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SUMMARY

Hippocampal CA1 neuronal ensembles generate sequential patterns of firing ac-
tivity that contribute to episodic memory formation and spatial cognition. Here
we used in vivo calcium imaging to record neural ensemble activities inmouse hip-
pocampal CA1 and identified CA1 excitatory neuron sub-populations whose
members are active across the same second-long period of time. We identified
groups of hippocampal neurons sharing temporally correlated neural calcium ac-
tivity during behavioral exploration and found that they also organized as clus-
ters in anatomical space. Such clusters vary in membership and activity dynamics
with respect to movement in different environments, but also appear during
immobility in the dark suggesting an internal dynamic. The strong covariance be-
tween dynamics and anatomical location within the CA1 sub-region reveals a pre-
viously unrecognized form of topographic representation in hippocampus that
may guide generation of hippocampal sequences across time and therefore orga-
nize the content of episodic memory.

INTRODUCTION

Hippocampal CA1 neurons are well-known for the spatial tuning of their dynamics within the boundaries of

the observable environment.1–3 Because their spatially specific firing fields are approximately uniform in

their environmental distribution, ensembles of ‘‘place cells’’ are activated in sequential patterns depending

on the trajectories the animal takes through an environment.4–7 The compression and recurrence of such

sequences within each cycle (�125ms) of locomotion-driven theta-frequency oscillation yield a set of highly

organized spike-timing relationships among interconnected hippocampal neurons.4,7,8 Such sequencing is

thought to be consequential with respect to the generation of episodic memories.4,8

The ‘‘place-specific’’ firing of hippocampal neurons over longer, seconds-duration time periods can also be

systematically matched to the specific trajectories taken through any given environment.9–16 Notably, tra-

jectory shape can promote the generation of path-discernable sequences for different visits to a single

location.9,10,12–15,17,18 Brain dynamics promoting synaptic potentiation according to activity patterns at

this second-long timescale have also been identified.19

Multiple factors contribute to the organization of path-specific sequential patterns of CA1 neuron activity.

Sequences in hippocampal sub-region CA1 are thought to be generated, at least in part, by connectivity

motifs within highly ‘‘auto-associative’’ sub-regions such as CA320–24 and the distinct axonal arborization

patterns of GABAergic interneurons.25–27 Such ‘‘internal’’ connectivity constraints molding CA1 firing pat-

terns are thought to interact with inputs coding for relation to distal visual cues, proximity to boundaries,

self-motion cues, heading direction, and trajectory in regions such as the medial entorhinal cortex and nu-

cleus reuniens.12,28–32 Yet, similar sequential patterns of CA1 neuron activity can be observed even under

conditions of minimal sensory input in immobile and sleeping animals.33 These firing patterns are thought

to represent internal dynamics of mental replay of previously learned routes and highlight both the con-

strained and versatile nature of CA1 neurons regarding their specific sequential patterns of activity.

Due to the complexity of factors influencing CA1 neuron firing, including restrictions on the scope of activ-

ity measurements, few studies have asked whether the temporal dynamics of CA1 neurons are related to
iScience 26, 106703, May 19, 2023 ª 2023 The Author(s).
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Figure 1. Hippocampal CA1 neurons are organized into anatomically clustered groups with temporally correlated calcium activities

(A) Illustration of a mouse with a head-mounted miniscope targeting the hippocampal CA1 region, and the behavioral arena (36 cm diameter circle box) in

which the mouse can freely explore with simultaneous calcium event neural imaging. Gray line indicates the trajectory of one example mice exploring for

12 min.

(B) Illustration of neuron footprints extracted by CNMF-E during the processing of miniscope imaging data. The scale bar represents 25 mm.

(C) Temporal calcium traces of all neurons grouped into clusters recorded from a single mouse (C1-C4). The vertical scale bar represents a unit of 250 dF of

calcium signal changes; the horizontal scale bar represents 50 seconds in time.

(D1) Magnification of the red boxed areas in C. The aligned calcium events are clearly seen in the magnified trace segment. The vertical scale bar represents

250 dF; the horizontal scale bar represents 25 seconds.

(D2) Trajectories corresponding to the four magnified calcium event segments presented in d (trajectory length: C1: 1155.53 mm, C2: 806.50 mm, C3:

836.07 mm, C4: 630.14 mm).

(E) Pairwise temporal correlation matrix. Both axes represent neuron indexes which are grouped by clusters.

(F) Comparisons of cumulative probabilities between intra- and inter-cluster pairwise temporal correlations of neuron calcium event dynamics, as well as

shuffled intra-cluster pairwise correlation. Intra-cluster correlation is significantly higher than both shuffled and inter-cluster correlation (intra-cluster,

0.1206 G 0.0006; inter-cluster, 0.0031 G 0.0006; shuffled intra-cluster, 0.0202 G 0.0006; intra-cluster versus inter-cluster, p = 1.0257*10�40, intra-cluster

versus shuffled intra-cluster-cluster, p = 4.1659*10�24, two sample Kolmogorov-Smirnov test, Data are presented as the mean G SEM).

(G) Anatomical clusters of neural calcium event footprints from temporally correlated neurons. Two example mice are shown here. The scale bar represents

25 mm. For the anatomical axis symbols, A refers to anterior and M refers to medial.

(H) Anatomical cluster changes during 3 semi-overlapping epochs of a single recording session for the example mouse in G (the left one). The scale bar

represents 25 mm.
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Figure 1. Continued

(I) Averaged patch size of anatomical clusters across different cluster numbers. Error bars represent the SEM of patch sizes across six mice perform the same

task at the specific cluster number. Blue circle: Patch size of the original anatomical clusters. Yellow square: average size of the shuffled cluster patches serves

as shuffled baseline (Original cluster patch size curve v.s. shuffled baseline curve: p = 0.0039, Wilcoxon matched pairs signed rank test, N = 9 cluster

numbers).

(J) Relationship between pairwise temporal correlations and pairwise anatomical distance of neuron pairs. Intra- and inter-cluster data is represented as

purple and green, respectively. The distribution of intra- and inter-cluster data is fitted to a first-order power function. Overall, for all the mice, across neuron

pairs with different pairwise distances, a significant negative relationship is identified between pairwise temporal correlation and pairwise distance (Cyan

line, spearman correlation = �0.1976, p = 3.9975*10�67). Also, across neuron pairs with different pairwise distances, the pairwise temporal correlation of

intra-cluster neuron pairs is significantly higher than that of inter-cluster neuron pairs (p = 3.8966*10�18, Wilcoxon matched pair signed rank test, N = 100

distance levels). The subplot on the right top illustrates the distribution of neighboring cells toward intra-cluster place cells. Asterisks are defined as p% 0.05

*, p < 0.01 **, p < 0.001 ***. See also Figure S3.
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their anatomical distribution.34 Such a relationship would reveal a hippocampal organization that has pre-

viously eluded experimenters. In the present work, we have directly addressed this question by examining

the temporal dynamics of large numbers of CA1 neurons longitudinally using in vivo calcium imaging with

miniature head-mounted microscopes (‘‘miniscopes’’) in mice during free exploration of multiple environ-

ments. We identify groups of CA1 neurons with temporally correlated calcium activity patterns and find that

these groups are organized anatomically within CA1. This reveals a previously unrecognized form of topo-

graphic representation in the hippocampus that may guide neural activity contributing to spatial naviga-

tion and episodic memory.
RESULTS

Anatomical clustering of temporally correlated neurons

To determine whether the temporally correlated activity of CA1 neurons is related to their anatomical dis-

tribution in the hippocampus, we employed the miniscope imaging of Ca++ transients (Figure S1) while

mice freely explored one of the several environments of different shapes and bearing different sets of

boundary wall visual cues (Figures 1A and 1B). Using the K-means-based consensus clustering algorithm

(KCC) that categorizes neurons based on temporal correlation,35 we determine that CA1 does indeed

exhibit neuron sub-populations activated in sequences spanning several seconds (n = 6 mice). Notably,

the sub-populations identified by this method contain many members whose activations are not strictly

synchronous or even overlapping in time but nevertheless, fall within the same multi-second windows of

time. We observe a strong correlation of neuron-neuron activity vectors within each group and a relatively

weak correlation of activity across groups (Figures 1C and 1D). Temporally correlated activity among mem-

bers of each group occurs over periods of greater than 3 s, approximately following the time frame iden-

tified in recent work that measured synaptic potentiation among neurons active within a few seconds of

each other.19 The periods of correlated activation can cover large behavioral movement trajectories in

the arena up to >110 cm (Figure 1D2).

We then graphed neuron-neuron temporal correlations among all pairs recorded during arena exploration.

By organizing the X and Y axes of the correlation matrix according to group identity, neurons of the same

group (intra-cluster, Figure 1E) exhibit higher correlations with each other than with neurons from different

groups (inter-cluster, Figure 1E). To determine statistical significance, we constructed cumulative probabil-

ity functions for all the pairwise correlations between neurons as shown in Figure 1F. The cumulative prob-

ability functions for neuron pairs from the same group (purple curve), from different groups (green curve),

and after random shuffling of group identities (blue curve) are depicted. Neuron pairs from the same group

exhibit significantly higher correlations than when group identities are randomized, and when neurons in

pair are not from the same group (Figure 1F). These results further illustrate that the CA1 pyramidal neurons

can be organized into distinct groups based on the temporal correlations in their activity.

