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Abstract

Studies of the 1918 H1N1 influenza pandemic, the H5N1 avian influenza outbreak, and the 2009 H1N1 pandemic illustrate
that sex and pregnancy contribute to severe outcome from infection, suggesting a role for sex steroids. To test the
hypothesis that the sexes respond differently to influenza, the pathogenesis of influenza A virus infection was investigated
in adult male and female C57BL/6 mice. Influenza infection reduced reproductive function in females and resulted in greater
body mass loss, hypothermia, and mortality in females than males. Whereas lung virus titers were similar between the sexes,
females had higher induction of proinflammatory cytokines and chemokines, including TNF-a, IFN-c, IL-6, and CCL2, in their
lungs than males. Removal of the gonads in both sexes eliminated the sex difference in influenza pathogenesis.
Manipulation of testosterone or dihydrotestosterone concentrations in males did not significantly impact virus
pathogenesis. Conversely, females administered high doses of estradiol had a $10-fold lower induction of TNF-a and
CCL2 in the lungs and increased rates of survival as compared with females that had either low or no estradiol. The
protective effects of estradiol on proinflammatory cytokines and chemokines, morbidity, and mortality were primarily
mediated by signaling through estrogen receptor a (ERa). In summary, females suffer a worse outcome from influenza A
virus infection than males, which can be reversed by administration of high doses of estradiol to females and reflects
differences in the induction of proinflammatory responses and not in virus load.
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Introduction

Males and females differ in their responses to infection with

many viral pathogens, including human immunodeficiency virus

(HIV), herpes simplex viruses, and hantaviruses [1]. Although

societal and behavioral factors can influence exposure to viruses

and access to vaccines and treatments for infection [2], genetic and

physiological differences between the sexes can cause differential

immune responses to viruses [3]. Because females tend to mount

higher innate [4,5], cell-mediated [5,6,7], and humoral [8]

immune responses than males, viral loads are often reduced

among females [1]. Heightened immunity in females also can lead

to the development of immunopathology following viral infection

[5]. Elevated immunity in females represents a balance between

immune responses conferring protection and causing pathology.

Growing evidence links sex differences in immune function with

circulating sex steroid hormones [9,10]. Receptors for sex steroids

are expressed in a variety of lymphoid cells [11,12]. Androgens,

including dihydrotestosterone (DHT) and testosterone (T), sup-

press the activity of immune cells [9,13,14]. Estradiol (E2) can

have divergent effects, with low doses enhancing proinflammatory

cytokine production (e.g., IL-1, IL-6, and TNF-a) and T helper

cell type 1 (Th1) responses and high or sustained concentrations

reducing production of proinflammatory cytokines and augment-

ing Th2 responses and humoral immunity [15]. Elevated E2 also

attenuates production of CXC chemokine ligand (CXCL)-8,

CXCL10, chemokine (C-C motif) ligand 2 (CCL2), and CCL20

and recruitment of leukocytes and monocytes into several tissues,

including the lungs [16,17,18,19]. The anti-inflammatory effects of

high E2 are mediated by signaling through estrogen receptors

(ERs), which inhibits activation of NF-kB-mediated inflammatory

responses [20].

Observational data for influenza reveal that the outcome of

pandemic influenza as well as avian H5N1 is generally worse for

young adult females [21]. In the United States, during the 1957

H2N2 pandemic, mortality was higher among females than males

1–44 years of age [22]. Worldwide as of 2008, females were 1.6

times less likely to survive H5N1 infection than males [23]. During

the 2009 H1N1 pandemic, a significant majority of patients

hospitalized with severe 2009 H1N1 disease were young adult

females (15–49 years of age) [21,24,25,26,27,28]. Pregnancy and

other risk factors (e.g., asthma and chronic obstructive pulmonary

disorder) contribute to the severity of disease in females [21].

The mechanisms mediating how the sexes differ in response to

influenza virus infection as well as the effects of sex steroids on

influenza pathogenesis remain largely undefined. We hypothesize
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that biological differences in immune responses may explain

variation between the sexes during influenza virus infection.

