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Virulent duck enteritis virus infected DEF
cells generate a unique pattern of viral
microRNAs and a novel set of host
microRNAs
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Abstract

Background: Duck enteritis virus (DEV) belongs to the family Herpesviridae and is an important epornitic agent that
causes economic losses in the waterfowl industry. The Chinese virulent (CHv) and attenuate vaccines (VAC) are two
different pathogenic DEV strains. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression
in viral infection. Nonetheless, there is little information on virulent duck enteritis virus (DEV)-encoded miRNAs.

Results: Using high-throughput sequencing, we identified 39 mature viral miRNAs from CHv-infected duck embryo
fibroblasts cells. Compared with the reported 33 VAC-encoded miRNAs, only 13 miRNA sequences and 22 “seed
sequences” of miRNA were identical, and 8 novel viral miRNAs were detected and confirmed by stem-loop RT-qPCR
in this study. Using RNAhybrid and PITA software, 38 CHv-encoded miRNAs were predicted to target 41 viral genes
and formed a complex regulatory network. Dual luciferase reporter assay (DLRA) confirmed that viral dev-miR-D8-3p
can directly target the 3’-UTR of CHv US1 gene (p < 0.05). Gene Ontology analysis on host target genes of viral
miRNAs were mainly involved in biological regulation, cellular and metabolic processes. In addition, 598 novel duck-
encoded miRNAs were detected in this study. Thirty-eight host miRNAs showed significant differential expression
after CHv infection: 13 miRNAs were up-regulated, and 25 miRNAs were down-regulated, which may affect viral
replication in the host cell.

Conclusions: These data suggested that CHv encoded a different set of microRNAs and formed a unique
regulatory network compared with VAC. This is the first report of DEF miRNAs expression profile and an analysis of
these miRNAs regulatory mechanisms during DEV infection. These data provide a basis for further exploring miRNA
regulatory roles in the pathogenesis of DEV infection and contribute to the understanding of the CHv-host
interaction at the miRNA level.
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Background
Duck viral enteritis, also called as duck plague, is an
acute, contagious and fatal disease of duck and geese,
resulting in considerable economic losses in the water-
fowl breeding industry [1–4]. The causative agent of this
disease is duck enteritis virus (DEV) which belongs to
the species Anatid herpesvirus I, genus Mardivirus, sub-
family Alphaherpesvirinae, family Herpesviridae [5].
Many countries, such as China, Britain, the United
States, Germany, and Netherlands have reported the
prevalence of this virus [6–8]. The genome of DEV is a
linear double-stranded DNA molecule composed of a
unique long region (UL) and a unique short region (US)
flanked by an internal repeat sequence (IRS) and a ter-
minal repeat sequence (TRS). Its genomic arrangement
pattern (UL-IRS-US-TRS) is consistent with the mem-
bers of Marek’s disease virus 1 and 2 (MDV-1 and
MDV-2), herpes simplex virus types 1 and 2 (HSV-1 and
HSV-2) and Pseudorabies virus (PRV) [7, 8].
MicroRNAs (miRNAs) are small (18–24 nt), endogen-

ous non-coding RNAs that widely found in plant, animal
and viral genomes and are now increasingly recognized
as important regulators of gene expression through
post-transcriptional mechanisms, leading to mRNA deg-
radation or translational inhibition by binding to fully or
partially complementary 3′ untranslated regions (3’UTR)
[9]. These small miRNAs participate in a variety of bio-
logical processes, including cellular proliferation, differ-
entiation, apoptosis, signal transduction and the process
of virus-host interactions [10–14].
Over 300 virus-encoded miRNAs have been identified

(miRBase 22.0). They were encoded by multiple virus
families [15, 16], such as herpesviruses adenoviruses,
polyomaviruses and retroviruses [17–19]. approximately
95% of viral miRNAs were encoded by herpesvirus fam-
ilies [20]. This phenomenon suggested the importance of
miRNA-mediated gene regulation in the biology of her-
pesvirus infections. Some functions of viral miRNAs
were validated by experiments in the pathogenesis of
herpesvirus infection [21, 22].
As with many other miRNA-encoding α-herpesviruses

[23–28], DEV-encoded miRNAs were identified from
VAC-infected chicken embryo fibroblast (CEF) by deep
sequencing technology [29]. This research identified 24
pre-miRNAs in VAC genome producing 33 mature miR-
NAs. The VAC strain was attenuated and was widely
used against duck viral enteritis [7], while the CHv strain
(Chinese virulent DEV strain) can cause epidemical and
fatal disease in waterfowl [30]. CHv and VAC are two
different pathogenic DEV strains [31]. The mechanism
of the two viruses causing different pathogenesis is not
well understood. Our aim was to confirm whether the
CHv encoded the same miRNAs as VAC and explore
those miRNAs regulatory roles in CHv infection.

Moreover, recent studies have demonstrated that host
miRNAs play crucial roles in viral infection [20, 21], but
DEF-encoded miRNAs have not been reported until
now. For the above purposes, we constructed and ana-
lysed the miRNA expression profile from CHv-infected
and uninfected DEF cells using high-throughput sequen-
cing. The potential targets of viral and host miRNAs
were predicted by RNAhybrid and PITA software. These
data may contribute to the understanding of CHv patho-
genesis and the CHv virus-host interaction at the overall
miRNA level.