Having established CA1 neuron group identity based on temporal activity profiles, we then asked whether

these groupings exhibit any specific anatomical distributions. To address this, we visualized the anatomical

profile of neurons from each temporal cluster across the imaged sub-region of CA1. Strikingly, this reveals

that temporally correlated neurons are clustered anatomically into irregularly shaped patches (Figure 1G,

left, right for two different example cases). Within such groupings, any given pair of neurons may reside

next to each other or be hundreds of microns apart; nevertheless, the members of each group cover

one or more contiguous patches of CA1 anatomical space. To test the stability of anatomical clustering
iScience 26, 106703, May 19, 2023 3
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across the exploration session, we divided the recording session into several epochs and visualized the dis-

tribution of neurons from each temporal grouping in an anatomical map. While CA1 neuron activation

across a given space may vary significantly as a function of time, trajectory, or behavior,36,37 we found

the anatomical clustering defined by temporal correlation exhibit a higher-than-expected level of stability

throughout the duration of the recording session, that among all possible pairs of neurons, on average

around 35%-40% of pairs stay in the same cluster across different periods of recording session

(Figures 1H and S3J).

We measured the spatial span of anatomical clustering of temporally correlated neurons using density-

based spatial clustering of applications with noise (DBSCAN). This algorithm de-noises and defines contig-

uous populations of individual elements and their boundaries38 (see Figure 1G, lower panels, which show

defined contiguous regions; see Figure S2 for a description of the method). Across mice, detected contig-

uous patches have an average area of �2000 mm2 over the topographical surface of CA1. In addition, we

also observe that anatomical clusters formed by temporally correlated neurons are not always present

as one contiguous region. Smaller islands can sometimes be found isolated from the major region, a char-

acteristic we refer to as fractured domain topography.

We then asked whether our clustering algorithm, and the choice of cluster numbers, affect the detected

patches. To address this, we first compared the original patch size across mice (i.e., patch size determined

by temporally detected clusters), with their corresponding shuffled baseline (i.e., patch size determined by

the same data with cluster identities randomized). We found the patch size of original clusters significantly

surpass the shuffled baseline (Figure S3N. See Figure S3O for another arena). We then compared the patch

size across different cluster numbers, as shown in Figure 1 I, where the patch size of original anatomical

clusters significantly exceeds the patch sizes of clusters with randomized identities. (See further examples

from a different arena in Figure S3G). We also utilized an independent component analysis (ICA)-based al-

gorithm39 to examine if our observation is brought by our k-mean based clustering algorithm itself, and find

that ICA-based algorithm also picked up both the temporal and anatomical clusters we described previ-

ously (Figure S10), which indicate the results described here is not induced by the clustering algorithm it-

self. The above analysis shows neither the clustering algorithm, nor the number of clusters chosen, has a

significant effect in the notability of patches, and that the detected contiguous CA1 patches should be

physiologically meaningful.

A potential concern regarding the detected anatomical clusters is that the viral transfection approach we

applied may cause unhealthy physiological conditions due to the cellular toxicity of potential viral over-

expression. To address this issue, we first examined the histology and morphology of neurons with immu-

nostaining (Figure S1). Overall, we do not note CA1 pyramidal neurons exhibiting aberrant shapes which

indicate unhealthy conditions. We also checked the length / duration of transients for the virus infected

mice used in the experiment (Figure S8) and find the most concentrated transient length is around 2-3 s,

which follows the descriptions of previous studies.40 Finally, we also applied the same cluster detection

technique to a group of 5 Camk2a-Cre; Ai163 mice performing free exploration inside an open square

arena. The Ai16341 strain is a Cre-dependent calcium inicator expressing mouse line, which has been found

to be less volunerable to toxicity issues when used in conjunction with the Camk2a-Cre strain. As shown in

Figures S3I-S9E, Camk2a-Cre; Ai163 mice have CA1 excitatory cell clusters that display visually distinguish-

able anatomical regions that are larger than shuffled baseline across all the potential cluster number can-

didates. It is noted that the identified anatomical clusters are more fractured in the transgenic mouse cases,

which is likely due to less dense transgenic GCaMP expression in CA1 excitatory cells compared with AAV

transduction (Figure S9). Based on the contents above, we conclude the anatomical clustering of CA1 excit-

atory cells is unlikely to be induced by virus toxicity.

A second question concerns the potential signal overlap of imaged neural activity between neighboring neu-

rons. To address this, we compared the correlation of neighboring intra- and inter-cluster neurons at the border

of each cluster, for mice from different experiments. If the formation of anatomical clusters is dominated by

neighboring neuron interference, the pairwise correlation distribution of neighboring inter-cluster neurons

should not be distinguishable from that of neighboring intra-cluster neurons. However, we find that even at

the border, neighboring inter-cluster neuron pairs have a significantly lower correlation than border intra-cluster

or any intra-cluster neighboring neuron pairs (Figure S11). This provides additional evidence that signal overlap

cannot explain the formation of the anatomical contiguous patches illustrated here.
4 iScience 26, 106703, May 19, 2023
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Finally, a third potential confound lies in the possibility that dendritic signals may contaminate the recorded

data and give rise to the correlated neighboring components. We first note that this explanation of the data

is not consistent with the differences between intra-cluster and extra-cluster pairs at the border between

clusters. Nevertheless, we also addressed this concern by utilizing an additional CNMF-E’s dendrite detec-

tion feature, which can include detected components to be a variety of shapes rather than only ellipse

shapes that are considered as typical for soma.We compared the neuron extraction result with the dendrite

detection feature being turned on or off and found little difference between the two kinds of extraction

(Figure S14). The imaged data contains mostly ellipse-shaped components which are predominantly cell

soma. We also checked the number of firing fields our detected neurons displayed in the experiments (Fig-

ure S16). Overall, a high percentage of neurons have two or less fields (�75%), indicating that our results are

not dominated by components with highly dispersed firing profile.

We also utilized a recently published algorithm, TUnCaT, to unmix and remove the background and den-

dritic influence from the detected neuron traces42 and examined the effect on cluster detection in six

example mice with virus-induced GCaMP expression. Comparing the CMNF-E extracted trace and the

TUnCaT extracted trace, we note that although most above-threshold peak activities are aligned, some

only exist in CNMF-E or TUnCaT traces (Figure S17B). We, therefore, quantified the difference between

the total above-threshold peak numbers for the original CNMF-E extracted calcium trace and the

TUnCaT extracted calcium traces. Overall, across the six mice, the majority of neurons (�90%) have a cal-

cium transient peak number difference %22 for a duration of 10 min of recording, while �50% of the neu-

rons have a peak number difference %5 (Figure S17C). Further, we performed cluster detection using the

TUnCaT-generated calcium traces and examined the patch size of the observed anatomical clusters. We

compared the averaged patch size with its corresponding shuffled baseline across different cluster

numbers. Similar to CNMF-E detected clusters, the patch sizes of anatomical clusters generated with

TUnCaT processed calcium traces significantly exceed the patch sizes of randomized baseline.

(Figure S17E).

Two-photon microscopy distinguishes neuronal and non-neuronal structures. Existing 2-photon studies

have provided various views on the anatomical organizations of CA1 neurons discussed above. Modi

et al.34 found similar anatomical contiguous patches that resemble our results after a trace-eyeblink

learning task. Dombeck et al.43 showed a negative relationship between CA1 pyramidal cell pairwise dis-

tance and pairwise correlation when including all neurons in the field of view. While 2-photon calcium im-

aging is difficult to apply in freely moving mice, we attempted to follow Dombeck et al.’s analysis approach

by directly examining the relationship between temporal correlation and distance of recorded principal

neuron pairs that have pairwise distances beyond 35 mm for this analysis.43 We found that overall, CA1 prin-

cipal neuron pairs across mice display a negative relationship between pairwise distance and temporal cor-

relation (Figure 1J cyan line, spearman correlation =�0.1976). This result is consistent with Dombeck et al.’s

result that includes all neurons in view. It should be noted though, that Dombeck et al.’s analytical approach

is qualitatively different from our clustering analysis, andmay underestimate anatomical clustering because

here, any two neurons assigned to the same cluster can be neighboring or distant from each other.

We further examined the distribution of pairwise correlations for intra- and inter-cluster neuron pairs over

different distances (Figure 1J, green and purple line). Both intra- and inter-cluster neuron pairs show

similar correlation-distance relationships compared to the overall trend. Using the fit curves of intra-clus-

ter and inter-cluster correlation-distance distributions, we find that across a wide range of distance levels,

intra-cluster cell pairs exhibit higher pairwise correlation compared to that of inter-cluster cell pairs (p =

3.8966*10�18, Wilcoxon matched pair signed rank test). This is consistent with the observation that mem-

bers of a temporally correlated neural cluster can go into multiple anatomically contiguous spaces that

are either in proximity or hundreds of microns apart. Meanwhile, consider the results in Figure S11, two

directly neighboring neurons can be of the same or different clusters, and their temporal correlations will

tend to be high and low, respectively. We note here and elsewhere that the form of topographic repre-

sentation seen in our data differs in character from that tested for in some prior studies.44,45 In those

studies, the tested model most often assumes that all neighboring neurons should have location-specific

firing fields in close proximity to each other, and that neurons at further distances from each other should

have proportionally distributed distances between their location-specific firing field centers. This model

is derived according to the correlation in location-specific firing activity of hippocampal neurons as

opposed to the temporal correlation approach utilized here. The latter and current approach can yield
iScience 26, 106703, May 19, 2023 5
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Figure 2. Anatomical clusters are the basis of the functional organization during the exploration of different regions of the behavioral arena

(A, D, G) Anatomical clusters for three representative mice imaged while freely exploring an identical behavioral arena. The scale bar represents 25 mm. For

the anatomical axis symbols, A refers to anterior and M refers to medial.

