
Glycerol enhances fungal germination at the
water-activity limit for life

Andrew Stevenson,1 Philip G. Hamill,1

�Angel Medina,2 Gerhard Kminek,3

John D. Rummel,4 Jan Dijksterhuis,5

David J. Timson,6 Naresh Magan,2

Su-Lin L. Leong7 and John E. Hallsworth1*
1Institute for Global Food Security, School of Biological

Sciences, MBC, Queen’s University Belfast, Belfast

BT9 7BL, Northern Ireland.
2Applied Mycology Group, Cranfield Soil and AgriFood

Institute, Cranfield University, Cranfield, Bedford, MK43

OAL, UK.
3Independent Safety Office, European Space Agency,

2200 AG Noordwijk, The Netherlands.
4SETI Institute, Mountain View, California, 94043, USA.
5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan

8, Utrecht, CT 3584, The Netherlands.
6School of Pharmacy and Biomolecular Sciences,

University of Brighton, Huxley Building, Lewes Road,

Brighton, BN2 4GJ, UK.
7Department of Microbiology, Swedish University of

Agricultural Sciences, Box 7025, Uppsala 75007,

Sweden.

Summary

For the most-extreme fungal xerophiles, metabolic

activity and cell division typically halts between 0.700

and 0.640 water activity (approximately 70.0–64.0%

relative humidity). Here, we investigate whether glyc-

erol can enhance xerophile germination under acute

water-activity regimes, using an experimental system

which represents the biophysical limit of Earth’s bio-

sphere. Spores from a variety of species, including

Aspergillus penicillioides, Eurotium halophilicum,

Xerochrysium xerophilum (formerly Chrysosporium

xerophilum) and Xeromyces bisporus, were produced

by cultures growing on media supplemented with

glycerol (and contained up to 189 mg glycerol g dry

spores21). The ability of these spores to germinate,

and the kinetics of germination, were then

determined on a range of media designed to recreate

stresses experienced in microbial habitats or anthro-

pogenic systems (with water-activities from 0.765 to

0.575). For A. penicillioides, Eurotium amstelodami,

E. halophilicum, X. xerophilum and X. bisporus, ger-

mination occurred at lower water-activities than

previously recorded (0.640, 0.685, 0.651, 0.664 and

0.637 respectively). In addition, the kinetics of germi-

nation at low water-activities were substantially

faster than those reported previously. Extrapolations

indicated theoretical water-activity minima below

these values; as low as 0.570 for A. penicillioides and

X. bisporus. Glycerol is present at high concentra-

tions (up to molar levels) in many types of microbial

habitat. We discuss the likely role of glycerol in

expanding the water-activity limit for microbial cell

function in relation to temporal constraints and loca-

tion of the microbial cell or habitat. The findings

reported here have also critical implications for

understanding the extremes of Earth’s biosphere; for

understanding the potency of disease-causing micro-

organisms; and in biotechnologies that operate at the

limits of microbial function.

Introduction

Glycerol, which can be present in the extracellular environ-

ment or within the cytosol at high concentrations, is a

recurring motif in the physiology of extremophilic microbes.

It is fungal xerophiles such as Aspergillus penicillioides

and Xeromyces bisporus which dominate league tables for

ability to grow in high-solute environments and/or at low

water-availability (Stevenson et al., 2015a); these achieve-

ments can, in part, be attributed to their ability to

accumulate and retain extraordinary levels of glycerol for

osmotic adjustment. Along with some other microbes,

these fungi are both capable of accumulating glycerol and

are commonly associated with environments where glycer-

ol reaches molar concentrations, including saline and

sugar-rich habitats; various types of fermentation milieu;

foods, feeds and other manufactured products and within

experimental systems (Hallsworth and Magan, 1994b;