Methods
Virus and cells
CHv (GenBank accession No. JQ647509), a classic
Chinese virulent strain, was isolated from an infected
duck farm and kept in our laboratory. Primary duck em-
bryo fibroblast (DEF) cells were made using 10-day-old
embryonated duck eggs (Chengdu Egg & Poultry Co.
China) for virus propagation. The use of duck embryos
in this study was approved by the Animal Ethics
Committee of Sichuan Agricultural University (approval
No. XF2014–18). Cell monolayers were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,
Grand Island, NY USA) supplemented with 8% foetal
bovine serum (FBS, Gibco, USA) and 1% penicillin-
streptomycin (Gibco, USA) at 37 °C in a 5% CO2 hu-
midified incubator.

Isolation and sequence of RNA
Duck embryo fibroblasts (DEF) cells (80% confluency
per dish) were infected with CHv at a multiplicity of in-
fection (MOI) of 1.0, with mock-infected DEF as a con-
trol. Cells were harvested at 2, 4, 6, 8, 12, 18, 24 and
30 h post-infection (hpi) and resuspended in TRIzol
(TIANGEN, Beijing, China). Total RNAs from DEV-
infected and uninfected DEF cells at the above time
points were extracted according to the manufacturer’s
directions (TIANGEN, Beijing, China) and quantified
using a NanoDrop 2000 Spectrophotometer (Thermo,
Carlsbad, CA, USA). The RNA (0.125 μg) extracted from
the eight time points was mixed as a group. Our experi-
ments were performed in triplicate and all the infected and
control samples were subjected to Huada (Guangdong,
China) for high-throughput sequencing of small RNAs
(sRNAs). The same mixed RNA samples were used in the
subsequent stem-loop RT-qPCR experiments.

Data sources
The CHv genome has been sequenced and the total size
is 162,175 bp. The annotated VAC-encoded miRNAs
were from miRBase 22.0 (http://www.mirbase.org/).
Duck genomic sequences and the 3’UTR of duck genes
were downloaded from the Ensembl database (http://
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www.ensembl.org). The annotated chicken and Zebra
Finch mature miRNAs were from miRBase 22.0 (http://
www.mirbase.org/).

Analysis of viral small RNAs
The total raw small RNA (sRNA) reads were detected by
an Illumina Genome Analyser. The cleaned sequence
reads were obtained after the filtering procedure as pre-
viously described [32, 33]. Using the Bowtie algorithm
[34], the filtered sRNA reads were aligned to the known
DEV pre-miRNA sequences in miRBase 22.0 with no
mismatch and then aligned to the corresponding mature
miRNA with at least 16 nts overlap allowing offsets. The
known CHv-encoded miRNAs including the pre-miRNA
sequences, length and count of reads would be obtained.
The remaining sRNA reads mapped to genome were
subjected for novel miRNA prediction. Mireap software
(http://sourceforge.net/projects/mireap/) was used to
predict novel miRNA by exploring the secondary struc-
ture. Dicer cleavage sites and predicted minimum free
energies of unannotated sRNA reads.

Analysis of host small RNAs
There are not any Anas platyrhynchos miRNAs anno-
tated in the miRBase 22.0. All host small RNA se-
quences were aligned with known mature miRNAs of
two reference species (Gallus and Taeniopygia guttata)
and Anas platyrhynchos genome by the Bowtie algo-
rithm [34]. Different miRNA expression levels were nor-
malized to get the number of transcripts per million
(TPM) in two samples (CHv-infected and uninfected).
Normalization formula: Normalized expression = Actual
miRNA count/Total count of clean reads*1000000. A
change of at least 2-fold between libraries was consid-
ered significant. Fold-change formula: Fold-change =
log2 (treatment/control). P-value was set as the reported
formula [35]. P-value < 0.05 indicated significance differ-
entially expressed miRNA.

Target prediction and GO analysis of viral and host
miRNAs
Target genes of viral and host miRNAs were predicted
using RNAhybrid and PITA software, and the parame-
ters were strictly set as a previously reported program in
the seed sequence [36]. The potential host target genes
were analysed using the Gene Ontology (GO) program
(http://www.geneontology.org). Gene Ontology en-
richment analysis of the target genes was performed
using Goseq [37] to detect the significantly enriched
GO terms of the host target. The GO terms with p < 0.
05 were considered significant. The WEGO software
(http://wego.genomics.org.cn) was used to produce
histograms of the GO annotations, including three

fields: cellular component, biological process and mo-
lecular function.

Stem-loop RT-qPCR
The stem-loop RT-qPCR was conducted as previously
described [36, 38]. Briefly, 1000 ng of RNA mixture were
reverse-transcribed to cDNA and then 2 μL cDNA was
used for Real-time PCR amplification according to the
company kit instructions (Thermo, Carlsbad, CA, USA).
All primers used are listed in (Additional file 1: Table
S1). The reaction conditions were as follows: reverse
transcription was incubated at 50 °C for 45 min and kept
at 85 °C for 5 min. Next, real-time PCR was 95 °C for
5 min, 39 cycles of denaturing at 95 °C for 15 s, anneal-
ing and extending 60 °C for 60 s, and the cellular
miRNA U6 was used as an internal control. The relative
expression values were calculated using the comparative
2-ΔΔCt method [38].