Several studies reveal that excessive proinflammatory responses

(i.e., the cytokine storm) contribute significantly to morbidity and

mortality from influenza virus infection [29,30,31,32,33]. Our

data reveal that females experience greater morbidity and

mortality than males, which can be reversed by administration

of exogenous E2 or an ERa agonist to females. Our data further

indicate that sex differences and the effects of E2 on influenza

pathogenesis reflect differences in the production of proinflamma-

tory cytokines and chemokines as opposed to differences in virus

load.

Results

Morbidity and mortality from H1N1 influenza is greater in
females than males

To examine whether the sexes respond differently to influenza

A virus infection, adult male and female C57BL/6 mice were

inoculated with 102 TCID50 of influenza A/Puerto Rico/8/1934

(PR8; H1N1) and monitored daily for changes in morbidity and

mortality for 21 days. Females showed a greater percent reduction

in body mass (Fig. 1A) and body temperature (Fig. 1B) than males,

with these differences being most pronounced 7–13 days post-

inoculation (p.i.) (MANOVA sex x day P,0.0001 in each case).

Survival following influenza infection was significantly reduced in

females compared with males (log rank P,0.001), in which no

females survived infection with PR8, whereas 47% of the males

survived through 21 days p.i. (Fig. 1C; X2 P,0.05). The average

day of death was 2 days earlier for females (9.460.6 days) than

males (11.560.7 days) (t-test P,0.05).

Titers of infectious virus peaked 3–5 days after infection, but sex

differences were not observed (Fig. 1D), suggesting that changes in

virus load alone were not responsible for the observed sex

differences in morbidity and mortality. Highly pathogenic

influenza viruses cause severe disease by initiating profound

proinflammatory cytokine and chemokine responses [29,33].

Inflammatory cytokine responses increased in both sexes, in a

time-dependent manner as documented previously [30,34,35,36].

Interleukin-1b, IL-12p70, IL-10, and TGF-b were induced within

24 h p.i.; IFN-b, IL-6, TNF-a, CCL2, and CCL3 were induced

within 72 h p.i.; and IFN-c and IL-10 were induced 7 days p.i. in

both sexes (Table S1; 2-way ANOVAs, main effect of day

P,0.05). Females showed a greater induction of CCL2, TNF-a,

IFN-c, and IL-6 than males (Fig. 1E-H, 2-way ANOVAs sex x day

P,0.05).

Influenza virus infection suppresses reproductive
function in both sexes

Inflammatory immune responses induced by fatal infection with

pathogens (e.g., HIV) affect the brain to reduce reproductive

function, appetite, and thermoregulation [37,38], which in mice

can result in greater suppression of reproductive activity in females

than males [39]. To evaluate the effects of PR8 infection on

reproductive physiology, T concentrations in males and E2

concentrations in females were evaluated in plasma samples

collected from separate mice at several time-points during the first

week p.i. Infection of males reduced circulating T concentrations

on days 3–7 p.i. as compared with uninfected males (Fig. 2A, 1-

way ANOVA P,0.05).

In females, infection with PR8 appeared to cause persistently low

E2 concentrations (Fig. 2B); single time-point sampling of cyclical

hormones, however, is difficult to accurately evaluate in females

[40]. To better characterize the hormonal milieu of females during

influenza virus infection, we monitored the estrous cycles of female

mice before and after infection with PR8. The average duration of

the estrous cycle increased significantly following influenza virus

infection (Fig. 2C; paired t-test P,0.05) and this increase in estrous

cycle length was attributed to an increase in the duration of diestrus

(Fig. 2D; paired t-test P,0.05). As diestrus is the stage of the estrus

cycle that corresponds with the follicular phase, when both

estrogens and progesterone are at their nadir [40], these data

suggest that influenza virus infection suppresses ovarian function in

females and results in persistently low circulating E2.