(B, E, H) Upper portion of the panels represents ensemble activity maps of the anatomical clusters in A, E, I. Black dots represent the maximal activity location

of individual intra-cluster neurons. Lower portion of the panels represents activity maps of 3 representative neurons from each anatomical cluster. The

number on the right top of each activity map represents the maximum bin rate in the map. For all activity maps, each bin represents 1 cm*1 cm of the arena

space.

(C, F, I) Relationship between pairwise temporal correlation and pairwise activity map correlation for neuron pairs within the anatomical clusters for the three

representative mice depicted in A, E, and I. Each of the neuron pairs is represented by a single black dot. For all 3 example mice, the pairwise temporal

correlations have significant linear relationship with pairwise activity map correlation (mouse1: Pearson’s r = 0.4585, p = 6.1241*10�68; mouse 2: Pearson’s

r = 0.4950, p = 2.6525*10�33; mouse 3: Pearson’s r = 0.4847, p = 1.8400*10�31). See also Figures S5, S6, S7, S12, and S13.
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correlations that partially depend on location-specific activity but also allows the specific trajectories

through space to define different temporal sequences of activity.

Furthermore, a recent study reported synchronized firing of neighboring CA1 pyramidal neurons after the

artificial activation of a ‘‘seed’’ CA1 pyramidal neuron using 2-photonmicroscopy. These synchronized neu-

rons have a high spatial concentration around 50-100 mm range relative to the seed neurons.43 We, there-

fore, calculated the number of intra-cluster neurons of different distances toward intra-cluster place cells.

We used a conservative method to define ‘‘place cells’’ according to the quantification of firing activity

maps with the metrics coherence and spatial information/event. Spatial information/event measures the

feature of the distribution in firing rates across environmental locations; values for this measure are high

when a small proportion of spatial bins are associated with high activity across a much larger background

of inactivity. Coherence complements this measure in reflecting the tendency for high-activity spatial bins

to be neighboring, as one would expect for a place field. We found that on average, to each place cell the

number of neighboring intra-cluster neurons display a similar cell number-distance trend as noted by Geil-

ler et al.46 (Figure 1 J right top panel, see Figure S4 for the anatomical distribution of place cells). This

further supports the anatomical organization we describe here.

Anatomical clustering and its relation to location-specific firing

As considered briefly in the preceding section, an important question here concerns how location-specific

activity of CA1 cells relates to the identified anatomical distribution of temporally correlated CA1 sub-

groups. This is important given that previous results have not identified a one-to-one spatial correspon-

dence between the pairwise anatomical distances and pairwise spatial firing correlations between

neurons.45

We first examined the anatomical distribution of place cells. As shown in Figure S4B, place cells are defined

according to the distribution in their spatially binned firing rates and the similarities in rates of neighboring

spatial bins. Place cells are observed among all detected anatomical clusters. Importantly, place cells of the

same cluster can either be neighboring each other or have large distances between them. The pairwise dis-

tance between intra-cluster place cells, as well as all intra-cluster neurons, is lower than that with all place

cell pairs (i.e., independent of their clustering), but there was no significant difference noted between intra-

cluster place cells and all intra-cluster cells (Figure S4C). Thus, neurons with strong location-specific activity

are just a sub-population of the defined clusters whose activation patterns occur across the same second-

long period of time. The pairwise temporal correlation of intra-cluster place cells, and all intra-cluster neu-

rons, are higher than that of all place cell pairs (Figure S4D). Thus, the grouping of neurons by temporal

correlation captures neurons that are active over the same second-long period of time, irrespective of

whether their activity can be strongly place-specific.

We next examined the relationship of temporally correlated activity to the distribution of location-specific

activity for neurons of the same and different clusters. We measured spatially defined activity maps of CA1

neurons by calculating their firing rates within 1 cm*1 cm spatial bins. We also calculated the averaged

spatial activity maps across individual neurons of the same cluster to construct the ‘‘ensemble activity

map’’ for that cluster. Interestingly, we find that many temporally correlated CA1 neurons tend to share

environmental location-specific tuning, and their ensemble activity clearly maximize across a specific

sub-region of environmental space (Figure 2). To quantify the extent of the coverage difference between

different neuron clusters, we calculated the pairwise overlap level between ensemble activity maps from all

clusters of each individual mice.We define the ‘‘major field’’ as the center portion of ensemble activity maps
iScience 26, 106703, May 19, 2023 7
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that have higher than 50% of the maximum activity level across the activity map (Figure S7A), and pairwise

overlap level is calculated as the ratio between overlapped area and total area of the two major fields.

When we pooled the overlap levels from all mice together, we noted low level of overlapping between ma-

jor fields of a large fraction of ensemble activity map pairs, with 93.21% of pairs having lower than 25% of

their major fields overlapping with each other (Figure S7C). Similar results were also noted when we only

include the place cells in each cluster (Figures S12 and S13).

In the meantime, while many individual intra-cluster neurons have maximal activity within the sub-region

covered by cluster ensemble activity map, some neurons within the same temporally defined cluster can

have spatially distinct activity distributions, that the firing peaks for individual neurons of a cluster can

be distributed across the full space of the environment (Figures 2B, 2E, and 2H black dots). We think this

is consistent with a model in whichmuch of the temporal correlation in activity occurs as a combined conse-

quence of the locations of spatially specific activity for neurons, and the distances as well as trajectories

taken by animals across second-long period of time. In this way, many neurons of a cluster will have place

fields partially constrained to a sub-region of the arena given that animals may remain in the same area over

many second-long period. Meanwhile, considering Figure S4, place cells only constitute part of the intra-

cluster neuron populations. Hence, neurons showing activity outside the high ensemble activity regionmay

be fulfilling their functions differently from place encoding, while they also co-activate with other intra-clus-

ter neurons to support the cognitive process inside the high ensemble activity region.

To further investigate the interaction between spatial and temporal components of activity correlation

within clusters, we also examined the relationships between pairwise temporal correlation and pairwise ac-

tivity map correlations. Temporal activity correlations are overall positively correlated with spatial map cor-

relations between neuron pairs sharing the same anatomical cluster (Figures 2C, 2F, and 2I also Figure S5).

Meanwhile, at different temporal correlation levels, the spatial map correlation variates, which follows our

observation that intra-cluster neurons can display their primary firing fields at different locations across the

arena. These results further support our observation that intra-cluster CA1 principal neuron pairs displaying

relatively higher temporal correlation also display more similar spatial tunings. Moreover, these results

highlight that the anatomical clustering of CA1 neurons discovered herein reflect temporally correlated

activation of neuron sub-groups over second-long period, as opposed to an anatomical clustering orga-

nized strictly and exclusively by the location-specific firing of neurons.
Anatomical clustering of co-active neuron populations is dynamic

As anatomical clusters exhibit sensitivity to the specific environmental locations visited across time, we

asked if different environments would yield different patterns of clustering. To test this, we compared

anatomical clustering for temporally derived neuron sub-groups when animals explored circle-, triangle-

, or square-shaped environments (Figure 3A, each environment also bore unique visual cues along their

walls). Anatomical clustering based on groupings of temporally correlated neurons was observed for all

three environments (Figure 3B). The average spatial activity map correlations between the first and second

half of the same sessions, and between sessions recorded in the same environment on different days, did

not differ significantly (Figure 3C). However, anatomical clustering appears to vary across days and across

environments. We measured the level of cluster overlap both for different environments and for the same

environment on different days. The level of cluster overlap is significantly higher than the chance level for all

conditions tested (Figure 3D). This shows that CA1 neurons in each anatomical cluster exhibit a degree of

stability in their being active across the same second-long period of environmental exploration, which is

true for different environments and for the same environment on different days. Though the mean overlap

between neurons forming each group tends to be higher for the same environment as compared to

different environments, it is not significant (Figure 3D). We note that cluster overlap across different envi-

ronments does not imply that the distribution of location-specific firing across neurons is the same for

different environments.

We then considered the possibility that an environment yielding more stable and similar trajectories

through space might yield more robust stability in anatomical clustering. To test this, we compared

anatomical cluster membership and spatial activity patterns when animals traveled along a horizontally

or vertically oriented linear track (Figure 3E, both track orientations gave a view to the same set of global

visual cues in the recording room). As the track defines a space that can be moved or reoriented within a

larger, directly visible allocentric space (defined by the recording room walls), activity maps for different
8 iScience 26, 106703, May 19, 2023
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Figure 3. Anatomical cluster-specific calcium event activities vary across different environments

(A) Experiment schematic. Six mice explored inside three different types of arenas (triangle, circle, and square), each arena for 12 min. The order of

exploration in the first and second day is illustrated in the schematic.

(B) Anatomical clusters in hippocampal CA1 in one representative mouse for each of these trials. The scale bars for B, F, J are the same as displayed in J

(C) Average activity map correlation between the two-halves of each trial and trials with the same geometry on different days. No significant difference is

found between the two conditions (first half - second half: 0.2825G 0.0113, same geometry different days: 0.1889G 0.0363, p = 0.0931, two-tailed Wilcoxon

rank-sum test, Data are presented as the mean G SEM, N = 6 mice).