Vector constructs and luciferase assay
The dev-miR-D8-3p mimic and negative control mimic
(miR-NC) were synthesized by Ribobio (Guangzhou,
China). The CHv US1 gene 3’UTR (nt 136,085–136,248)
including the predicted dev-miR-D8-3p binding sites
were synthesised and cloned into a pmirGLO vector
(Promega, Madison, WI, USA) with SacI and XhoI sites
and named pmirGLO-WT-US1, Accordingly, the mutant
3’UTR of the US1 vector was constructed and named
pmirGLO-MU-US1. For luciferase assay, COS7 cells
were seeded in 96-well plates and co-transfected with
dev-miR-D8-3p mimic, miR-NC, pmirGLO-WT-US1
and pmirGLO-MU-US1 with Lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA). We performed site-
directed dual luciferase reporter assay (DLRA), and
luciferase activity was measured at 36 h post-
transfection according to the manufacturer’s protocol
(Promega, Madison, WI, USA).

Statistical analysis
Each experiment was performed in triplicate and the
data were presented as the means (M) ± standard devia-
tions (SD) by the software GraphPad Prism (version7.0).
The significance of the variability between different
treatment groups was determined by one-way analysis of
variance (ANOVA) tests of variance using the GraphPad
Prism software (version 7.0). P-values < 0.05 was consid-
ered statistically significant.

Results
Analysis of sRNA libraries by deep sequencing
In this study, we obtained 12,088,641 and 12,263,713
sRNA reads of 18–30 nucleotides from CHv-infected
and uninfected DEF cells. After filtering adapter se-
quences and low-quality sequences. 11,462,557 (94.82%)
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and 11,836,099 (96.51%) high quality reads from infected
and uninfected sample were obtained, respectively.
Among each sample, approximately 89.36% and 92.85%
sRNAs ranged from 20 to 24 nt respectively, and most
of the sRNA reads were 22 nt in length (Fig. 1a). In
addition to miRNAs, other noncoding sRNAs were also
detected and categorized by following the priority rule:
microRNA (miRNA) > repeat > rRNA > tRNA >
snoRNA > snRNA (Additional file 2: Table S2). Ultim-
ately, 7,446,931 (64.97%) and 7,995,424 (67.55%) miRNA
reads from CHv-infected and uninfected libraries re-
spectively were matched to the annotated miRNAs of
VAC and the two reference species (Gallus gallus and
Taeniopygia guttata), and remaining 3,158,331 (27.55%)
and 3,085,287 (26.07%) unannotated sRNA reads from
two libraries were matched to CHv and the duck gen-
ome for predicting novel miRNAs (Fig. 1b, c).

Conservation analysis of miRNAs in CHv and VAC
In our study, we obtained 29 pre-miRNAs (Additional file 3)
and 39 mature miRNAs from the CHv strain by deep se-
quencing. The names, sequences, length and location of 39
mature miRNAs are listed in Table 1. Compared with pre-
viously reported 33 mature VAC-encoded miRNAs [29], 31
of 33 reported miRNAs were detected and were shown in
Table 2. The remaining two miRNAs, dev-miR-D2–3p and
dev-miR-D10-3p were not detected in our study. Among

31 detected miRNAs, only 13 miRNA sequences were iden-
tical, and 18 were different in contrast to VAC-encoded
miRNAs (Table 2). Twenty-two miRNAs were identical in
the “seed sequence” and the other 9 were not identical. The
difference of the “seed sequence” mostly occurs in 2–
8 nucleotides at the 5′ end of miRNAs. For example,
dev-miR-D19-5p and dev-miR-D21-5p had one de-
leted base, dev-miR-D7-5p, dev-miR-D11-3p, dev-
miR-D13-5p, dev-miR-D14-3p and dev-miR-D23-3p
had two deleted bases, the dev-miR-D4-3p had four
deleted bases, and the dev-miR-D17-3p had three
inserted bases. In addition, 8 novel CHv-encoded
miRNAs were identified and were named from dev-
miR-D25-5p to dev-miR-D31-3p (Table 1). The pre-
miRNA hairpin structures and isoform expression
profile of these novel miRNAs are shown in
Additional file 3. Thirty-nine CHv-encoded miRNAs
were distributed mostly the unique long region (UL) and
the repeat region (IRS and TRS) of the genome (Fig. 2).
This result was consistent with the previous report about
distribution of VAC-encoded miRNAs [29]. We found
that 7 miRNAs were present in two copies, which were lo-
cated in two loci in the CHv genome. Including dev-miR-
D20 to dev-miR-D24 (Table 1). Those miRNAs mapped in
the internal repeat sequence (IRS) were marked as ‘a’ and
the homologous miRNAs in terminal repeat se-
quences (TRS) were marked as ‘b’ (Fig. 2). including

Fig. 1 Characterization of total sRNAs. a Length distributions of sRNAs (18–30 nt) in CHv-infected and uninfected DEF cells. b Pie chart summarizing
the different classes of sRNAs in CHv-infected DEF cells. c Pie chart summarizing the different classes of sRNAs in uninfected DEF cells
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dev-miR-D20a/b-5p, dev-miR-D21a/b-3P, dev-miR-
D21a/b-5p dev-miR-D22a/b-3p, dev-miR-D22a/b-5P,
dev-miR-D23a/b-3p and dev-miR-D24a/b-3p. This
“two-copy” phenomenon seems to be a common fea-
ture in α-herpesviruses.