Removal of the gonads reduces sex differences in
influenza pathogenesis

To establish whether gonadal secretions modulate sex differ-

ences in influenza pathogenesis, we compared morbidity and

mortality following PR8 infection in gonadally-intact (sham) and

gonadectomized (gdx) male and female mice. Consistent with

previous data (Fig. 1), hypothermia (MANOVA sex x day

P,0.0001) and mortality (log rank P,0.001) following influenza

virus infection were greater among gonadally-intact (sham) females

than gonadally-intact (sham) males (Fig. 3A and B). Gonadectomy

of males resulted in more pronounced hypothermia (MANOVA

treatment x day P,0.003) and death (log rank P = 0.04) as

compared with gonadally-intact males (Fig. 3A and B). Mortality

(log rank P = 0.046), but not morbidity, was lower among gdx than

gonadally-intact females during influenza virus infection. Among

gdx animals, removal of the gonads in male and female mice

eliminated the dimorphism in hypothermia and survival (Fig. 3A

and B). In summary, sex differences in influenza pathogenesis are

partially mediated by the presence of gonadal secretions.

Estradiol treatment protects females against lethal
influenza infection by suppressing proinflammatory
responses

To establish whether androgens in males and estrogens in

females affect responses to influenza, we examined the effects of

Author Summary

Sex and pregnancy affect the outcome of infection with
seasonal, avian, and pandemic influenza viruses among
young adults. Males and females are biologically different,
yet the implications of these differences on influenza A
virus pathogenesis are not well characterized. Generally,
females mount more robust immune responses to viral
challenge than males, which can result in more efficient
virus clearance at the cost of developing immune-
mediated pathology. In this study, we tested the
hypothesis that sex and sex steroid hormones differentially
impact the outcome of influenza A virus infection in mice.
Our data illustrate that influenza A virus dysregulates
reproductive function as well as cytokine and chemokine
production in females, rendering them significantly more
susceptible to weight loss, hypothermia, and death than
males. Administration of a high dose of estradiol or an
estrogen receptor a agonist to females suppresses the
excessive induction of cytokines and chemokines and
increases survival following infection. The protective
effects of estradiol on influenza pathogenesis reflect
changes in the induction of proinflammatory responses
and not in virus load. Uncovering the mechanisms
mediating how sex and sex steroid hormones affect
influenza pathogenesis may result in preventative mea-
sures and treatments that are optimized for both sexes.

Estradiol and Influenza Pathogenesis
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removal and replacement of sex steroids on influenza pathogen-

esis. Among males, gdx animals that received exogenous T had

greater concentrations of circulating T (14.7460.65 ng/ml) than

gdx males (1.0060.01 ng/ml) (t-test P,0.05). Treatment with

either T or DHT did not significantly reverse the effects of gdx on

either hypothermia (Fig. 4A) or mortality (Fig. 4C). Titers of PR8

also did not differ among hormonally-manipulated and gonadally-

intact males (Fig. 4D). Manipulation of androgens in males

affected concentrations of CCL3, IFN-c, and IL-10, but not in a

discernable pattern associated with morbidity and mortality (Table

S2; 2-way ANOVAs treatment x day P,0.05).

Among females, those that received exogenous E2 had

significantly higher serum concentrations of E2 (978639 pg/ml)

than gdx females (1626 pg/ml) (t-test P,0.05). Administration of

exogenous E2 mitigated hypothermia (Fig. 5A; MANOVA

treatment x day P,0.005) and mortality (Fig. 5B; log rank

P,0.001) following PR8 infection as compared with gonadally-

intact and gdx female mice. Females that received E2 were more

likely to survive PR8 infection and those that died had a later day

of death (12.861.2 days) than did sham (8.660.4 days) or gdx

(10.761.1 days) female mice (1-way ANOVA P,0.05). Admin-

istration of E2 did not affect virus replication kinetics (Fig. 5C), but

diminished the rise in TNF-a and CCL2 in the lungs that was

apparent among gonadally-intact and gdx female mice (Fig. 5D

and E; 2-way ANOVA treatment x sex P,0.001). Although

hormone manipulation in females altered other cytokines,

including IFN-c, IL-10, IL-12(p70), and CCL3 (Table S3; 2-way

ANOVAs treatment x sex P,0.05), the patterns were not

associated with changes in morbidity or mortality. In summary,

females with low (sham) or no (gdx) circulating E2 suffer a worse

outcome from infection and have higher proinflammatory

responses than females with high E2.