(D) Cluster overlap between the first and second halves of each trial, between the same geometry trials on different days, between different geometry trials

on the same day, and between different trials on different days. No significant difference is found between these conditions (first half - second half: 0.2950G

0.0155, same geometry different days: 0.3051G 0.0268, different geometry same days: 0.2889G 0.0168, different geometry different days: 0.2764G 0.0168.

first half - second half vs. same geometry different days: p > 0.9999; first half - second half vs. different geometry same days: p > 0.9999; first half - second half

vs. different geometry different days: p = 0.3939; same geometry different days vs. different geometry same days: p = 0.8182; same geometry different days

vs. different geometry different days: p = 0.4848; different geometry same days vs. different geometry different days: p = 0.4848; two-tailed Wilcoxon rank-

sum test, Data are presented as the mean G SEM, N = 6 mice), while all the cluster overlap distributions are significantly higher than their corresponding

shuffled baseline (first half - second half baseline: 0.2117 G 0.0014, same geometry different days baseline: 0.2125 G 0.0031, different geometry same days

baseline: 0.2166 G 0.0032, different geometry different days baseline: 0.2124 G 0.0031, first half - second half vs. its baseline: p = 0.0022, same geometry

different days vs. its baseline: p = 0.0022, different geometry same days vs. its baseline: p = 0.0022, different geometry different days vs. its baseline:

p = 0.0022, two-tailed Wilcoxon rank-sum test, Data are presented as the mean G SEM, N = 6 mice).

(E) Experiment schematic. Six mice conducted exploration on a horizontal linear track on the first day. On the second day, they first repeated the exploration

on the track with previous day’s settings. After that, the track was rotated 90� clockwise, and the mice conducted another exploration on the rotated track.

(F) Anatomical cluster organization for one representative mouse for each of these three conditions.

(G) Average activity map correlation between the first and second halves of the same trials, and between the two horizontal track trials. (First and

second halves: 0.3503G 0.0261, day 1 horizontal to day 2 horizontal: 0.3343 G 0.0344, day 1 horizontal to day 2 vertical: 0.1573G 0.0085, day 2 horizontal to

day 2 vertical: 0.1558 G 0.0057. first and second half vs. day 1 horizontal to day 2 horizontal: p = 0.8182, first and second half vs. day 1 horizontal to day 2

vertical: p = 0.0022, first and second half vs. day 2 horizontal to day 2 vertical: p = 0.0022, day 1 horizontal to day 2 horizontal vs. day 1 horizontal to day 2

vertical: p = 0.0087, day 1 horizontal to day 2 horizontal vs. day 2 horizontal to day 2 vertical: p = 0.0043, day 1 horizontal to day 2 vertical vs. day 2 horizontal to

day 2 vertical: p = 0.9372. two-tailed Wilcoxon rank-sum test, Data are presented as the mean G SEM, N = 6 mice).

(H) Cluster overlap between the first and second halves of the same trials, between day 1 horizontal to day 2 horizontal, between day 1 horizontal to day 2

vertical, and between day 2 horizontal to day 2 vertical, (First and second halves: 0.3333G 0.0177, day 1 horizontal to day 2 horizontal: 0.3702G 0.0283, day 1

horizontal to day 2 vertical: 0.2706 G 0.0283, day 2 horizontal to day 2 vertical: 0.2782 G 0.0048. first and second half vs. day 1 horizontal to day 2 horizontal:

p = 0.3939, first and second half vs. day 1 horizontal to day 2 vertical: p = 0.0043, first and second half vs. day 2 horizontal to day 2 vertical: p = 0.0022, day

1 horizontal to day 2 horizontal vs. day 1 horizontal to day 2 vertical: p = 0.0260, day 1 horizontal to day 2 horizontal vs. day 2 horizontal to day 2 vertical:

p = 0.0260, day 1 horizontal to day 2 vertical vs. day 2 horizontal to day 2 vertical: p = 0.4848. two-tailed Wilcoxon rank-sum test, Data are presented as the

mean G SEM, N = 6 mice). Except day 1 horizontal – day 2 vertical combination, all other cluster overlap distributions are significantly higher than their

corresponding shuffled baseline (First and second halves baseline: 0.2616 G 0.0047, day 1 horizontal to day 2 horizontal baseline: 0.2634 G 0.0066, day 1

horizontal to day 2 vertical baseline: 0.2606 G 0.0036, day 2 horizontal to day 2 vertical baseline: 0.2606 G 0.0036. First and second halves vs. its baseline:

p = 0.0026, day 1 horizontal to day 2 horizontal baseline vs. its baseline: p = 0.0043, day 1 horizontal to day 2 vertical vs. its baseline: p = 0.4848, day 2

horizontal to day 2 vertical vs. its baseline: p = 0.0260, two-tailed Wilcoxon rank-sum test, Data are presented as the mean G SEM, N = 6 mice).

(I) Experiment schematic. Five mice conducted 10-min exploration in the same square box for three times on the first day. On the second day, a barrier was

placed in the middle of the box in the second trial.

(J) Anatomical clusters for one representative mouse for the trials described in I.

(K) Average activity map correlation for the trial combinations (training1 and training3: 0.3586G 0.0294, pre-cue and post-cue: 0.3512G 0.0517, pre-cue and

cue: 0.2805 G 0.0173, post-cue and cue: 0.2872 G 0.0309. training1 and training3 vs. pre-cue and post-cue: p = 0.4206, training1 and training3 vs. pre-cue

and cue: p = 0.0952, training1 and training3 vs. post-cue and cue: p = 0.1508, pre-cue and post-cue vs. pre-cue and cue: p = 0.1508, pre-cue and post-cue vs.

post-cue and cue: p = 0.1508, pre-cue and cue vs. post-cue and cue: p > 0.9999, two-tailed Wilcoxon rank-sum test, Data are presented as the meanG SEM,

N = 6 mice).

(L) Cluster similarities between the training1 and training3 trial in the first day, and between the pre-cue and post-cue, pre-cue and cue, post-cue, and cue

trials in the second day (training1 and training3: 0.3229 G 0.0099, pre-cue and post-cue: 0.3304 G 0.0083, pre-cue and cue: 0.2872 G 0.0123, post-cue and

cue: 0.2950 G 0.0094. training1 and training3 vs. pre-cue and post-cue: p = 0.8413, training1 and training3 vs. pre-cue and cue: p = 0.1508, training1 and

training3 vs. post-cue and cue: p = 0.1508, pre-cue and post-cue vs. pre-cue and cue: p = 0.0317, pre-cue and post-cue vs. post-cue and cue: p = 0.0317, pre-

cue and cue vs. post-cue and cue: p = 0.6905, two-tailedWilcoxon rank-sum test, Data are presented as the meanG SEM, N = 6mice). All the cluster overlap

distributions are significantly higher than their corresponding shuffled baseline (training1 and training3 baseline: 0.2655 G 0.0075, pre-cue and post-cue:

0.2607G 0.0033, pre-cue and cue: 0.3229G 0.0099, post-cue and cue: 0.3304G 0.0083. training1 and training3 vs. its baseline: p = 0.0159, pre-cue and post-

cue vs. its baseline: p = 0.0079, pre-cue and cue vs. its baseline: p = 0.0159, post-cue and cue vs. its baseline: p = 0.0079, two-tailed Wilcoxon rank-sum test,

Data are presented as the mean G SEM, N = 6 mice). Asterisks are defined as p % 0.05 *, p < 0.01 **, p < 0.001,***.
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configurations of the track relative to the room could be compared for similarity; this was not possible for

the open-field arena exploration experiments where an obvious means to align environments is not given.

By rotating the track, the global environment perceived by animals for the same locations on the track will

be differentiated. The clusters based on groupings of temporally correlated neurons recorded from ani-

mals on linear tracks are robust (Figure 3F). We first calculate the spatial activity map correlations between

the first and second halves of individual recording sessions, and between two different sessions using the
10 iScience 26, 106703, May 19, 2023
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Figure 4. Comparisons of anatomical clusters during active exploration and long-term immobility

(A and F; upper portion of each panel) Two example mice actively explored in an open arena (blue traces, square box) (A, F; lower portion of panel) The

example mice were immobile in their home cage (square box) which was dimly lit.

(B and G; upper portion of panel) Raw calcium activity traces of individual neurons of the mice during active exploration of the arena. (B, G; lower portion of

panel) Raw calcium activity trace of individual neurons of the same mice grouped by anatomical clustering during long periods of immobility.

(C, H; upper portion of panel) Anatomical clusters during active exploration of the arena by the example mice. (C and H; lower portion of panel) Anatomical

clusters during long periods of immobility.

(D and I; upper portion of panel) Pairwise correlation matrix of neurons during exploration of the example mice. (D, I; lower portion of panel) Pairwise

correlation matrix of neurons during immobility of the example mice.

(E and J; upper portion of panel) Anatomical cluster patch size for different number of clusters during exploration. (E, J; lower portion of panel) Anatomical

cluster patch size for different number of clusters during immobility. Blue circle: Patch size of the original anatomical clusters. Yellow square: average size of

the distribution of shuffled cluster patches. Overall, original clusters’ patch size across different choices of cluster numbers are significantly higher than that

of shuffled baseline for both exploration and immobility across different cluster numbers (E upper panel: p = 0.0039; E lower panel: p = 0.0039; J upper panel:

p = 0.0039; J lower panel: p = 0.0039. Wilcoxon matched pair signed rank test, N = 9 cluster numbers).