Self-regulation analysis of viral miRNAs
Prediction results showed that 41 viral genes were tar-
geted by 38 viral miRNAs. Some novel viral miRNAs
(like dev-miR-D27-5p and dev-miR-D28-3p) could target
multiple CHv genes, and the some CHv genes (like

Table 1 Summary of sequence and genomic position of CHv-encoded miRNAs

Name Sequence(5′-3′) Length Reads Position and Strand

dev-miR-D1-5p UUGGGAAUGGCGGAAGAGCAGACU 24 628 1328:1351 (−)

dev-miR-D1-3p UCCUCUUGCGCGAUCCCCACGU 22 479 1294:1315 (−)

dev-miR-D3-3p AUUGUUGCGUUUGGUGGUUUGUG 23 63 17,761:17783 (+)

dev-miR-D4-3p UUGUCGGAUUGGUAUGCUUU 20 4 25,758:25777 (−)

dev-miR-D5-5p UGUCAUCUGCGACGUCCUGCUCG 23 4157 52,654:52676 (−)

dev-miR-D6-5p UGACACACCACCAUUCUGGCCG 22 904 53,728:53749 (−)

dev-miR-D6-3p GUCAGAGUGUCGGUGAGUCGA 21 1018 53,695:53715 (−)

dev-miR-D7-5p CGUAGCGGCGUAUAAUGGUUU 21 20 68,655:68675 (+)

dev-miR-D8-5p UGCCUCCCGAUUAAACUAUACG 22 12 72,347:72368 (−)

dev-miR-D8-3p UACAGUUUCGUUGGGCGGUUU 21 18,987 72,309:72329 (−)

dev-miR-D9-5p CGUUUGAACGUUCUGUACUGCC 22 12,713 72,498:72519 (−)

dev-miR-D9-3p CAGUCCAGAAUGUUCAAAC 19 1680 72,458:72476 (−)

dev-miR-D11-3p AAAAGGGCAGCCUGGGCU 18 1 75,095:75112 (+)

dev-miR-D12–5p UACCUGGGACAGAACCGCGGCCG 23 15,960 79,299:79321 (−)

dev-miR-D12–3p CUCCGCGGUGAGGUCCCAGAA 21 870 79,263:79283 (−)

dev-miR-D13-5p CGUGGGGUAGAACGCAUG 18 14 105,693:105710 (−)

dev-miR-D14-3p GUUAUGUCUGGUUAUUAUGUUUU 23 1 107,259:107281 (−)

dev-miR-D15-3p CGAGCGUGGGCAAGGUACC 19 700 112,570:112588 (−)

dev-miR-D16-3p CUAAACACCAACGGAUGAACGU 22 14,930 112,727:112748 (−)

dev-miR-D17-5p UGCAACGAAGGCGAACGGUUGA 22 5191 117,132:117153 (−)

dev-miR-D17-3p UCCGACCGCUCGCCUUCGAGGC 22 3 117,098:117119 (−)

dev-miR-D18-5p GGGAUCGGUGAGGGGGGAUUGUG 23 2676 119,157:119179 (−)

dev-miR-D18-3p CCAUCCCCUCCGCUGGCCCCAA 22 1819 119,119:119140 (−)

dev-miR-D19-5p AUGAAAGAGCGGUGCCUUU 19 771 119,180:119198 (−)

dev-miR-D20-5p AAUGUCGGCCAGCCUCUCCGCUU 23 11,422 125,008:125030 (+)/160,535:160557(−)

dev-miR-D21-5p GGUUUGGAGACAGCUGCGGUGG 22 651 125,178:125199 (+)/160,366:160387(−)

dev-miR-D21-3p AUCCAUGCAAUCUCCAAACAAC 22 347 125,218:125239 (+)/160,326:160347(−)

dev-miR-D22-5p UUACCCGCCCAUGCGUGACUGCC 23 2201 126,494:126516 (+)/159,049:159071(−)

dev-miR-D22–3p GUCACACAAGGCGGCUAGCAGG 22 11 126,532:126553 (+)/159,012:159033(−)

dev-miR-D23-3p CGAACCGUCACAGUCUGCAGA 21 3322 128,060:128080 (+)/157,485:157505(−)

dev-miR-D24-3p AUUGGCUUCAGAGUGCGAACGC 22 21 134,514:134535 (+)/151,030:151051(−)

dev-miR-D25-5p UGUGGGGACCGUGUAUGAGAUGU 23 145 696:718 (−)

dev-miR-D26-5p AUCGAAGCGAGGCGAGAUAACCU 23 12 26,368:26390 (−)

dev-miR-D26-3p GUUCUCCCUUGCUUUGACAU 20 12 26,329:26348 (−)

