those are novel and patient specific. Detection 
of compound heterozygous mutations is more complicated, in 
which case, each of the heterozygous variants does not cause 
observable phenotypic changes (recessive alleles), yet together 
they knock out both copies of the same gene and lead to dis-
ease outcome. In addition to rare variants, common variants 
may also show compound heterozygous effects with other 
variants in the same gene. For example, Heresbach et  al.80 
reported that compound heterozygotes of three common vari-
ants in NOD2/CARD15 gene increases the risk of Crohn’s 
disease, which is greater than any single heterozygote. Fur-
thermore, combinatorial effect of a common variant together 
with a novel mutation in the MTHFR gene was demonstrated 
to cause more severe symptoms in MTHFR deficiency dis-
orders such as hyperhomocysteinaemia.81 Publicly accessible 
tools that can detect compound heterozygous mutations in 
familial diseases include the GeneTalk Suite, which provides 
a web-based interface for customized variant filtration.82 
Stand-alone programs designed for identification of reces-
sively acting variants (homozygotes or compound heterozy-
gotes) include the SCOREASSOC program, which detects 

the association between variants based on derivation from the 
Hardy–Weinberg equilibrium in outbred populations.83

The third step is to prioritize variants relative to the dis-
ease. In general, SNVs can be ordered by their coding effect, 
in which case splice mutations (SNVs that occurred at splice 
donor or receptor sites) and nonsense mutations are in general 
more damaging than missense mutations. Indels, on the other 
hand, can be ordered based on whether they cause splice dis-
ruption or frameshift of the coding sequence. Furthermore, 
candidate disease-causing mutations are identified using 
discovery-based and hypothesis-based approaches. If little 
is known about the disease, the discovery-based approach is 
usually employed to filter and prioritize variants based on the 
mutation frequency across patient groups if the patients are 
genetically unrelated or on the inheritance pattern of muta-
tions with the presence of a pedigree. Other criteria, including 
MAF values, deleterious function prediction, experimental 
evidence from published studies, and pathway information 
are also important factors for variant prioritization. In cancer 
genomics, computational approaches have been developed to 
distinguish driver mutations from passenger ones based on 
high mutation frequency in the patient cohort and highly 
damaging amino acid changes on the protein function or 
structure.84 Moreover, variants that predispose an individual 
toward cancer may be identified from the germline variants 
and interpreted together with the pattern of somatic muta-
tions.85 In the hypothesis-based approach, a disease model 
is drawn based on the family history or known studies, and 
the discovery of candidate pathogenic mutations is driven by 
the proposed hypothesis. For Mendelian disorders, this may 
be recessive, dominant or compound heterozygous mutation 
model, or a combination of the models for the explanation 
of the inherited traits.86 Moreover, pathways discovered in 
previous studies may guide discovery of new mutations in 
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the known pathways, yet it is limited by the prior knowledge 
of the disease. It should be noted that new pathways can be 
established by linking newly identified mutations to known 
diseases. For example, six novel mutations in C5ORF42 were 
reported to be causative in the development of Joubert syn-
drome in French Canadian population, although the patho-
genic mechanism remains unknown.87 In most cases, more 
than one approach is employed to identify the most interesting 
candidate variants.

Several tools have been developed to systematically filter, 
evaluate, and prioritize thousands of variants all at once, tak-
ing into account the annotation results of the variants, patient 
family information, as well as phenotypes and disease subtype 
information. VAAST288 implements an aggregative vari-
ant test combining the amino acid changes, allele frequen-
cies, and phylogenetic conservation. The program generates a 
ranking list of variants sorted by its importance for the dis-
ease, which is useful for analysis of complex genetic diseases 
and rare Mendelian disorders. Other tools that are publicly 
available include VarSifer,89 KGGseq,90 PLINK/SEQ ,91 and 
SPRING.92 A newly developed GUI tool, gNOME, allows 
direct upload of the variant file and performs streamline vari-
ant annotation, filtration, and prioritization, with its output 
summarized at variant, gene, or genome level.93 One unique 
feature of gNOME is that it takes group information and 
detects disease-related genes or variants enriched in cases 
but not controls. One commercial variant analysis software, 
Ingenuity® Variant Analysis™ (http://www.ingenuity.com/
variants), utilizes public databases such as those derived from 
the 1000 Genomes Project and the NHLBI Exome Sequenc-
ing Project (ESP6500), as well as experimental data collected 
from the literature and signaling pathways to filter and priori-
tize variants driven by data or with a specified disease model.