1995; Wang et al., 2001; Pati~no-Vera et al., 2005; Bardavid

et al., 2008; Basso et al., 2008; Donkin, 2008; Williams
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and Hallsworth, 2009; Chin et al., 2010; de Lima Alves et

al., 2015; Lievens et al., 2015; Leong et al., 2015; Santos

et al., 2015; Stevenson et al., 2015a). For instance, cells of

fungi and algae can contain 7–8 M glycerol (see below);

high intracellular glycerol is a determinant for vigour

(Hallsworth and Magan, 1994a; de Jong et al., 1997); and

the insect haemolymph, in which entomopathogenic fungi

proliferate, can also contain glycerol at molar concentra-

tions (Sformo et al., 2010). Studies of bacteria and fungi

are carried out on culture-media in the range 4–8 M glycer-

ol (e.g. Santos et al., 2015; Stevenson et al., 2015a); and

glycerol can also accumulate as a product in industrial sys-

tems (Wang et al., 2001; Cray et al., 2015a). Whereas in

vitro studies of microbial solute stress typically focus on

individual stressors, single-solute systems are unrepresen-

tative of extreme habitats found in nature (e.g. Lievens

et al., 2015; Stevenson et al., 2015a; Yakimov et al., 2015).

A recent study of extreme halophilic bacteria and Archaea,

previously thought to have a 0.755 water-activity limit for

growth and metabolism (Grant, 2004; Kminek et al., 2010;

Rummel et al., 2014), revealed cell division at 0.635 water

activity with a theoretical minimum of 0.611 water activity,

for cultures in mixed-solute substrates (Stevenson et al.,

2015a). Almost 70 years ago, a study of fungal xerophiles

established a water-activity limit of 0.640 for germination of

Eurotium echinulatum conidia (a value equivalent to 64.0%

equilibrium relative humidity); though the germination pro-

cess was severely inhibited: germ-tube formation only

occurred after a 2-year incubation period (Snow, 1949).

Snow (1949) also reported evidence of a low level of

(aborted) germination below this value: ‘One or two conidia

. . . produced germ tubes at [0.620 water activity, though]

many of the germ tubes produced were misshapen and

probably not viable’. Other studies have reported germina-

tion for spores of X. bisporus, A. penicilloides,

Xerochrysium xerophilum and other species in the range

0.740–0.700 which failed to yield any subsequent develop-

ment of mycelium (Gock et al., 2003). Pitt and Christian

(1968) reported limits of 0.644 and 0.605 water activity for

germination of X. bisporus ascospores and aleuriospores

respectively (though neither the authors of the original

study nor ourselves have been able to repeat the aleurio-

spore study; data not shown).

It is well-established that temperature can impact the

water-activity minima for microbial growth; a series of

recent studies has demonstrated that chaotropicity can

also modify microbial water relations. Indeed, concentra-

tions and proportion of chaotropic and kosmotropic solutes

can determine biotic activity within both saline and non-

saline habitats (Hallsworth et al., 2007; Williams and Halls-

worth, 2009; Chin et al., 2010; Cray et al., 2015a; Lievens

et al., 2015; de Lima Alves et al., 2015; Stevenson et al.,

2015b; Yakimov et al., 2015). However, there is a consider-

able knowledge gap in relation to the microbiology of

glycerol. Few studies have focused on glycerol as a deter-

minant for the limits for life (Williams and Hallsworth, 2009;

Stevenson et al., 2015a; in press); there is paucity of infor-

mation on the ecophysiology of fungal germination in

relation to the solute composition of high-glycerol milieu;

and there has been no systematic study of microbial ger-

mination in relation to the biophysical activities (e.g. chao-/

kosmotropicity) of any of the other solutes known to regu-

late cellular and ecosystem function (e.g. Cray et al.,

2013a; Oren and Hallsworth, 2014; Stevenson et al.,

2015a; Wyatt et al., 2015; Yakimov et al., 2015).

This study was carried out, taking inspiration from the

natural ecology of extremophiles, to investigate whether

glycerol can determine biotic activity at the water-activity

limit for life. A dual approach was used: extreme xerophilic

fungi were encouraged to produce spores which accumu-

lated glycerol, following which these propagules were

assayed for ability to germinate on high-glycerol sub-

strates. These germination assays were carried out in the

range 0.765–0.575 water activity, i.e. at biologically hostile

water activities, for seven fungal species of the order Euro-

tiales. They were: A. penicillioides (three strains), Eurotium

amstelodami, E. echinulatum, Eurotium halophilicum and

Eurotium repens (all in the Aspergillus sensu stricto, Hou-

braken and Samson, 2011) and the closely related species

X. bisporus (four strains) and Xerochrysum xerophilum

(formerly Chrysosporium xerophilum). We hypothesized

that (i) composition of biophysical stressors within a fungal

substrate determines ability to germinate at low water-

activity; and glycerol can both (ii) speed up the kinetics of

germination and (iii) enable germination at hitherto unprec-

edented water activities.