dev-miR-D27-5P AUCCUGGACCGAUAUAUGGACA 22 197 73,467:73488 (−)

dev-miR-D28-3P CUGGUGGGAAGAAUUUUCGC 20 149 77,133:77152 (−)

dev-miR-D29-5p AACAUAUCUCUUGACCUCUGGCGU 24 2323 87,039:87062 (−)

dev-miR-D30-3P ACUGGCUGGGGUGCAACUAAGU 22 9 103,962:103983 (−)

dev-miR-D31-3p AUCACGGGGUGUUAGAUGAACC 22 13,664 123,167:123188 (+)
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UL24, UL28 and UL52) could be targeted by multiple viral
miRNAs. A complex regulatory network was formed ac-
cording to the regulation interaction between viral miR-
NAs and target genes (Additional file 4: Figure S2).

Regulatory analysis of viral miRNAs on host genes
Analysis results showed that the 3’UTRs of 4703 host
genes were targeted by 39 viral miRNAs using the inter-
section of the two software programs (Additional file 5:
Table S3). Gene Ontology (GO) annotation was per-
formed to analyze biological function of the host target

genes. The results reflected that these host target genes
were mainly concentrated in the cellular process, meta-
bolic process, signal-organism process, biological regula-
tion process and others (Additional file 6: Table S4).
Among of these host target genes, GO enrichment ana-
lysis showed that 236 genes were related to signaling
processes (p < 0.05) and 66 genes were related to
immune system processes (p < 0.05) (Fig. 3, Additional
file 6: Table S4), which implied that viral miRNAs may
play important regulatory function during viral infection
and immune evasion.

Table 2 The differences (D) or similarities (S) between the known viral miRNAs from CHv and VAc strain (miRBase)