(K and L) Cumulative probability distributions of intra- and inter-cluster pairwise temporal correlations of individual neuron pairs during active exploration

(K) or immobile periods (L) for all mice tested. Shuffled intra-cluster pairwise cross-correlation is included as well in both K and L. (K) During exploration
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Figure 4. Continued

intra-cluster correlation is significantly higher than both shuffled and inter-cluster correlation (intra-cluster: 0.1422 G 0.0010; inter-cluster: 0.0032 G

0.0002; shuffled intra-cluster: 0.0314 G 2.4697*10�5. intra-cluster versus inter-cluster: p = 1.9134*10�29, intra-cluster versus shuffled: p = 8.4786*10�24,

two-sample Kolmogorov-Smirnov test, Data are presented as the mean G SEM). (L) During immobility the intra-cluster correlation is significantly higher

than both shuffled and inter-cluster correlation (intra-cluster: 0.1448 G 0.0001; inter-cluster: 0.0081 G 0.0003; shuffled: 0.0491 G 2.2288*10�5. intra-

cluster versus inter-cluster: p = 5.2291*10�22, intra-cluster versus shuffled: p = 1.5743*10�12, two-sample Kolmogorov-Smirnov test, Data are presented

as the mean G SEM, N = 6 mice). Asterisks are defined as p % 0.05 *, p < 0.01 **, p < 0.001,***.

ll
OPEN ACCESS

iScience
Article
same horizontal orientation. The correlation levels between the halves and same direction trials are in the

same level with the lap-by-lap rate map correlation within each trial (Figure S15) but are significantly higher

than those for the horizontally versus vertically oriented track (Figure 3G), indicating a strong influence of

location and orientation on spatial firing patterns as expected. The level of cluster overlaps for the first and

second halves of each track orientation and across days using the same orientation is beyond that expected

by chance (Figure 3G; comparisons within columns). Next, we asked if there is greater anatomical cluster

overlap for the same versus different track orientations. Anatomical clusters have a significantly greater

overlap for the same orientation in accordance with the greater degree of pairwise activity map correlations

(horizontal or vertical orientation, Figure 3H; comparisons across columns). We attribute the higher clus-

tering overlap for the two horizontal orientation track runs as likely reflecting the constraint on the animal

to only two trajectories through the observable environment; this constraint does not characterize the free

exploration of the circle, triangle, or square-shaped arenas on different days or across different time pe-

riods of the same session.

To further examine how clustering stability may reflect the difference in exploration behavior induced by

environment change, we utilized a task in which a barrier is introduced in the center of the square arena,

which can alter the exploration trajectory of the animals compared with that of empty arena (Figures 3I

and 3J). Although no significant difference was noted in terms of activity map correlation (Figure 3K), we

again noted a significant reduction in cluster overlap between the empty box trials and the barrier trials,

while between two open box trials, even on different days, the anatomical cluster overlap shows no signif-

icant differences (Figure 3L). Altogether, the above results indicate that anatomical clusters display much

stability yet are versatile and dynamic in their organization during active behavioral exploration of different

environments.
Anatomical clusters and behavioral states

Having characterized the dynamics and stability of CA1 anatomical clusters of co-active neurons, we next

asked if they persist across distinct behavioral states. We compared the behavioral states of active explo-

ration versus immobility within the same environment (Figures 4A, 4B, 4F, and 4G). To facilitate immobility,

we imaged CA1 neurons while animals were in their home cage inside a dark box under dim lighting. Visual

inspection of the layout of temporally correlated neuron groups during immobile periods revealed that

anatomical clusters are as robust as those during behavioral exploration (Figures 4C, 4D, 4E, 4H, 4I, and

4J). These results indicate that anatomical clusters are present even during immobility.

To determine the significance of anatomical clustering across the behavioral states of active exploration

versus immobility, we compared the cumulative probability distribution of intra-cluster and inter-cluster

temporal correlations for neuron pairs under active exploration and immobility states. During the explora-

tion period, intra-cluster neuron pair correlations are significantly higher than both shuffled baseline and

inter-cluster correlations (Figure 4K). Similarly, during immobility, intra-cluster neuron pair correlations

are significantly higher than both shuffled baseline and inter-cluster correlations (Figure 4L). These results

suggest that while the temporal correlations in activity seen for anatomical clusters of CA1 neurons are

related to the actual exploration pattern for an environment (Figure 2), temporal clustering is also subject

to the influence of internal dynamics and connectivity. In this way, clustering of activity and anatomical

proximity among neuron sub-groups may form CA1 hippocampal activity sequences for encoding and

memory of locomotor and non-locomotor episodes.
DISCUSSION

Neighboring neurons with similar response properties form topographic modular structures in sensory

areas of the neocortex.47,48 To date, most approaches to detecting such one-to-one correspondences be-

tween the sites of location-specific firing for individual neurons and their locations with the space of CA1
12 iScience 26, 106703, May 19, 2023
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have not found evidence for a strict, metric form of topographic representation of environmental loca-

tion.45 Instead, hippocampal neurons underlying spatial navigation and memory formation are thought

to have a non-topographical, distributed organization. Yet, work addressing this question has focused

on the response properties of very closely neighboring neurons recorded on the same electrode in com-

parison to neurons recorded on different electrodes at larger distances from each other. Furthermore,

these experiments have generated contradictory results.32,45,49 Neurons with the same place field tuning

can be located anywhere in CA1,23 yet under more complicated tasks such as associating positions with

rewards, it has been reported that neurons with the same tuning tend to neighbor one another.18 Similar

anatomically organized CA1 principal neuron sub-populations are also identified after association

learning.34 These results suggest that the anatomical organization of the hippocampus is not yet fully un-

derstood and that there may be yet undiscovered principles of connectivity that guide the expression of

activity sequences.

Our results show that a very different form of topographical organization not examined in prior work is

found when CA1 pyramidal neurons are clustered according to which neurons are activated over sec-

ond-long time periods. Here, clustering, in the form of cluster members being activated within the same

second-long time periods, is accompanied by clustering of members within contiguous areas or ‘‘patches’’

of the CA1 region being imaged. Notably, this form does not imply that neurons of the same cluster will

necessarily exhibit location-specific firing over overlapping locations in the environment. Further, this

form does not imply that members of a cluster are adjacent, but, rather, that they lie over a potentially

broader spatial range within a contiguous region of CA1; cluster members may be neighboring cells or

lie hundreds of microns apart. The CA1 topographical organization of anatomical clusters follows the sec-

onds-scale temporal correlation among large groups of neurons spread over relatively broad regions of

anatomical space. Our approach stands in contrast to the approach used in earlier work in which smaller

hippocampal neuron groups of closely neighboring versus non-neighboring neurons were identified ac-

cording to whether they had been recorded on the same or a different recording tetrode.45 Correlations

in the spatial activity maps for same-tetrode versus different-tetrode neuron groups were used to assess

the presence or absence of topographic organization. In the present study, we find that neurons with

non-overlapping location-specific firing fields can be also assigned to the same cluster, in addition, neu-

rons sharing the same cluster identity can be so anatomically distant from each other that recording

them on the same tetrode would be extremely unlikely. For these reasons, we suggest that the replication

of our findings using electrophysiology in rats or in mice would demand the utilization of a tightly spaced

(across anterior-posterior and medial-lateral dimensions) and dense array of recording electrodes.

Compared to conventional electrophysiological approaches, optical imaging of cell activity allows for

continuous sampling across larger sub-spaces of the CA1 region to better address the issue of topography

and to search for any of multiple forms of it. In the present work, the quantification of temporal correlations

between CA1 neurons imaged over a broad view field for several seconds serendipitously yielded discov-

ery of near-neighbor anatomical clustering in the hippocampal CA1 region.

Anatomical clusters in hippocampal sub-region CA1 have several notable anatomical and functional char-

acteristics. First, they are defined in the present work by temporal correlations between CA1 neurons on the

order of seconds. Many, but not all, of the recorded neurons exhibit place-specific activity by conservative

criteria. By focusing on temporal correlations in firing patterns, our approach examines the dynamics of hip-

pocampal ensembles without employing filters according to a simplified model wherein CA1 excitatory

neurons exhibit only single place fields with highly reliable visit-to-visit activation and robustness to trajec-

tory taken through a location. Thus, at least for active foraging behaviors, the temporal correlations in ac-

tivity reflect in part the sequencing of spatially tuned ensemble activity patterns that accompany specific

trajectories through an environment. Our approach may also be better able to detect co-activation pat-

terns under circumstances where the recording technique (imaging versus electrophysiological) and/or

the species (e.g., rat versus mouse) may be associated with differences in the degree and reliability of

spatial tuning. With respect to spatially versus temporally correlated activity, it is also relevant that we

observed anatomical clustering for both active exploration and immobile behavioral states. The latter,

of course, precludes a spatial approach to defining correlated activity. This suggests that more internally

driven dynamics are organized, at least in part, according to the layout of neurons across the space of

CA1. A second functional characteristic is that anatomical clusters do not always constitute a single contin-

uous region; a single anatomical cluster may include a non-contiguous island of neurons that is relatively

remote from the main cluster. Finally, when we measured anatomical cluster overlap as animals explored
iScience 26, 106703, May 19, 2023 13
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different environments, we found that they are dynamic in their organization. In other words, the anatom-

ical distribution of clusters has a ‘‘mix-and-match’’ quality wherein the observed topography is specific to

the environment. Temporally correlated clusters of neurons and the sub-regions they occupy in CA1 can be

organized in a combinatorial fashion that matches the diversity of experience across environments.