Estradiol protects against lethal influenza by signaling
through ERa

The anti-inflammatory effects of high E2 are mediated by

signaling through two nuclear receptors, ERa and ERb [41],

which antagonizes nuclear factor kappa B (NF-kB) activity [20].

To determine which ER was mediating the effects of E2 on

influenza pathogenesis, gdx females were administered E2, vehicle,

or vehicle containing agonists specific to ERa (Propylpyrazole-

triol; PPT) or ERb (diarylpropionitrile; DPN). Treatment with the

ERa agonist, but not vehicle or the ERb agonist, reduced

hypothermia (Fig. 6A; MANOVA treatment x day P,0.0001) and

increased rates of survival (Fig. 6B; log rank P,0.01) to levels that

were similar to females treated with E2. Titers of PR8 in the lungs

peaked for all females at Day 3 p.i., but were not affected by ER

manipulation (data not shown). Treatment with the ERa agonist

Figure 1. Influenza virus infection causes greater morbidity and mortality in females than males. Male and female mice were inoculated
with PR8 and monitored for changes in body mass (A), rectal temperature (B), and survival (C) for up to 21 days (n = 15/sex). Infectious virus titers (D)
as well as concentrations of TNF-a (E), CCL2 (F), IFN-c (G), and IL-6 (H) were measured in homogenates of lungs removed 0, 1, 3, 5, or 7 days p.i.
(n = 10–15/sex/time-point). Fold change represents concentrations of proteins at Days 1–7 p.i. relative to concentrations at Day 0. Data represent the
mean 6 SEM. The dotted line in panel D represents the limit of detection for the assay. Significant differences between the sexes as determined by
post hoc analyses at each time-point are represented by an asterisk (*), P,0.05.
doi:10.1371/journal.ppat.1002149.g001

Estradiol and Influenza Pathogenesis
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reduced TNF-a and CCL2 (Fig. 6C and D; 1-way ANOVA

P,0.001) in the lungs to levels that were similar to those of females

treated with E2. Treatment with the ERb agonist reduced TNF-a
(Fig. 6C; 1-way ANOVA P,0.001), but not CCL2 (Fig. 6D) as

compared with vehicle-treated females. Although administration

of the ERa and ERb agonists altered IL-6 and IL-10, these

patterns were not correlated with morbidity and mortality (Table

S4; 1-way ANOVAs P,0.05). The effects of E2 on proinflamma-

tory responses to infection, in particular CCL2 responses, and

disease outcome are primarily mediated by signaling through

ERa.

Discussion

Although epidemiological data suggest that females experience

more severe disease and suffer a worse outcome from influenza

virus infection than males [21], whether these differences reflect

sex or gender is difficult to assess as both factors can affect

exposure and vulnerability to influenza A viruses [21]. Using a

small animal model, our data and data from others [42] illustrate

that there are distinct biological differences in how males and

females respond to influenza.

Disease associated with highly pathogenic influenza viruses and

the clinical manifestations that ensue in humans can be mediated

by the proinflammatory response (e.g., TNF-a, IL-6, CCL2,

CCL3, and CXCL10) initiated by the host in response to infection

[29,30,31,32,33]. Studies of patients infected with avian influenza

viruses further reveal that higher proinflammatory responses are

correlated with mortality during infection [33]. Elevated produc-

tion of CCL3 and CCL2 and expression of CCR2 recruit

monocytes and neutrophils into the lungs and regulate inflamma-

tion and influenza A virus replication [43]. The data from the

present study illustrate that inflammatory immune responses,

including induction of CCL2, IFN-c, IL-6, and TNF-a, are

elevated in the lungs of females compared with males. Infectious

virus titers, however, do not differ between the sexes and are not

altered by hormones. Similarly, infection of adult BALB/c mice

with a mouse-adapted H3N1 influenza A virus results in greater

lung hyperresponsiveness to methacholine challenge and produc-

tion of CCL2, but not virus titers, in females compared with males

[42]. These data support and extend the hypothesis that host-

mediated immunopathology rather than virus replication underlies

influenza pathogenesis.