Results and discussion

Accumulation of glycerol within spores of extreme
xerophiles

Intracellular accumulation of glycerol enhances stress tol-

erance for both spores and mycelium which are exposed

to low water-activity, osmotic stress, chaotropicity, hydro-

phobic substances, salt-induced stresses and other

challenges (e.g. Hallsworth and Magan, 1995; Hallsworth

et al., 2003b; Bhaganna et al., 2010).1 Glycerol can also

play roles in pathogenic processes and other trophic inter-

actions (Hallsworth and Magan, 1994a; 1995; de Jong

et al., 1997, Cray et al., 2013a; Paulussen et al., in press).

In relation to germination processes, spores containing

2.8–8.5% w/v glycerol are known to germinate more vigor-

ously, at lower water-activity and (for pathogenic fungi)

exhibit higher levels of virulence (Hallsworth and Magan,

1These factors are not always mutually exclusive (Halls-

worth, 1998; Hallsworth et al., 2015; de Lima Alves et al.,

2015).
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1994a; 1995; Cray et al., 2013a; Hallsworth et al., 2003b).

For diverse fungi, the amount of intracellular glycerol in

spores or hyphae is inversely proportional to the water

activity of the substrate (Hallsworth and Magan, 1995; de

Lima Alves et al., 2015). We therefore supplemented

media with a glycerol concentration 5.5 M (0.821 water-

activity), which is sufficiently high to promote the accumu-

lation of glycerol as an osmolyte and yet moderate enough

to facilitate substantial colony development. All strains pro-

duced spores aerially: conidia for A. penicillioides,

ascospores and conidia for Eurotium strains (though only

conidial germination of Eurotium species was assessed in

this study; see Experimental procedures), and D-shaped

ascospores for X. bisporus strains (Pettersson et al.,

2011). For further details of strain origin and biology see

Supporting Information Table S1. Spores contained

between 189 and 12.0 mg glycerol g dry spores21,

depending on strain (Supporting Information Fig. S1).2

High levels of glycerol have previously been reported in

spores of entomopathogenic fungi; >90 mg glycerol g dry

spores21 (Hallsworth and Magan, 1994b; 1995). For physi-

ologically active cells, including germinating spores of

xerophilic fungi, glycerol concentrations can be as high as

8 M (e.g. Hallsworth and Magan, 1994b; Bardavid et al.,

2008; de Lima Alves et al., 2015).

Biologically permissive versus biologically hostile

culture-media used for germination assays

High-glycerol spores of each fungal strain were inoculated

onto the 36 types of high-glycerol culture medium (Support-

ing Information Table S2). These media were

supplemented with glycerol 1 NaCl; glycerol 1 sucrose;

glycerol 1 glucose 1 fructose; glycerol only; glycerol

1 NaCl 1 sucrose or glycerol 1 NaCl 1 sucrose 1 KCl; rep-

resenting various natural habitats and/or anthropogenic

systems in which xerophiles are found (Andrews and Pitt,

1987; Dunman et al., 2001; Wang et al., 2001; Williams

and Hallsworth, 2009; Bhaganna et al., 2010; Schubert et

al. 2010; Kachalkin and Yurkov, 2012; Bennison and Kar-

manocky, 2014; Leong et al. 2015; Lievens et al., 2015;

Rangel et al., 2015a; Stevenson et al., 2015a; in press;

Oren, in press). For glycerol-only media, the glycerol con-

centration varied between 7.0 and 7.7 M; all other media

types were supplemented with 5.5 M glycerol plus addition-

al solute(s), over a range of concentrations for the latter

(Supporting Information Table S2). The 0.765–0.605 water-

activity range represents the tip of the biotic windows for

growth or germination of the most extremely xerophilic

strains (see Williams and Hallsworth, 2009; Stevenson

et al., 2015a; in press). Previous studies have shown that it

is glycerol, rather than mannitol, trehalose or other adapta-

tions to the low water-activity medium on which fungal

spores were produced, which enhances germination of fun-

gal propagules at low water-activity or high chaotropicity

(Hallsworth and Magan, 1995; Hallsworth et al., 2003b).