The above filter-based approaches have a higher success 
rate in identification of inherited or novel deleterious muta-
tions in familial diseases, whereas with unrelated subjects, its 
power becomes limited. For rare diseases, one solution is to 
study unrelated probands with the same syndrome and focus 
on rare mutations that occurred in multiple individuals. The 
approach is known to be effective if the variant is clearly dele-
terious and disease related. Using this approach, Hood et al.94 
discovered truncating mutations in the C-terminal of SNF2-
related CREBBP activator protein as the causative mutations 
for Floating-Harbour syndrome in five unrelated patients. 
In other cases, statistical tests are often necessary to discover 
mutations or target genes that contribute to a disease.86 This 
is particularly important for addressing the effects of multiple 
rare variants that cause functional damage in a combinatorial 
manner. Previous studies identified rare predisposing variants 
that are significantly associated with complex traits such as 
colorectal adenomas,95 high-density lipoprotein cholesterol,96 
and schizophrenia.97 There are two major types of variant 
association tests: (1) burden tests, which include collapsing 
methods such as CAST,98 CMC,99 RareCover,100 aSum,101 

and aggregation methods such as WSS,102 KBAC, and103 
RBT104) (2) non-burden  test  based methods such as VT,105 
C-alpha,106 EREC,107 and SKAT.108 For example, Wu et al.108 
applied SKAT to Dallas Heart Study data on 93 variants in 
three genes to test the association between log-transformed 
serum triglyceride levels and rare variants. The results showed 
that SKAT was a very powerful test for the dichotomous trait 
and performed comparably with burden-test-based methods 
for continuous trait. It should be noted that SKAT could 
be applied to both common and rare variants. Furthermore, 
the combination of genetic linkage, association analysis, and 
WES can serve as a useful approach to reduce the search space 
for rare variants in complex diseases with increased discovery 
power.109

With all the tools available and new ones emerging 
monthly, variant filtration and prioritization are becoming 
more automated like other parts of variant analysis such as the 
detection and annotation. Regardless, a deep understanding 
of the biological questions being asked and the etiology of the 
disease being studied is crucial for properly choosing tools and 
parameters that suit a study the best. Integration with clini-
cal data such as patient diagnosis and family history is often 
helpful for identifying the variants that are responsible for the 
symptoms.110

NGS Data Management
The technology evolution in molecular biology, especially in 
NGS, has moved biology into the big data era. For example, 
European Bioinformatics Institute (EBI) currently stores 20 
petabytes of data, 2 petabyte of which is genomics related.111 
While the capacity of computing hardware doubles every 
18 months, new biological data are doubling every 9 months. 
With this trend, the challenges faced by life scientists have 
been shifted from data acquisition to data management, pro-
cessing, and knowledge extraction. While many studies have 
recognized the big data challenge, few systematically present 
approaches to tackle it. In this section, we propose a frame-
work to address the big data challenge faced by biological 
scientists which consists of data, computation, workflow, and 
knowledge.

Data. As the volume of biological data generated by NGS 
instrumentation grows from hundreds of terabytes to petabytes, 
it has moved beyond the storage capabilities typically handled 
by individual scientists. Only a few organizations, such as the 
EBI and NIH NCBI have the capacity and the mandate to store 
large datasets and provide public access. The sustainability of 
this model is not clear as we move into the 100,000 genomes 
world. Big data hosted in the cloud seems to be a promising 
solution, one that many institutions are exploring. As an 
example, Amazon Simple Storage Service (Amazon S3) offers 
a cloud-based file system, with virtually unlimited capacity 
and charged by usage. Currently, NCBI stores a subset of the 
human genomics 1000 data (about 200 TB) in S3 (http://aws.
amazon.com/1000 genomes).
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Commercial vendors are coming into this space too. In 
the USA, Illumina’s NGS environment is cloud based with 
data hosted by Amazon AWS. Illumina also has established 
Clinical Services Laboratory to provide genome-based testing 
to quickly access genomic aberrations and assist medical diag-
nosis. Another example is Genewiz, a DNA services company 
based in New Jersey, which provides similar services. Interna-
tional examples also exist, including Beijing Genomic Insti-
tute (BGI, Shenzhen), who acquired Complete Genomics last 
year, that has built solid connections with many healthcare 
providers. BGI also has set up two data centers, Bio-Data Centre 
(CliMB) and Biol-Cloud Computing centre (BGI Cloud), 
offering cloud-based data service, sequence alignment, and 
many other features. Meanwhile, healthcare providers are 
also launching genome-sequencing programs, such as Massa-
chusetts General Hospital, Geisinger Health System, Scripps 
Health, and Inova Health System. For instance, the Falls 
Church, Virgina-based Inova Health System, has performed 
“1,500 complete DNA (whole genome) sequences as part of 
the first clinical study aimed at unraveling the mysteries of 
pre-term birth” in its Inova Translational Medicine Institute. 
In the next 2 years, they plan to produce 20,000 family-based 
whole genome sequences. In the foreseeable future, we expect 
to see more public or private biology data stored in cloud.