The question as to what circuitry leads to temporal activity correlations for anatomically clustered neurons

is complex. Multiple non-random distributions of connectivity co-exist in CA1 including inputs from ento-

rhinal cortex, subiculum, and CA3, all of which vary systematically along the transverse and septo-temporal

axes of hippocampus.50 Yet, anatomical clustering observed in the present work is dynamic and does not

neatly follow obvious medial/lateral or anterior/posterior patterns. Another possible source of anatomical

organization are patterns of hippocampal GABAergic interneuronal axonal arbors. CA1 interneurons are

heterogeneous in their dendritic and axonal arbors and are tightly integrated into the temporal and spatial

tuning dynamics of CA1 pyramidal cells.25,27,51,52 Through broad-scale changes in firing rates, sub-popu-

lations of interneurons appear to influence CA1 pyramidal neuron spatial tuning over the space of exper-

imental arenas such as those used in the present work.11,53 Thus, we speculate that the dynamic and

fractured topography of CA1 neuron activation patterns observed in the present study are the product

of time-based and environment-based dynamic reorganization of activity patterns among CA1 interneu-

rons and the organization of excitatory inputs according to the transverse and longitudinal axes.

Geiller et al.’s recent study provided a model hypothesizing CA1 pyramidal cells are embedded inside a

subnetwork including neighboring pyramidal cells and interneurons. In our results, the anatomical distribu-

tion of neighboring intra-cluster neurons to place cells, and the distance-temporal correlation relationship

of temporally clustered pyramidal neurons is comparable to what Geiller et al. study presented. Our obser-

vation is based on different analytical approaches, which make us believe that we are measuring the phys-

iological properties of CA1 pyramidal neuron populations rather than coincidence caused by non-neuron

structures or specific experimental settings. Meanwhile, the idea of recurrently connected neighboring py-

ramidal cells could be another potential source of the CA1 pyramidal cell organization we are seeing here

and is worth further study.

Overall, our findings imply that episodic memories for random trajectories through an environment may be

contained within sub-spaces of CA1 and that the activation of CA1 sub-regions could trigger recall of the

environmental locations already visited within a single exploration session. This is consistent with recent

work demonstrating that the co-activation of neurons over timescales of several seconds can drive the

changes in synaptic efficacy that are thought to define memories.19 Alternatively, activation of clusters

could be involved in the control of behavioral output itself through CA1 outputs to prefrontal cortex54

or retrosplenial cortex.55 Also, anatomical clusters may guide neural activity that contributes to spatial nav-

igation and episodic memory.
Limitation of the study

Although we have performed a number of analyses to make sure our imaging data only contains the

response of principal cells, we acknowledge that one-photon imaging has intrinsic limitations in distin-

guishing multi-plane and background signals. Further studies can utilize 2-photon imaging or electrophys-

iology technics with high anatomical resolution to further investigate the topic. Also, detailed investiga-

tions should be performed to examine the observations described here in environments with different

sizes, in different types of tasks, and animal species. While CNMF-E is widely used in neuron extraction

from 1-photon calcium imaging recordings, deep-learning-based neuron identification tools such as

DeepWonder have been noted for better modeling of the background in fluorescence imaging.56 Future

research may acquire neuron extraction results from recently developed tools.
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and Buzsáki, G. (2008). Internally generated
cell assembly sequences in the rat
Hippocampus. Science 321, 1322–1327.
https://doi.org/10.1126/science.1159775.

16. Karlsson, M.P., and Frank, L.M. (2009). Awake
replay of remote experiences in the
hippocampus. Nat. Neurosci. 12, 913–918.
https://doi.org/10.1038/nn.2344.

17. Brown, E.N., Frank, L.M., Tang, D., Quirk,
M.C., and Wilson, M.A. (1998). A statistical
paradigm for neural spike train decoding
applied to position prediction from ensemble
firing patterns of rat hippocampal place cells.
J. Neurosci. 18, 7411–7425. https://doi.org/
10.1523/JNEUROSCI.18-18-07411.1998.
16 iScience 26, 106703, May 19, 2023
18. Grieves, R.M., Wood, E.R., and Dudchenko,
P.A. (2016). Place cells on a maze encode
routes rather than destinations. Elife 5,
e15986. https://doi.org/10.7554/eLife.15986.

19. Bittner, K.C., Milstein, A.D., Grienberger, C.,
Romani, S., and Magee, J.C. (2017).
Behavioral time scale synaptic plasticity
underlies CA1 place fields. Science 357,
1033–1036. https://doi.org/10.1126/science.
aan3846.

20. Marr, D., and Brindley, G.S. (1971). Simple
memory: a theory for archicortex. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81.
https://doi.org/10.1098/rstb.1971.0078.
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organization-of-temporally-correlated-hippocampal-

CA1-neurons/

xiangmixLab/Anatomical-organization-of-temporally-

correlated-hippocampal-CA1-neurons

Experimental models: Organisms/strains

C57BL/6J-Camk2a-Cre mice Jackson Laboratory 000664

Ai163 Allen Institute https://doi.org/10.1016/j.cell.2018.06.035

Camk2a-Cre Jackson Laboratory 005396

Software and algorithms

CNMF-E https://github.com/zhoupc/CNMF_E zhoupc/CNMF_E

TUnCaT https://github.com/YijunBao/TUnCaT YijunBao/TUnCaT

DBSCAN https://yarpiz.com/255/ypml110-dbscan-clustering ypml110-dbscan-clustering

GraphPad Prism 9 GraphPad Software https://www.graphpad.com

Matlab 2017a Mathworks https://www.mathworks.com/

NormCorre https://github.com/flatironinstitute/NoRMCorre flatironinstitute/NoRMCorre

ICA-based assembly detection https://github.com/tortlab/Cell-Assembly-Detection tortlab/Cell-Assembly-Detection
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Xiangmin Xu (xiangmix@hs.uci.edu).

Material availability

This study did not generate new unique reagents.

Data and code availability

d The calcium imaging data and behavior data of the study is publicly available at Mendeley data repos-

itory (Mendeley Data: https://doi.org/10.17632/tnbwfw2pg2.2) as of the date of publication, DOIs are

listed in the key resources table.

d Original code used in the study is publicly available at the lab’s github repository (https://github.com/

xiangmixLab/Anatomical-organization-of-temporally-correlated-hippocampal-CA1-neurons). The

unique identifiers are listed in the key resources table.
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All experiments were conducted according to the National Institute of Health guidelines for animal care

and use and were approved by the Institutional Animal Care and Use Committee and the Institutional

Biosafety Committee of the University of California, Irvine. C57BL/6J and Camk2a-Cre mice were acquired

from Jackson Laboratory for the described experiments. Ai163 mice were directly transferred from the

Allen Institute for Brain Science.41 Camk2a-Cre; Ai163 mice were obtained by crossing Ai163 and

Camk2a-Cre mice. C57BL/6J and Camk2a-Cre; Ai163 mice were all between 4 and 8 months old. In the cir-

cle, square and triangle box experiment for Figures 1 and 3, 2 male and 4 female mice were included; In the

open arena experiment for Figure 2 5 male and 7 female mice were included; In the linear track experiment

for Figure 3 2 male and 4 female mice were included; In the barrier experiment for Figure 3 5 male mice

were included; In the immobility experiment for Figure 4 3 male mice were included. Animals had access

to food and water in their home cages with lights maintained on a 12 h light/dark cycle (lights on at

6:30 a.m., lights off at 6:30 p.m.).

METHOD DETAILS

Mouse surgery and viral injections

The general procedure for viral injections has been described previously.57 To perform stereotaxic viral in-

jections into the brain, mice were anesthetized under 1.5% isoflurane for 10 min with a 0.8 L/min oxygen

flow rate using a bench top unit (HME1-9, Highland Medical Equipment). Mice were then placed into a ste-

reotaxic unit for mice (Leica Angle Two�) with their heads secured and received continuous 1% isoflurane

anesthesia. A small incision was made on the scalp and the skin was opened to expose the skull and the

landmarks of bregma and lambda to determine the coordinates for the injection site. A three-axis micro-

manipulator guided by a digital atlas was used to determine the position of bregma and lambda. Using the

micromanipulator software, the injection site was calculated relative bregma and lambda, using comput-

erized coordinates in the digital atlas. To image in vivo calcium transients from CA1 excitatory neurons,

0.2ul of GCaMP6-expressing virus, AAV1-CaMKII-GCaMP6f-WPRE-SV40 (Penn Vector Core: 3.7 x 1013

genome copies per mL) was injected into hippocampal CA1 area (AP: �1.94 mm; ML: �1.4 mm; DV:

�1.35 mm). The injection site was drilled with a small hole for the delivery of virus. 0.4ul of the GCaMP6-

expressing virus was loaded into a glass pipette (tip diameter,�20–30 mm) and delivered into target region

with a Picospritzer (General Valve, Hollis, NH) at a rate of 20–30 nL/min with 10 ms pulse duration. The glass

pipette was left in the brain for 5 min after injection to prevent the backflow of the virus. After the

complexion of the injection, the incision of mouse was closed with tissue adhesive (3M Vetbond, St.

Paul, MN). Mice were injected with 5 mg/kg Carprofen to mitigate pain and inflammation. Animals were

returned to their home cage for recovery. We waited for 3 weeks after the AAV injection, which allows

the infected neurons to express sufficient levels of calcium indicators. Then a follow-up procedure was per-

formed to implant a gradient refractive index (GRIN) lens over the injection site.