The same finding was reported for high-glycerol cells of the

bacterium Pseudomonas putida which were exposed to

benzene stress (Bhaganna et al., 2010); these findings are

also consistent with the vigorous growth phenotypes

observed on high-glycerol substrates (Williams and Halls-

worth, 2009; Stevenson et al., 2015a). Furthermore,

glycerol is the only compatible solute which is sufficiently

soluble to reduce intracellular water activity to levels signifi-

cantly below 0.650; other polyols for instance cannot

facilitate osmotic adjustment for the water-activity range

used in this study, i.e. �0.765 (Hallsworth and Magan,

1995; de Lima Alves et al., 2015). Glycerol is also superior

to other organic compatible solutes in its ability to accumu-

late to high molar concentrations (like xerophiles,

phylogenetically diverse halophiles can accumulate glycerol

to �7 M) and reduce intracellular water-activity to below the

known limits for microbial life.

In this study, spores were sensitive to concentration and

composition of stressors in the culture medium, regardless of

xerophile strain (Supporting Information Table S2; Figs 1–6).

The strains able to germinate on the most types of culture

media (i.e. all except glycerol 1 NaCl1 sucrose 1 KCl) were

X. bisporus FRR 0025, X. xerophilum FRR 0530 and A. peni-

cillioides JH06GBM (Figs 1a and b; 4a–d respectively). By

comparison, A. penicillioides JH06THJ; E. halophilicum FRR

2471 and E. repens JH06JPD were incapable of germination

on any of the glycerol1 glucose 1 fructose, glycerol-only

and glycerol 1 NaCl 1 sucrose 1 KCl media (Figs 3g and h;

5e–h). There was variation between both strains and species

in relation to which media prohibited germination (see Ste-

venson et al., in press). Please note that both hyphal growth

and germination of the xerophiles used in the current study

are typically optimal in the range 0.930–0.830 (Williams and

Hallsworth, 2009; Stevenson et al., 2015a). In this study,

therefore, all compounds used to supplement media (which

were at �0.765 water activity) can be properly regarded as

stressors.