Despite the massive capacity provided by cloud comput-
ing, storing the huge amount of genome sequencing data is 
still challenging. To make the storage economic, various data 
compression techniques have been developed, including naive 
bit encoding, dictionary-based, statistical, and referential 
approaches.112

Computation. A key to reduce the latency of analyz-
ing big data is to move computation to the data. This has two 
meanings in a cloud environment. First, computation should 
occur in the cloud, rather than moving data out of the cloud in 
order to compute on it. Cloud providers such as Amazon usu-
ally offer computation clusters collocated with the storage clus-
ters and intra-cloud data movement is usually fast and free of 
charge. Second, when data reach the computation cluster, the 
computation framework should address the issue of data local-
ity. Amazon AWS has offered a comprehensive suite of tools 
to process large volume of genomics data (http://aws.amazon.
com/genomics/). For another example, Hadoop is an open-
source software framework that parallelizes the computation 
and makes it easier to co-localize data and parallel computa-
tion. It has been well adopted in the field of bioinformatics,113 
including a few sequence alignment tools such as CloudBurst, 
Crossbow, SeqMapReduce, and CloudAligner.114

Workflow. New findings in biological sciences usually 
come out of multi-step data pipelines, also known as work-
flows. Biologists already used a few workflow tools in the pre-
cloud and pre-big-data era. Synapse (http://aws.amazon.com/
swf/testimonials/swfsagebio) and Galaxy115,116 are two cloud-
based workflow tools dealing with big data. However, it is 
still necessary to globally optimize the data flow in an overall 

multi-step workflow in order to eliminate unnecessary data 
movement and redundant computation.

Knowledge embedded in big data, as well as the routines 
and workflow used to derive it, needs to be captured properly. 
New journals such as Nature Protocols are promoting the docu-
mentation of “recipe” style of step-by-step procedures leading 
to a discovery. In the bioinformatics domain, some scientists 
are promoting the idea of embedding a provenance workflow 
inside a publication to preserve both the data and the routine 
(http://tridentworkflow.codeplex.com). Since scientific pub-
lications are the carriers of new knowledge, we expect that 
knowledge-embedded data and workflows should be an inte-
gral part of future scientific publications.

Conclusion
The unprecedented reduction in the cost of high-throughput 
sequencing has made it possible to conduct ever-larger studies 
on human diseases. The bottleneck of NGS has shifted from 
producing sequence data to data management, analysis, and 
summarization. In this review, we examined bioinformatics 
software available for whole exome data analysis, including 
data preprocessing, alignment, post-alignment processing, 
variant calling, annotation, and prioritization tools. We com-
pared the performance of alignment tools and variant calling 
programs using simulated and benchmark datasets. Along the 
way, we attempted to highlight frequent considerations and 
procedures necessary for the identification of causal variants 
of the disease.

Despite the large number of data analysis options, the 
complexity of the human genome and the lack of concor-
dant results from different variant detection tools54 high-
light the urgency for developing community standardized 
protocols, tools, and benchmarks. As one of the efforts, The 
Cancer Genome Atlas (TCGA) and the International Cancer 
Genomics Consortium (ICGC) launched the ICGC-TCGA 
DREAM Somatic Mutation Calling Challenge, a competi-
tion of the best tools/pipelines for the detection of the cancer 
genome mutations using NGS data.117 The organizers hope 
the challenge will accelerate the adoption of the best somatic 
variant identification techniques and help answer other key 
questions in cancer genome research.

The rapid growth of NGS technologies affords new 
opportunities to conduct large-scale patient sequencing proj-
ects, which facilitates discovery of tumor-specific mutations as 
potential targets for development of precision medicine.45 As 
an example of the power of genomic techniques in understand-
ing human disease and identifying new treatment options,  
J. Carpten’s group discovered a unique pattern in the tumor 
mutation profile of 14 metastatic triple-negative breast cancer 
(TNBC) patients based on whole genome and transcriptome 
sequence data. They suggested that TNBC should be treated 
as a genetically different disease instead of a subtype of breast 
cancer.118 They identified somatic mutations in the RAS/RAF/
MEK and PI3K/AKT/mTOR signaling pathways, which 
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have led to a clinical trial combining agents targeting of MEK 
and mTOR genes with encouraging results. Furthermore, by 
performing WES on a metastatic, castration-resistant prostate 
cancer patient, Van Allen et al. discovered somatic genomic 
mutations in the PI3K pathway and a BRCA2 germline vari-
ant that may predispose individuals to cancer.119 An increas-
ing number of studies employ whole genome and exome 
sequencing to successfully identify disease-causing mutations 
that provide attractive treatment targets using gene therapy, 
therapeutic drugs, or transplantation.120–122