GRIN lens implantation and baseplate placement

All animals were implanted with a GRIN lens at the target CA1 region for in vivo calcium imaging after the

AAV-GCaMP injection. A 1.8-mm diameter circular craniotomy was implanted at the following coordinates

of the CA1 region: AP: �2.3 mm, ML: �1.75 mm, DV: �1.55 mm. Using a scalpel to incise the skin, we

removed connective tissue and dissected muscles from the edge of the skull. To enhance the stability of

microscope implantation and in vivo imaging quality, we used a burr (Meisinger, 1/4 Round Steel) to

roughen the surface of the skull and to implant a skull screw far away from the implantation area. A center

point for the craniotomy was marked on the exposed skull, and surrounding this point, we etch a 1-mm

radius cranial window. We carefully removed bone fragments with fine forceps and gently aspirated the

exposed tissue with a 27G flat needle until seeing the white striated structure (corpus callosum) above

CA1. We then changed to a 29G flat needle for tissue aspiration and stopped when the hippocampus itself

was exposed. We then attached the prepared lens holder to the stereotaxic apparatus and gently lowered

the GRIN lens to the target area. A small amount of krazy glue was applied around the lens within the crani-

otomy to cover the exposed tissue. The GRIN lens was fixed to the skull with dental cement (Lang Dental

Manufacturing: 1304CLR). A thick layer of Kwik-Sil was applied to the top of the lens to protect it from
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physical damages. We used a miniscope to check neural calcium activity through the GRIN lens and to

adjust the placement of the baseplate for maximal neuron yields.
Open arenas experiment (ensemble activity map analysis)

After one week of handling, 12 mice were habituated in the experimental chamber for four consecutive

days. The two arenas included a circular box (36 cm in diameter) and a rectangular box (32 cm*26 cm),

each adorned with different distal visual cues on each wall. On the first day, animals with head-mounted

miniscopes were to explore in the rectangular arena for 10 min. Then after 6 days which is generally consid-

ered sufficient for animals to forget about previous experience, animals ran in the circular arena for 10 min.
Open arenas experiment (circle, square and triangle box)

After one week of handling, 6 mice were habituated in the experimental chamber for four consecutive days.

Animals with a head-mounted scope freely explored within each of three open-field arenas for 12 min. The

three arenas included a circular box (36 cm in diameter), a square box (26 cm in length and width) and a

triangular box (area 840 cm2) each adorned with different visual cues on wall. In between recording ses-

sions, the corncob bedding was changed, and the arenas were cleaned with 10% ethanol. On the first

day of habituation, animals with head-mounted miniscope were first trained in the circular environments

for 12 min, followed by another 12 min in the square box, and then finally they explored in the triangle

box in the last 12 min. On day two, animals ran in each arena for 12 min as was done for day one, but in

a different order. The actual experiments use the same design as habituation.
Barrier experiment

Camk2a-Cre; Ai 163 mice (n = 5) implanted with miniscope GRIN lenses at hippocampal CA1 were used for

this experiment. Animals underwent water restriction for 1 week, given around 1mL water per day until they

reached�80% of their original body weight. In themeantime, all animals were handled and habituated with

a miniscope mounted on the head for 1 week. The recording lasted for two days with 3 sessions each day.

The first day contained three training sessions in an empty square box. The second day contained three

sessions, including pre-cue (empty square box), cue (square box with a black barrier positioned at the cen-

ter) and post-cue (empty square box) sessions. For each session, animals were taken out from their home

cage and put into a random position in the box at the beginning of the recording. The experimenter added

5-10 mL waterdrops every 30 s at a random position into the box. The water-deprived mice would search for

the waterdrops across the arena. Miniscope imaging and animal behavior data were simultaneously re-

corded. Each session lasted for 600 s. The square box wall was painted in light gray without visual cues.

Animals were able to see the surrounding environment of the room since the box wall was low. The square

box had a waterproof mat on the floor. The dimensions of the square box and the barrier were

25 cm*25 cm*11 cm and 12.5 cm*12.5 cm*1.2 cm.
Linear track

6 mice were handled 5 min per day for 3 consecutive days and then trained to run on the linear track during

a week of habituation sessions. Water restriction was conducted to motivate animals and the reduction of

body weights was controlled within 20%. A 1-meter-long linear track made of black wood was used. 10%

ethanol was used for track cleaning between each recording session. Each mouse was placed on the mid-

dle of linear track at the beginning of behavior task. The animal was required to run to the end of the track to

get 10ul of water reward. Training continued until a minimum of 40 laps per session was achieved. On day 1

of the experimental recording, animals were required to go through 1 session (day 1-horizontal). On the

second day, animals went through the same session as day 1 (day 2-horizontal), and then ran another 30

laps after a 90-degree rotation of the linear track relative to the recording environment (day 2-vertical).

The animal was held in the experimenter’s hand for a 1-min break between the two sessions.
Immobility imaging

3 mice were habituated in their home cage inside dark box for 4 consecutive days. The dark box was dimly

illuminated with a blue LED. Animals’ position was tracked by an Arlo wire-free camera and was used to

determine the immobility periods. On the experimental day, mouse behavior and CA1 neuronal activities

were first recorded with the room lights on. The animal was then placed back to the dark box (dim blue

LEDs only), and imaging was made during periods of immobility for 10 min.
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Histology

Mice were transcardially perfused, and the harvested brains were post-fixed in 4% paraformaldehyde over-

night, followed by 30% sucrose in phosphate buffered saline for the next day. The brain was then sectioned

coronally using amicrotome (Leica SM2010R, 30mmslices). Brain slices near the GRIN lens implantation area

of hippocampal CA1 were collected and stained with DAPI and mounted on microscope slides. Brain sec-

tions were then imaged using a fluorescence BX61 Olympus microscope to visualize fluorescently labeled

(GCaMP6+) CA1 cells.
Calcium imaging data preprocessing

Calcium imaging data was downsampled to 15 frames/sec. To adjust for rigid, between-frame movements

of the brain relative to the camera, motion correction was applied to the images with an established calcium

imaging motion correction pipeline, NormCorre58 (https://github.com/flatironinstitute/NoRMCorre). The

corrected recordings under different conditions were aligned with each other by aligning the neurons that

appeared across conditions and were combined prior to neuron extraction.
Extraction of calcium transients in individual neurons using the CNMF-E method

The calcium signals of neurons were extracted from the combined recording using the Extended Con-

strained Nonnegative Matrix Factorization (CNMF-E) method proposed by Zhou et al.59 (https://github.

com/zhoupc/CNMF_E). This method models the recording as follows:

yðx; tÞ =
XK
i = 1

aiðxÞ � ciðtÞ+bðx; tÞ

Where yðx; tÞ represents the raw video data, aiðxÞ represent the neuron’s spatial footprint, ciðtÞ represents
the temporal calcium activity and bðx; tÞ represents the background activity. The software applies sophis-

ticated background approximation to remove the background component, and by iteratively applying

constrained nonnegative matrix factorization to the remaining data, extracts the temporal varying calcium

dynamic and the spatial footprint of neurons in the recordings.

We note the footprints of CNMF-E extracted neurons usually have a bright center and gradually fade to-

ward the periphery, while artifacts have uniform brightness or distributed bright spots. To exclude artifacts,

we calculated Kullback–Leibler divergence between the footprints and a 2D normal distribution, whose

peak locates at the centroid of the footprint and variance equal the variance of the footprint. The

Kullback–Leibler divergence gives a value range from 0 to 1 that quantifies the similarity between two dis-

tributions, so here it represents the closeness between the actual neuron footprint and the theoretically

perfect footprint. For a perfect match, the divergence value is 0. Neurons with divergence values smaller

than 0.3 were kept for subsequent analyses. We also applied manual intervention to further remove false

detections with aberrant shapes and temporal responses.
Mouse movement tracking

The movement trajectory of the mouse was extracted from overhead videos using a Logitech web camera

which has a sample rate of 30 Hz. The floor of any given arena is selected as the region of interest (ROI) to

restrict the area for detection of movement. A red LED built into theminiscope is detected inside the ROI of

each frame, and its centroid position is captured using customized MATLAB software. The locomotor tra-

jectory is constructed from the positions of red LED across all frames and smoothed with a moving average.
Autocorrelation of temporal dynamics

To quantify the time span of correlated calcium activities in temporal clusters, the calcium signals of all neu-

rons in one cluster are added up together to get the ensemble trace, and the autocorrelation of the

ensemble trace is calculated with MATLAB ‘‘xcorr’’ function. Half-length of the higher-than-0 autocorrela-

tion data is considered as the time span of correlated calcium activities.
Spike train and spatial activity map calculation

For activity rate calculations, the calcium spike trains are estimated by applying the CNMF-E embedded

deconvolution algorithm, OASIS,60 to the extracted temporal calcium dynamics. A threshold of 3 times
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of the standard deviation of the spike amplitudes was applied for each neuron. Spikes lower than the

threshold was discarded.

Spatial activity maps were calculated as follows: the locomotor trajectory is downsampled by 2 to be

aligned with the calcium responses. In all experiments, the ROI is divided into 1 cm 3 1 cm bins. For

each bin, the total time the mouse occupied that location is determined as is the total number of events

occurring while occupying that bin (C). The spatial event rate for each bin (bin rate) is thus C/bin time. After

construction, the activity map is smoothed with a 10 cm 3 10 cm 2D Gaussian kernel (delta = 2 cm). This is

applied to all experiments including linear track and open field arena trials. For linear track, the trajectory

and calcium data within 10% of both ends were excluded as they were inside the water reward area. The

number of fields was determined by counting the components inside the binarized activity maps in which

only the center of the fields with bin rates higher than the 0.5 times of maximal bin rate across the map are

preserved.