Name CHv-Seq(5′-3′) Vac-Seq(5′-3′) Seq(S/D) Seed Seq(S/D)a

dev-miR-D1-3p UCCUCUUGCGCGAUCCCCACGU UCCUCUUGCGCGAUCCCCACGU S S

dev-miR-D1-5p UUGGGAAUGGCGGAAGAGCAGACU UUGGGAAUGGCGGAAGAGCAGACU S S

dev-miR-D3-3p AUUGUUGCGUUUGGUGGUUUGUG AUUGUUGCGUUUGGUGGUUUGUG S S

dev-miR-D4-3p UUGUCGGAUUGGUAUGCUUU UUAAUUGUCGGAUUGGUAUGCUUUUU D D

dev-miR-D5-5p UGUCAUCUGCGACGUCCUGCUCG UGUCAUCUGCGACGUCCUGCUCG S S

dev-miR-D6-3p GUCAGAGUGUCGGUGAGUCGA GUCAGAGUGUCGGUGAGUCGACG D S

dev-miR-D6-5p UGACACACCACCAUUCUGGCCG UGACACACCACCAUUCUGGCCG S S

dev-miR-D7-5p CGUAGCGGCGUAUAAUGGUUU UUCGUAGCGGCGUAUAAUGGUUU D D

dev-miR-D8-3p UACAGUUUCGUUGGGCGGUUU UACAGUUUCGUUGGGCGGUUUC D S

dev-miR-D8-5p UGCCUCCCGAUUAAACUAUACG UGCCUCCCGAUUAAACUAUACGC D S

dev-miR-D9-3p CAGUCCAGAAUGUUCAAAC CAGUCCAGAAUGUUCAAACG D S

dev-miR-D9-5p CGUUUGAACGUUCUGUACUGCC CGUUUGAACGUUCUGUACUGCCC D S

dev-miR-D11-3p AAAAGGGCAGCCUGGGCU GCAAAAGGGCAGCCUGGGCUCUAU D D

dev-miR-D12–3p CUCCGCGGUGAGGUCCCAGAA CUCCGCGGUGAGGUCCCAGAAA D S

dev-miR-D12–5p UACCUGGGACAGAACCGCGGCCG UACCUGGGACAGAACCGCGGCCG S S

dev-miR-D13-5p CGUGGGGUAGAACGCAUG CCCGUGGGGUAGAACGCAU D D

dev-miR-D14-3p GUUAUGUCUGGUUAUUAUGUUUU GCGUUAUGUCUGGUUAUUAUGUUUUU D D

dev-miR-D15-3p CGAGCGUGGGCAAGGUACC CGAGCGUGGGCAAGGUACCAG D S

dev-miR-D16-3p CUAAACACCAACGGAUGAACGU CUAAACACCAACGGAUGAACGU S S

dev-miR-D17-3p UCCGACCGCUCGCCUUCGAGGC GACCGCUCGCCUUCGAGGCCACC D D

dev-miR-D17-5p UGCAACGAAGGCGAACGGUUGA UGCAACGAAGGCGAACGGUUG D S

dev-miR-D18-3p CCAUCCCCUCCGCUGGCCCCAA CCAUCCCCUCCGCUGGCCCCAA S S

dev-miR-D18-5p GGGAUCGGUGAGGGGGGAUUGUG GGGAUCGGUGAGGGGGGAUUGUG S S

dev-miR-D19-5p AUGAAAGAGCGGUGCCUUU GAUGAAAGAGCGGUGCCUUU D D

dev-miR-D20-5p AAUGUCGGCCAGCCUCUCCGCUU AAUGUCGGCCAGCCUCUCCGCUU S S

dev-miR-D21-3p AUCCAUGCAAUCUCCAAACAAC AUCCAUGCAAUCUCCAAACAACC D S

dev-miR-D21-5p GGUUUGGAGACAGCUGCGGUGG UGGUUUGGAGACAGCUGCGGUGGU D D

dev-miR-D22–3p GUCACACAAGGCGGCUAGCAGG GUCACACAAGGCGGCUAGCAGG S S

dev-miR-D22-5p UUACCCGCCCAUGCGUGACUGCC UUACCCGCCCAUGCGUGACUGCC S S

dev-miR-D23-3p CGAACCGUCACAGUCUGCAGA CGCGAACCGUCACAGUCUGCAG D D

dev-miR-D24-3p AUUGGCUUCAGAGUGCGAACGC AUUGGCUUCAGAGUGCGAACGC S S

dev-miR-D2–3pb AUAAGGCGAUCCGUGGUUU

dev-miR-D10-3pb CUUUGAGUUCUAGCCCGUCUAUC
aSeed sequence of miRNAs were present in italic font
bThe dev-miR-D2–3p and dev-miR-D10-3p were not detected in CHv-infected DEF cells
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Expression and differential analysis for host miRNAs
Alignment results showed that 598 mature host miRNAs
were detected in this study (Fig. 4a). Among these, 386
(64.5%) miRNAs (264 aligned and 122 novel) were co-
expressed in both libraries (Additional file 7: Table S5),
108 (18.1%) miRNAs were unique to the DEV-infected
group and 104 (17.4%) miRNAs were unique to the un-
infected group (Additional file 8: Table S6). Among the
co-expressed host miRNAs, 38 miRNAs were differen-
tially expressed between the CHv-infected sample and
uninfected sample (Additional file 9: Table S7). Thirteen
were significantly up-regulated and 25 were significantly
down-regulated after CHv infection (Fig. 4b). Thirty-
eight differentially expressed host miRNAs were predicted
to target viral genes using the RNAhybrid and PITA soft-
ware, and the results showed that the 3’UTRs of 40 viral
genes were targeted by 36 host miRNAs by the intersec-
tion of two software (Additional file 10: Figure S3).

Stem-loop RT-qPCR for miRNAs confirmation
To further validate deep sequencing results, 8 novel viral
miRNAs and 10 randomly differentially expressed host
miRNAs were confirmed using stem-loop RT-qPCR.
The results obtained by RT-qPCR were highly consistent
with the deep sequencing data (Fig. 4c, d).

Dev-miR-D8-3p target the 3’UTR of US1 gene
Dual luciferase reporter assay (DLRA) showed that the
luciferase level of the pmirGLO-WT-US1 was signifi-
cantly repressed by dev-miR-D8-3p compared to the
negative control miR-NC (p < 0.05) (Fig. 5a, b). To fur-
ther ascertain that the down-regulation of targets by
dev-miR-D8-3p is binding sites dependent, the binding
sites of US1 were mutated and constructed as
pmirGLO-MU-US1 vector (Fig. 5a). As expected, the
dev-miR-D8-3p lost its repression effect on the mutant
vector of pmirGLO-MU-US1. These results indicated
that the dev-miR-D8-3p can directly target the CHv US1
gene by 7 nucleotide complementary seed sequence.

Discussion
Previous research has reported that the VAC encoded 33
mature miRNAs in the viral genome [29]. We obtained
39 mature viral miRNAs from CHv-infected DEF cells,
22 of 39 CHv-encoded miRNAs share identical “seed se-
quence” with VAC-encoded miRNAs. Another 17 miR-
NAs (9 different “seed sequence” miRNAs and 8 novel
miRNAs) were different in the “seed sequence”. As we
know, target-gene recognition of viral miRNA is strictly
dependent on the full base complementarity of the “seed
sequence”, which covered 2 to 8 nucleotides from the 5′

Fig. 2 Location of virus-encoded mature miRNAs in the CHv genome. The relative positions of the known and predicted novel miRNAs in the
CHv genome are shown. The linear form indicated DEV CHv genome. The orientations of each of the ORFs in relation to the miRNA location were
indicated with red or orange arrows. The internal repeat sequences (IRs) and terminal repeat sequences (TRs) of DEV CHv genome were indicated
with orange. The undetected miRNAs were indicated with red font. The known miRNAs were indicated with black font and the novel miRNAs
were indicated with blue font
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end of the miRNA [39]. Thus, the stability of the “seed
sequence” of viral miRNA is crucial for target-gene dis-
crimination. We speculate that the 22 miRNAs of the
identical “seed sequence” play same regulatory roles in
DEV-infection. Overall, the data analysis showed that
CHv encoded a different pattern of miRNA Compared
with VAC, which might form a complex regulatory net-
work between viral miRNAs and their target genes. The
differences of miRNAs regulatory network might lead to
the differential pathogenesis of these two viruses.
Studies have revealed that viral and host miRNAs play