Sex differences in disease outcome are likely mediated by

multiple factors, including sex steroids, glucocorticoids, and the

direct activity of sex chromosomal genes [44]. In the present study,

removal of gonadal secretions in both males and females reduced

the sex difference in morbidity and mortality, illustrating that the

sex difference in influenza pathogenesis is reversible and that

activational sex steroids in adulthood affect the outcome of

infection. Furthermore, sex differences in response to influenza A

virus infection are not observed among pre-pubertal mice [42].

Within males, however, manipulation of androgens did not

significantly affect influenza pathogenesis, suggesting that some

androgenic effects may be organized early during sexual

differentiation. The extent to which sex differences in immunity

are hard-wired early during development must be considered [44].

Our data reveal that estrogens are one mechanism mediating

influenza pathogenesis in females. Infection with influenza virus

disrupted reproductive function in gonadally-intact females,

resulting in a prolonged state of diestrus, which is the stage of

the reproductive cycle when E2 and progesterone concentrations

are at their lowest [40]. Gonadectomized females (i.e., females

with no circulating E2) and gonadally-intact females (i.e., females

with low circulating E2 as a result of infection) produced higher

inflammatory responses and suffered a worse outcome from

Figure 2. Influenza virus infection alters sex steroid concentrations and reproductive function in males and females. Male and female
mice (n = 10/sex/time-point) were inoculated with PR8, serum was collected, and T concentrations in males (A) and E2 concentrations in females (B)
were analyzed Days 0, 1, 3, 5, or 7 p.i. To assess estrous cycles, females (n = 16) were sampled daily by vaginal lavage before and after inoculation with
PR8 and the duration of the estrous cycle (C) and diestrus (D) was quantified. For sex steroid hormone measurements, plasma from uninfected
animals were collected at the same time as other samples and designated as Day 0 p.i. Data represent the mean 6 SEM. Significant differences
between Day 0 and other time-points p.i. based on post hoc analyses are represented by an asterisk (*), P,0.05.
doi:10.1371/journal.ppat.1002149.g002

Estradiol and Influenza Pathogenesis
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infection than gdx females administered exogenous E2. These data

support the hypothesis that low concentrations of E2 in females

promote excessive inflammatory responses that contribute to

disease pathogenesis [15].

In the present study, exogenous administration of E2 reduced

the induction of pulmonary inflammatory responses and protected

females against influenza. High doses of estrogens also are

protective in animal models of multiple sclerosis (MS), in which

supraphysiological doses of estrogens reduce inflammatory re-

sponses and progression of this autoimmune disease [45,46]. In

contrast, low cyclical levels of estrogens in gonadally-intact females

have little effect on the outcome of MS. High E2 has potent anti-

inflammatory actions, including repression of proinflammatory

gene transcription and cytokine production [11,47], which is

partially mediated by inhibition of NF-kB transcriptional activity

[48]. The anti-inflammatory effects of estrogens have been

observed in several models for diseases, including autoimmunity,

atherosclerosis, arthritis, inflammatory bowel disease, and asthma

[15]; our data reveal that influenza is another disease of public

health importance that is influenced by estrogens.

The proinflammatory effects of low or no E2 and the anti-

inflammatory effects of high E2 in females are mediated by

signaling through the ER, which regulates the activity of NF-kB

[20]. Administration of an ERa, but not an ERb, agonist

protected females against influenza infection. ERa has been

identified in several immune cells, including DCs, macrophages,

and T cells, whereas ERb is expressed in epithelial cells,

macrophages, and B cells [11,41]. The differential effects of

ERa and ERb agonists in vivo provide insight into the cell types

that may be responsible for the exacerbated inflammatory

responses observed in influenza-infected females with low or no

E2.