In the next five to twenty years, whole exome/genome 
analysis may be adopted as a routine procedure as part of 
the clinical laboratory for disease treatment. Universities 
and institutions including University of Pennsylvania 
(http://www.pennmedicine.org/personalized-diagnostics), 
Emory University (http://genetics.emory.edu/egl), and Uni-
versity of Washington (http://depts.washington.edu/labweb/
Divisions/MolDiag/MolDiagGen/index.htm) have already 
established clinical laboratories that offer genetic testing that 
employ streamline NGS technologies and data analysis, with 
the goal of efficient molecular diagnosis of human diseases. 
Two years ago, the NGS: Standardization of Clinical Test-
ing (Nex-StoCT) workgroup, led by The US Centers for Dis-
ease Control and Prevention, published general principles and 
guidelines for quality practices of NGS data used in clinical 
testing.123 The next challenge will be data integration on mil-
lions of genomic variants, clinical records, and patient infor-
mation, allowing novel discovery of variants contributing to 
disease, rapid retrieval of this information, and user-friendly 
visualization and decision support for care givers.

Establishment of disease-specific variant databases and 
web servers to store, retrieve, and view the genome-wide con-
tents is an ongoing task at universities and institutions, includ-
ing the integration of visualization tools such as GBrowse124 
and Bioconductor packages such as Gviz125 and Shiny.126 
International efforts to build a federated cancer genome 
resource where genomics and clinical data can be easily 
searched and visualized via a web-based interface include the 
ICGC Cancer Genome Portal (http://icgc.org), which was 
established based on the ICGC cancer genomes and Oncom-
ine,127 which integrates both microarray and NGS data with 
a large collection of pre-analyzed results. NCI also has the 
cancer Genomics Data Commons effort (http://ocg.cancer.
gov/news/genomics-data-commons) focused on TCGA and 
TARGET and an affiliated effort to build cloud comput-
ing capabilities around TCGA data (http://cbiit.nci.nih.gov/
ncip/nci-cancer-genomics-cloud-pilots). Because of protected 
clinical information, some of the data in these resources 
require permission to access. Standards for patient consent, 
what is freely sharable, and what is available as limited data-
sets are under active debate. The upcoming changes to the 
USA Common Rule (http://www.hhs.gov/ohrp/humansub-
jects/anprm2011page.html) and some of the proposed activi-
ties by the Global Alliance for Genomics and Health (http://

genomicsandhealth.org/) are examples of activities that are 
attempting to streamline and standardized data access for 
clinically derived genomic data. At some point in the near 
future, systems will be designed that enable the full process-
ing of NGS data, from QA through to variant calling. Such a 
system might even incorporate pieces or concepts from exist-
ing frameworks like the Galaxy project.115,128,129

As whole exome and genome sequencing are now start-
ing to be integrated into research and clinical practice, some 
ethical and legal issues have arisen regarding the resulting 
genomic data. Particularly, what procedures are needed to 
protect patient’s privacy, how do we interpret the causality of 
identified variants in human disease and return the reports to 
the research participants or patients, how should we report 
incidental findings of pathologic mutations that were not 
originally ordered by the clinician.

For privacy-related issues, careful control has to be exerted 
in order to prevent the identity of individuals (de-identified 
datasets). Informed consent should be acquired to address 
return of individual research results. However, like other health 
information data, technological solutions cannot completely 
resolve confidentiality problems. Even if data are anonymized, 
individuals can be re-identified if phenotype and genotype 
data are combined.130 To increase the confidence of identi-
fied disease-causing variants, standards of data interpretation 
need to be imposed. Clinician should convey the patient with 
any information about variants that is clinically important but 
not necessarily with information of variants with unknown 
significance.131 Recently, MacArthur et al.132 proposed a list 
of guidelines for interpreting and reporting sequence vari-
ants in human disease. For incidental findings, the American 
College of Medical Genetics and Genomics (ACMG) has 
published a policy statement that provides recommendations 
by an appointed working group for reporting incidental find-
ings in clinical sequencing.133 The working group developed 
a minimum list of 56 genes (23 cancer susceptibility genes) 
which should be reported as incidental findings. Due to the 
limitations of current technology, the disorders associated 
with the gene list are restricted to those caused by SNVs and 
small indels. The list will be refined and updated at least annu-
ally as the technologies evolve. The ACMG recommendation 
also describes the responsibility of the ordering clinician who 
provides comprehensive pre- and post-test genetic counseling 
to the patient.

As the costs of NGS continue to fall, we expect WGS 
will eventually overtake WES as the mainstream tool for 
human genomics and disease studies. The principles outlined 
in this review are generally applicable to WGS as well.
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