important roles in host-virus interactions [20, 22, 40].
CHv is a virulent herpesvirus that can mainly cause con-
tagious lethal disease in ducks [30, 31] and the VAC is
an avirulent virus and has been reported to encode 33
mature miRNAs from VAC-infected CEF cells [29].
However, a precise regulatory network analysis of DEV
miRNAs is unlikely to be achieved without the discovery
of the virulent DEV miRNAome. In this research, we
collected sRNA samples from CHv-infected DEF cells at

eight time points to detect as many viral miRNAs as
possible. Using High-throughput sequencing technology,
we obtained 29 pre-miRNA sequences with 39 mature
miRNAs from CHv-infected DEF cells. Eight novel viral
miRNAs were predicted and were confirmed by stem-
loop RT-qPCR (Fig. 4c). In addition, we also first made a
repertoire of DEF cells miRNAs transcriptome in CHv-
infected and uninfected cells and have performed a pre-
liminary analysis of the functions of these miRNAs.
These data provide a foundation for further investiga-
tions on host-herpesvirus interactions.
Among the 8 novel viral miRNAs, the dev-miR-D27-

5p, dev-miR-D28-3p, dev-miR-D29-5p and dev-miR-
D30-3p were located in coding region of UL26, UL24,
UL19 and UL9 gene, respectively. The remaining four
miRNAs were encoded in the in noncoding regions of
CHv genome. Several reports revealed that most α-
herpesvirus-encoded miRNAs were found clustered in
the repeat or other adjacent regions of the viral genome
[20, 23–27, 41]. However, the 39 CHv-encoded miRNAs

Fig. 3 GO annotation on host targets of the viral miRNAs. The figure showed the GO annotation of these targets in biological processes, cellular
components and molecular functions
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were distributed mostly in the unique long region (UL) and
the repeat region (IRS and TRS) of the genome (Fig. 2).
This result was consistent with the previous report
about the distribution of VAC-encoded miRNAs [29].
Moreover, of the seven miRNAs detected with two
copies, miR-D22b-3p, miR-D22b-5p and miR-D23b-3p
were located in the coding region of ICP4 in an anti-
sense orientation, which could theoretically lead to
the cleavage of the transcript and negative regulation
of the gene like siRNAs [42–46].
Several studies have confirmed that herpesvirus-

encoded miRNAs can target viral immediate-early (IE)
genes to regulate viral latent and lytic infection [20–22].
The hsv1-miR-H2–3p and hsv1-miR-H6 target the ICP0
and ICP4 genes of HSV-1 respectively [47], the hsv2-
miR-H2–3 target the ICP0 gene of HSV-2 [46, 48], the
mdv1-miR-M7-5P target the ICP4 and ICP27 genes of
MDV-1 [49] and the litv-miR-I5 target the ICP4 gene of
LITV [50]. The above target genes acted as viral IE
genes which upregulate early and late genes of herpes-
virus subfamilies and downregulate latency-associated
transcript (LAT), inducing the virus towards lytic

infection [20, 21]. The targeting of IE genes by viral
miRNAs was thought to inhibit entry into viral replica-
tion and maintain the latent infection state [22]. In our
study, dev-miR-D4-3p, dev-miR-D11-3p, and dev-miR-
D20-5p were predicted to target the 3’UTR region of the
CHv ICP4 gene. Dev-miR-D1-5p, dev-miR-D8-3p, dev-
miR-D12–5p, dev-miR-D17-3p, dev-miR-D26-3p, dev-
miR-D28-3p and dev-miR-D30-3p were predicted to
target the 3’UTR region of the CHv US1 gene. Our
results confirmed that dev-miR-D8-3p could directly
target the 3’-UTR of the US1 gene. Dev-miR-D13-5p
and dev-miR-D14-3p are predicted to target the
3’UTR region of the CHv UL54 gene (Additional file 4: Fig-
ure S2b). The ICP4, US1 and UL54 of CHv were consid-
ered the functional equivalent of the immediate-early (IE)
genes ICP4, ICP22 and ICP27 of HSV-1 [7, 30, 51, 52].
Thus, we speculate that these viral miRNAs may play
key roles in the regulation of the CHv lytic and latent
infection.
Some virus-encoded miRNAs could regulate the cellu-

lar signal pathway to evade the immune response. For
example, the hcmv-miR-UL112–3p was reported to