Our data suggest a number of important avenues of research

that require further investigation. Mechanisms in addition to low

circulating E2 likely influence sex differences in influenza

pathogenesis and we are actively investigating the effect of other

sex-specific factors on viral disease. In addition to the mouse-

adapted PR8 (H1N1), sex differences are reported in response to

Figure 3. Removal of the gonads reduces the sex difference in
influenza pathogenesis. Rectal temperature (A) and survival (B) were
monitored for 21 days after inoculation of intact (sham) male (n = 18),
sham female (n = 20), gonadectomized (gdx) male (n = 12), or gdx
female (n = 9) mice with PR8. Data represent the mean 6 SEM.
Significant differences between sham males and females as determined
by post hoc analyses at each time-point are represented by an asterisk
(*), P,0.05. Significant differences between intact and gdx males as
determined by post hoc analyses at each time-point are represented by
a number symbol (#), P,0.05.
doi:10.1371/journal.ppat.1002149.g003

Figure 4. Androgen replacement does not significantly affect
morbidity or mortality from influenza virus infection in males.
Males were left intact (sham; n = 10–18/time-point/experiment) or
gonadectomized (gdx) and implanted with silastic capsules that were
empty (n = 9–12/time-point/experiment) or filled with testosterone (T;
n = 8–14/time-point/experiment) or dihydrotestosterone (DHT; n = 10).
Males were inoculated with PR8 and monitored daily for changes in
body temperature (A) and survival (B). Infectious virus titers (C) were
measured by TCID50 in lungs removed Days 1, 3, 5, or 7 p.i. The dotted
line in panel C represents the limit of detection for the assay. Data
represent the mean 6 SEM.
doi:10.1371/journal.ppat.1002149.g004

Estradiol and Influenza Pathogenesis
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mouse-adapted H3N1 [42] and H3N2 (Lorenzo et al. unpublished

data); mouse models utilizing mouse-adapted influenza A viruses,

however, may not completely reflect virus pathogenesis in humans.

Because clinical isolates of influenza A viruses cause limited

pathology in mice [49,50,51], examination of sex differences and

the effects of sex steroids in response to non-adapted strains of

influenza in mice would need to be limited to highly pathogenic

viruses such as the 1918 virus strain and avian H5N1 viruses.

Alternatively, sex differences in response to infection with clinical

isolates of influenza A viruses could be evaluated in alternative

animal models, such as ferrets [49]. The use of mouse-adapted

strains of influenza to demonstrate sex differences and effects of sex

steroids on influenza pathogenesis in mice reveal significant

differences and suggest that these differences should be considered

in evaluations of epidemiological and clinical human data. The

observation that elevated E2 reduces, rather than elevates, the

severity of influenza A virus infection does not explain why

pregnancy is associated with worse outcome after infection.

Elevation of E2 concentrations in non-pregnant females does not

completely recapitulate pregnancy as several other hormones,

including progesterone, estriol, and glucocorticoids also dramat-

ically change during pregnancy and can impact immune function

[52,53]. While sex steroid-modulation of influenza pathogenesis

likely contributes to the increased severity of disease during

pregnancy, the data from the current study suggest that E2 is not

the mechanism mediating severe outcome of infection during

pregnancy.

There is clinical relevance to uncovering the mechanisms

mediating how sex and sex steroids affect responses to influenza

viruses as this may result in preventative measures and treatments

that are optimized for each sex. Most epidemiological and clinical

studies of influenza in humans do not partition or analyze data by

sex and a majority of animal studies of influenza either use only

females or do not report the sex of their animals [21]. The data

from the present study provide evidence that the pathogenesis of

influenza virus infection differs between the sexes and is influenced

by the effects of sex hormones on inflammatory immune

responses.

Materials and Methods

Animals
Adult (6–8 weeks old) male (total n = 308) and female (total

n = 356) C57BL/6 mice were purchased from NCI Frederick,

housed 5/microisolater cage with food and water available ad

libitum, and handled using Biosafety Level (BSL)-2 practices.