Ensemble activity map of each cluster was calculated by averaging the activity maps of all intra-cluster

neurons.

Spatial activity map correlations

Activity maps of the same neuron in two different trials are reshaped to one-dimensional vectors, and the

Pearson correlation between the reshaped vectors represents the correlation between the corresponding

activity maps.

K-mean based consensus clustering (KCC) and optimal cluster numbers

We utilized a clustering method called ‘‘k-mean based consensus clustering" (KCC)35 with slight modifica-

tions to achieve replicable clustering results while automatically determining the optimal cluster number. In

detail, we first predefined a range of 2–10 as potential cluster numbers. Then for each potential number, we

perform 100 rounds of k-mean clustering. In each round, neuron responses are downsampled by half, and

then linearly interpolated to match the original length. K-means clustering is applied to the interpolated

responses with K-means ++ seeding. Pairwise correlations between responses are used as distance for

cluster calculation.

The results from 100 clustering rounds are used to build a consensus matrix that contains the pairwise sim-

ilarity between neuron pairs (i.e., the number of rounds that two neurons fall into the same cluster). To

determine the optimal number of clusters, we calculate the cophenetic correlation coefficient of the

consensus matrixes corresponding to each of the cluster number candidates. Given a consensus matrix

X, and its corresponding dendrogram of Z, the cophenetic correlation coefficient of X is calculated as

follows:

c =

P
i < j

�
Xij � X

��
Zij � Z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i < j

�
Xij � X

�P
i < j

�
Zij � Z

�q

Where Xij is the distance between point i and j in matrix, and Zij is the dendrogram distance between point i

and j. The coefficient will be higher if the hierarchical clustering result of the consensus matrix is more

robust.59 Hence, inside the predefined range, the consensus matrix with the highest cophenetic correlation

corresponds to the optimal cluster number and represents the optimal clustering result.

With the optimal cluster number and its corresponding consensus matrix, hierarchical clustering is per-

formed to the consensus matrix, and the final clustering result is defined at the hierarchical level that

give the optimal number of clusters.

ICA-based clustering

We utilized the ICA-based clustering method described in previous study39 (https://github.com/tortlab/

Cell-Assembly-Detection). The method returns the weight matrix representing each neuron’s contribution

toward a specific assembly, and based on that, the assembly time-series can be built from the neuronal ac-

tivities. For comparison with KCC-based clustering, we applied the cluster number determined by KCC-

based clustering to the ICA-based algorithm. We utilize all the neurons with weight value larger than 0.

For each assembly, the weights of all neurons are sorted, and a neuron will be assigned into the assembly’s
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neural cluster if its weight toward the current assembly is larger than that toward other assemblies. If there

is a position tie between multiple assemblies, we resolve this by comparing the correlation between the

neuron’s transient with the assembly’s activity and assign the neuron to the assembly with which it has

the highest correlation.
Intra- and inter-cluster pairwise correlation and spatial distance

The pairwise Pearson correlation of calcium signals was calculated for all neuron pairs of each mouse ac-

cording to their categorization as belonging to the same cluster (intra-cluster) or different clusters (inter-

cluster). Baseline correlations are determined following 100 randomized shuffles of cluster identity while

retaining the same number of neurons in each cluster.

For the pairwise correlation – pairwise distance data. The correlation-distance distribution was fit with a first

order power function. Wilcoxon matched pair signed rank test is used to test the difference of fit curves of

intra- and inter-cluster correlation-distance distribution.
Anatomically contiguous patches of CA1 anatomical space

We used Density-Based Spatial Clustering of Applications with Noise (DBSCAN)38 to isolate the anatomi-

cally compact neuron clusters. For each neuron, DBSCAN takes its centroid and counts how many of its

neighborhood neurons arewithin thepredefinedmaximumneighborhooddistance L. If the number of qual-

ified neighborhood neurons are higher than the predefined number threshold N, then this neuron and its

neighbors form up an anatomically compact neuron cluster. The algorithm continues to perform the

same operation until no more clusters are founded and no more neurons are assigned to the existing clus-

ters. We define L as the 95th percentile of the minimum neighborhood distances for all neurons. For N, we

choose an arbitrary number 3, which means the smallest anatomical cluster should have at least 3 neurons.

Having defined anatomically compact neuron groups, we define their outer boundaries by connecting the

centroids of the most peripheral neurons and use the boundaries to define anatomically contiguous

patches. Each cluster may have one or multiple patches. The patch size of each cluster is then calculated

as the average size of all its regions. A threshold of 10%maximumpatch size is applied to the calculations to

minimize the influence of very small patches. To determine the chance level, we shuffle the cluster identities

of neurons 100 times, and calculate the patch size for each shuffled clustering result, which formulate a dis-

tribution of patch sizes of shuffled clusters. Wilcoxon matched pair signed rank test is used to test the dif-

ference between the curves of original anatomical cluster patch size and that of averaged shuffled cluster

patch size across different cluster number candidates.
Cluster overlap

Cluster overlap is quantified as the percentage of neuron pairs remaining in the same cluster across two

independent clustering results. The algorithm is described as follows (Figure S1C): Suppose a group of

neurons has two clustering results (in different trials for example), P1 and P2, neurons in a specific cluster

c of P1 may go into N clusters in P2.

We define:ai = number of neurons in cluster c that go into cluster i ði = 1:::NÞ in P2S = total number of neu-

rons in cluster c

Then the cluster overlap between c and the corresponding N clusters in P2 is

overlap =

P
i = 1:::N

�
ai
2

�
�
S
2

� :

�
ai
2

�
means the combinations of all possible two-neuron pairs in a population of ai neurons. If 0< ai %2,

�
ai
2

�
is

replaced with 1, there is only 1 possible combination of these neurons. When ai = 0,
�
ai
2

�
is replaced with 0.

If P1 has M clusters, the overall cluster overlap between P1 and P2 will be the average overlap across M

clusters:
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overall overlap =

P
i = 1:::M

�
overlapi

�
M

The baseline for overall cluster overlap is calculated as the average of 95th percentile for 1000 shuffled over-

all cluster overlap for all mice.

It is noted that the difference in cluster number may affect the overlap (or non-overlap) of cluster partitions

as well. To control this variability, when comparing cluster overlap between different conditions (Figure 3),

we redo the clustering using a uniform cluster number for each experiment. For circle-square-triangle box,

linear track and barrier experiments, the uniform cluster numbers chosen are 5, 4, 4, respectively. In Fig-

ure S3, when comparing the clusters between different periods, we first determine the cluster number using

the whole 12 min data, then apply this number to all 6min periods.
Information score and place cell

Information score of recorded neurons is calculated as information per spike.61 Only the running session

with speed larger than 0.5 cm/s are included in calculation, and the spatial bins with bin time smaller

than 0.1 s are excluded to avoid non-existed trespass caused by trajectory smoothing. For an activity

map with n bins, the information per second is defined as:

Information Score
�
bits

�
spike

�
=

Xn

i = 1

Pi
li

l
log2

li

l

Pi is the probability themouse stays in the i th bin, which is represented as the ratio between the times in the

bin and total times of the trial. li is the firing rate of the i th bin, while l is the average firing rate across the

trial. Place cells are defined by comparing the information score of each neuron with its shuffled baseline.

All the time points along the calcium responses will be randomly shuffled for 100 times, to randomize their

correspondence with behavior and generate a distribution of potential score values the neuron may

achieve. A neuron is determined as a place cell if its original score value is higher than the 95th percentile

of the shuffled distribution.

Spatial coherence is used to further trim the selection of place cells by the firing field smoothness. Spatial

coherence is calculated as the correlation between the bin rate of each pixel and the averaged bin rate of its

8 neighboring bins.62 Place cells with spatial coherence higher than 0.4 are selected for further analysis.
TUnCaT processing

The Temporal Unmixing of Calcium Traces (TUnCaT) software were obtained from the official github link42

(https://github.com/YijunBao/TUnCaT). The software requires the original recording video and amask rep-

resenting the originally detected neurons. Following the TUnCaT protocol, we used the CNMF-E’s neuron

footprint as the neuron mask input. We used OASIS to obtain the CNMF-E like calcium trace from TUnCaT

generated raw calcium traces for comparisons. We noted that TUnCaT returns empty or aberrant calcium

traces for some neurons even they have acceptable CNMF-E calcium traces. We excluded these neurons

from the downstream analysis. For the above-threshold peak analysis, we applied Gaussian smoothing to

the signals (Gaussian window length: 6 s), as well as a threshold of 0.2 times of the maximum calcium trace

amplitude to explicitly target the large activities.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as the meanG SEM. Two-tailed Wilcoxon rank-sum test was used for testing statistical

significance between distributions of individual mouse. Two sample Kolmogorov-Smirnov test was used to

compare the difference between cumulative distributions. Wilcoxon matched pairs signed rank test was

used to test the cluster size difference across different cluster numbers, as well as to test the pairwise cor-

relation difference across different pairwise distance. The level of statistical significance was defined as are

defined as p % 0.05 *, p < 0.01 **, p < 0.001 ***. Statistical test details can be found in the corresponding

legends of the figure panels.
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