Fig. 4 Characteristics of viral and host miRNAs. a The Venn diagram shows the distribution of 598 unique miRNAs between uninfected (left, red
circle) and DEV-infected sample (right, blue circle) libraries. b Differential expression of host miRNAs as a function of DEV CHv infection. Red,
miRNAs with ratio > 2 (infected/uninfected in expression); blue, miRNAs with 1/2 ≤ ratio ≤ 2; green, ratio < 1/2. c Expression levels detection
of 8 virus-encoded novel miRNAs using stem-loop RT-qPCR. d Confirmation of 10 differentially expressed host miRNAs using stem-loop RT-qPCR
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target toll-like receptors 2 (TLR2), inhibiting IRAK1/
NFκB signaling and avoiding the related inflammatory
response [53]. The mdv1-miR-M4-5P regulated the en-
dogenous TLR3 gene that repressed IFN-β production
expression and facilitates virus replication [54]. Three
virus-encoded miRNAs (e.g., hcmv-miR-UL112–1, ebv-
miR-BART2-5p and kshv-miR-K12–7) could repress
identical target gene MICB and lead to a similar out-
come, evading NK cell recognition and immune re-
sponse [55]. The kshv-miR-K12–9 and kshv-miR-K12–5
could target IRAK1 and MYD88, respectively, which re-
pressed TLR/IL-1R signaling, resulting in reduced in-
flammation [56]. The kshv-miR-K12–11 could target IκB
kinase epsilon (IKKε), inhibiting type I interferon signal
pathway [57]. Moreover, viral miRNAs could regulate
cell growth and survival to favour viral replication. For
example, kshv-miR-K12–10 could inhibit TWEAK-
induced apoptosis by targeting the cellular TWEAKR
[4], which contributed to cell survival. In addition,
mdv1-miR-M4-5p could target LTBP1, which suppressed
the TGF-β signaling [58]. Kshv-miR-K12–11 targeted
SMAD5 which interfered with the TGF-β pathway [59].
The suppression of TGF-β signaling ultimately result in
increased cell survival and virally induced oncogenesis
[58, 59]. In our study, GO analysis on the cellular targets
of viral miRNAs showed that these targets were involved
in complex cellular processes, including signal-organism
processes, the metabolic pathway, biological regulation,
immune response and signaling process.

The virus could alter host miRNA expression profiles
to favour viral replication. In our study, 38 cellular miR-
NAs were expressed differentially in both the CHv-
infected library and mock library. These dysregulated
host miRNAs were identified to play crucial roles in
other viral infections. For example, miR-let-7a was
downregulated in NPC cells after EBV-infection, which
in turn promoted viral replication by targeting the dicer
gene [60]. The gga-miR-26a was downregulated in
MDV-infected spleens at cytolytic infection, latency and
tumour transformation phases. Decreasing the expres-
sion of gga-miR-26a had been shown to contribute to
MDV-induced lymphomagenesis upon regulation of
NEK6 proteins [61]. The previous research showed that
the differential expression of gga-miR-181a contributed
to MDV-induced lymphomagenesis by targeting
IGF2BP3/MYBL1 genes [62]. Cellular microRNA miR-
181b inhibited replication of mink enteritis virus (MEV)
by repression of non-structural protein 1(NS1) transla-
tion [63]. The gga-miR-15b was downregulated in
splenic tumours after MDV infection and had a negative
effect on the expression of ATF2, facilitating viral repli-
cation by increasing the expression of the ATF2 [64]. Ex-
pression of miR-146 was upregulated after EBV
infection, which could downregulate levels of IRAK1
and TRAF6 proteins, reducing the activity of host im-
mune and inflammatory response [65]. Recently, miR-
148 was reported as a novel biomarker in non-small-cell
lung cancer screening [66]. In our prediction results,

Fig. 5 Luciferase reporter assay for the interaction between dev-miR-D8-3p and US1 gene. a The seed sequence of dev-miR-D8-3p and its target
site in 3’UTR of the US1 mRNA are shown in red, seven nucleotides were mutated in 3’UTR of the US1 mRNA (underlined). b Activity of the luciferase
gene linked to the 3’UTR of the US1 mRNA. The wild-type pmirGLO-WT-US1 (WT-US1) and mutant pmirGLO-MU-US1 (MU-US1) were respectively
transfected into COS7 cells with the dev-miR-D8-3p (miR-D8-3p) mimic or the negative control (miR-NC). Luciferase activities were measured after
36 h. The data were presented as the means and the standard deviations (SDs) of separate transfections (n = 3). Statistical significance
was analyzed by one-way analysis of variance (ANOVA). The significant differences (p < 0.05) are indicated as single star
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miR-148a-5p could target UL1, UL2 UL3, UL24 and
UL25 genes of CHv. MiR-181a-3p could target UL24,
UL54, US3, US5 and US8 genes of CHv (Additional
file 10: Figure S3a). The ICP4 gene of CHv was tar-
geted by miR-135a-1-3p and miR-135a-2-3p, while the
UL54 gene was targeted by miR-124a-3p, miR-135a-1-
3p, miR-135a-2-3p, miR-15b-3p, miR-181a-3p and
miR-181b-1-3p. A complex regulatory network was
formed between 36 differentially expressed host miRNAs
and their 40 viral target genes (Additional file 10:
Figure S3b). However, the regulatory functions of
these dysregulated cellular miRNAs in the process of
CHv replication need further analysis.

Conclusion
In this study, we obtained 39 DEV-encoded miRNAs
from CHv-infected DEF cells by high-throughput se-
quencing. Of these, 8 novel viral miRNAs were detected
and confirmed through stem-loop RT-qPCR. Conserva-
tive analysis showed that CHv encoded a different set of
miRNAs and formed a unique regulatory network com-
pared with VAC. In addition, a total of 598 novel duck-
encoded miRNAs were detected by aligning with known
mature miRNAs of Gallus gallus and Taeniopygia gut-
tata. This is the first report of a DEF miRNA expression
profile and an analysis of these miRNAs regulatory
mechanisms during DEV infection.
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