Figure 5. Exogenous E2 protects females against influenza virus infection. Females were intact (sham; n = 9–20/time-point/experiment),
gonadectomized (gdx; n = 7–10/time-point/experiment), or gdx and treated with E2 (n = 8–12/time-point/experiment). Females were inoculated with
PR8 and monitored daily for changes in rectal temperature (A) and survival (B). Infectious virus titers (C) as well as concentrations of TNF-a (D) and
CCL2 (E) were measured in lungs removed Days 1, 3, 5, or 7 p.i. Fold change represents concentrations of proteins at Days 1–7 p.i. relative to
concentrations at Day 0. Data represent the mean 6 SEM. The dotted line in panel C represents the limit of detection for the assay. Significant
differences between E2-treated and sham or gdx females, as determined by post hoc analyses, are represented by an asterisk (*), P,0.05.
doi:10.1371/journal.ppat.1002149.g005

Estradiol and Influenza Pathogenesis
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Ethics statement
All experiments were performed in compliance with the

standards outlined in the National Research Council’s Guide to

the Care and Use of Laboratory Animals. The animal protocol

(MO09H26) was reviewed and approved by the Johns Hopkins

University Animal Care and Use Committee. All efforts were

made to minimize animal suffering.

Surgical procedures
Male and female mice were anesthetized with 2.5% isoflurane

(Baxter Healthcare Corporation, Deerfield, IL) mixed with oxygen

and bilaterally gonadectomized as previously described [54,55,56].

All animals were given two weeks to recover prior to infection.

Vaginal cell cytology
Vaginal cell samples were collected at 1600–1700 h, smeared

onto clean glass slides, fixed, stained with Diff-Quick Staining kit

(Andwin Scientific, Addison, IL), and diagnosed for stage of estrus

based on the cellular profile of each sample: proestrus (80–100%

intact, healthy epithelial cells), estrus (100% cornified epithelial

cells), diestrus I (,50% cornified epithelial cells and 50%

leukocytes), and diestrus II (80–100% leukocytes) [57,58]. Only

females that exhibited at least 3 regular estrous cycles (16/20) prior

to infection were included.

Sex hormone capsules
Hormone and placebo capsules were made with 10 mm of

silastic tubing (inner diameter = 0.04 in; outer diameter = 0.085

in; VWR International, Bridgeport, NJ) and sealed with silastic

medical adhesive (Dow Corning, Midland, MI). Hormone

capsules were left empty (placebo) or filled with 5 mm of

testosterone (T), dihydrotestosterone (DHT), or 17b-estradiol

(E2) purchased from Sigma Aldrich (St. Louis, MO) and sealed

with 2.5 mm of adhesive at either end [56]. Capsules were

incubated in 0.9% saline at 37uC overnight prior to implantation.

Estrogen receptor agonists
Propylpyrazole-triol (PPT) and diarylpropionitrile (DPN) were

purchased from Tocris Bioscience (Ellisville, MO), suspended in

Miglyol 812N oil (kindly provided by Sasol, Hamburg, Germany),

and administered at 10 mg/kg and 8 mg/kg, respectively [59].

Animals received daily subcutaneous injections of either vehicle

(90% Miglyol, 10% EtOH) or vehicle containing PPT or DPN.

Sample collection
For experiments in which morbidity and mortality were

monitored for up to 21 days post-inoculation, animals were not

euthanized as death was an approved endpoint in our IACUC

protocol. Body mass and rectal temperature were measured daily

between 0800 and 1000 h. Animals were weighed to the nearest

hundredth of a gram and rectal temperature was monitored with a

Thermalert TH-5 monitor (25uC–45uC) and RET-3 rectal

microprobe for mice (Physitemp Instruments, Inc., NJ), which

stably evaluates body temperature to the nearest 0.1uC in 3–5

seconds. For time course experiments, animals were randomly

assigned to be euthanized at 0, 1, 3, 5, or 7 days p.i., at which time

they were anesthetized with isoflurane and terminally bled from

the retro-orbital sinus into heparinized tubes and plasma was

stored at 280uC and used to measure hormones. Whole lungs

were collected, snap-frozen, and stored at 280uC until homog-

Figure 6. Estradiol protects females against influenza through ERa signaling. Females were gonadectomized (gdx) and assigned to
received vehicle (n = 9–12/time-point/experiment), E2 (n = 9–10/time-point/experiment), the ERa agonist (PPT; n = 9–10/time-point/treatment), or the
ERb agonist (DPN; n = 8–9/time-point/experiment). Females were inoculated with PR8 and monitored daily for changes in rectal temperature (A) and
survival (B). Concentrations of TNF-a (C) and CCL2 (D) were quantified in lung homogenates collected from females at Days 0 and 7 p.i. Fold change
represents concentrations of proteins at Day 7 p.i. relative to concentrations at Day 0. Data represent the mean 6 SEM. Significant differences
between treatment groups and vehicle controls, as determined by post hoc analyses, are represented by an asterisk (*), P,0.05.
doi:10.1371/journal.ppat.1002149.g006

Estradiol and Influenza Pathogenesis

PLoS Pathogens | www.plospathogens.org 7 July 2011 | Volume 7 | Issue 7 | e1002149



enized in Dulbecco’s Modified Eagles Medium (DMEM) supple-

mented with 1% Penicillin/Streptomycin and 1% L-glutamine

(Invitrogen, Carlsbad, CA). Homogenates were centrifuged and

the supernatants were stored at 280uC and used to measure virus

titers and cytokine concentrations.

Virus infection and quantification
Mouse-adapted influenza A virus, A/Puerto Rico/8/34 (PR8)

was provided by Dr. Maryna Eichelberger at the Food and Drug

Administration. Mice were anesthetized with Ketamine/Xylazine

(80 mg/kg and 6 mg/kg, respectively) and intranasally inoculated

with 30 ml of vehicle (DMEM) or 102 50% tissue culture infective

dose (TCID50) units of PR8 diluted in DMEM (which corresponds

to 1.24 50% mouse lethal dose (MLD50) for males and 0.78

MLD50 for females, based on the Reed and Meunch method)

between 0800 and 1000 h. The challenge dose was selected based

on previous experiments that quantified the lethal dose that killed

50% of the animals (LD50). Virus quantification was performed

using the TCID50 method measuring cytopathic effects (CPE) of

influenza A virus on a monolayer of Madin Darby Canine Kidney

(MDCK) cells [60].

Sex hormone auantification
Hormones were concentrated from plasma by ether extraction

and hormone quantification was performed using testosterone and

estradiol enzyme immunosorbant assays (EIA) purchased from

Cayman Chemicals (Ann Arbor, MI).

Cytokine quantification
Supernatants from lung homogenates were used to measure

CCL3, IFN-b, IL-1b, and TGF-b by ELISAs (R&D Systems, BD

Biosciences, PBL Biomedical Laboratories) and CCL2, IL-12(p70),

TNF-a, INF-c, IL-10, and IL-6 with the mouse inflammation

cytometric bead array (BD Biosciences).

Statistical analysis
Kaplan Meier survival curves were compared using log rank

analyses. The proportion of animals that survived influenza A

virus infection was compared among experimental groups using x2

analyses. Morbidity data were analyzed with multivariate

ANOVAs (MANOVAs) with one within-subjects variable (days)

and one between-subjects variable (sex or treatment) and

significant interactions were further analyzed using planned

comparisons. Virus titers and protein concentrations were

analyzed with 2-way ANOVAs with day p.i. and sex/treatment

as the independent variables and significant interactions were

further analyzed using the Bonferroni method for pairwise

multiple comparisons. Hormone concentrations were analyzed

by t-tests or 1-way ANOVAs followed by Bonferroni post hoc tests.

Changes in estrous cycle length were evaluated using paired t-tests.

Mean differences were considered statistically significant if P,0.05

(SYSTAT 13, Systat Software, Chicago, IL).
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