X. bisporus FRR 0025 failed to germinate on glycerol

1 NaCl at �0.741 water activity (0.66 kJ g21; i.e. chao-/

kosmotropicity neutral), glycerol 1 sucrose at �0.619

water activity (5.39 kJ g21; i.e. mildly chaotropic), glycerol

1 glucose 1 fructose at �0.611 water activity (22.74

kJ g21 chaotropic activity), glycerol only at �0.654

water activity (21.58 kJ g21 chaotropic activity), glycer-

ol 1 NaCl 1 sucrose at �0.651 water activity (21.12

kJ g21; i.e. chao-/kosmotropicity neutral), and glycer-

ol 1 NaCl 1 sucrose 1 KCl at �0.639 water activity

2A number of reports show that, at intermediate water-

activity values, arabitol and/or erythritol are the primary

polyols which accumulate (Hallsworth and Magan, 1994b,

c; 1995; Andersen et al, 1987; Rangel et al., 2015).
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Fig. 1. Progress of spore germination for four strains of X. bisporus: (a and b) FRR 0025; (c and d) FRR 1522; (e and f) FRR 2347 and (g
and h) FRR 3443. Percentage germination (a, c, e and g) and mean germ-tube length (b, d, f and h) were determined on Malt-Extract Yeast-
Extract Phosphate Agar (MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to 50 days. Media were supplemented
with: glycerol (red lines), at 7.0 and 7.1 M, with water-activity values of 0.707 and 0.664, respectively; glycerol (5.5 M) 1 NaCl at 0.5, 1.0, 1.5
and 1.6 M (green lines), with water-activity values of 0.765, 0.741, 0.709 and 0.692, respectively; glycerol (5.5 M) 1 sucrose at 0.25, 0.50, 0.65
and 0.80 M (blue lines), with water-activity values of 0.734, 0.699, 0.674 and 0.637, respectively; glycerol (5.5 M) 1 NaCl (0.5 M) 1 sucrose at
0.3 and 0.5 M (black lines), with water-activity values of 0.701 and 0.685, respectively; glycerol (5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M
and glycerol (5.5 M) 1 glucose (1.0 M) 1 fructose at 1.0 M (both grey lines), with water-activity values of 0.694 and 0.649, respectively (see
Supporting Information Table S2). For all media types, and regardless of fungal strain, germination occurred first at the highest water-activity;
for each medium type there are less individual media represented on this display than in Supporting Information Table S2, indicating that
strains failed to germinate on the lower water-activity media in the range. Grey bars indicate standard errors. For any colours which are not
featured in the plots there was no germination observed for the corresponding range of media.
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Fig. 2. Kinetic profiles for germination of four strains of X. bisporus: (a, b and c) FRR 0025; (d, e and f) FRR 1522; (g, h and i) FRR 2347 and
(j, k and l) FRR 3443. Length of the pre-germination phase (a, d, g and j), maximum rate of spore germination (b, e, h and k), and maximum
rate of germ-tube development c, f, i and l) were determined on Malt-Extract Yeast-Extract Phosphate Agar (MYPiA) supplemented with diverse
stressor(s) and incubated at 308C for up to 50 days. Media were supplemented with: glycerol (red dots), at 7.0 and 7.1 M, with water-activity
values of 0.707 and 0.664, respectively; glycerol (5.5 M) 1 NaCl at 0.5, 1.0, 1.5 and 1.6 M (green dots), with water-activity values of 0.765,
0.741, 0.709 and 0.692, respectively; glycerol (5.5 M) 1 sucrose at 0.25, 0.50, 0.65 and 0.80 M (blue dots), with water-activity values of 0.734,
0.699, 0.674 and 0.637, respectively; glycerol (5.5 M) 1 NaCl (0.5 M) 1 sucrose at 0.3 and 0.5 M (black dots), with water-activity values of 0.701
and 0.685, respectively; glycerol (5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M and glycerol (5.5 M) 1 glucose (1.0 M) 1 fructose at 1.0 M (both
grey dots), with water-activity values of 0.694 and 0.649 respectively (see Supporting Information Table S2). Values for length of the pre-
germination phase were derived by extrapolation (see Experimental procedures), and maximum rates of germination and germ-tube development
were determined from the curves shown in Fig. 1. For any colours which are not featured in the plots, there was no germination observed for the
corresponding range of media. Linear regression was used to determine lines of best fit, shown in the colour used for the appropriate medium
range, which were used to derive theoretical water-activity minima for germination for selected strains (see main text).
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Fig. 3. Progress of spore germination for X. xerophilum: (a and b) (FRR 0530) and three strains of A. penicillioides; (c and d) JH06GBM; (e
and f) JH06THH and (g and h) JH06THJ). Percentage germination (a, c, e and g) and mean germ-tube length (b, d, f and h) were
determined on Malt-Extract Yeast-Extract Phosphate Agar (MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to 50
days. Media were supplemented with: glycerol (red lines), at 7.0 and 7.1 M, with water-activity values of 0.707 and 0.664, respectively;
glycerol (5.5 M) 1 NaCl at 0.5, 1.0, 1.5 and 1.6 M (green lines), with water-activity values of 0.765, 0.741, 0.709 and 0.692, respectively;
glycerol (5.5 M) 1 sucrose at 0.25, 0.50, 0.65 and 0.80 M (blue lines), with water-activity values of 0.734, 0.699, 0.674 and 0.637, respectively;
glycerol (5.5 M) 1 NaCl (0.5 M) 1 sucrose at 0.3 and 0.5 M (black lines), with water-activity values of 0.701 and 0.685, respectively; glycerol
(5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M and glycerol (5.5 M) 1 glucose (1.0 M) 1 fructose at 1.0 M (both grey lines), with water-activity
values of 0.694 and 0.649 respectively (see Supporting Information Table S2). For all media types, and regardless of fungal strain, germination
occurred first at the highest water-activity; for each medium type there are less individual media represented on this display than in Supporting
Information Table S2, indicating that strains failed to germinate on the lower water-activity media in the range. Grey bars indicate standard
errors. For any colours which are not featured in the plots, there was no germination observed for the corresponding range of media.
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Fig. 4. Kinetic profiles for germination of X. xerophilum; (a, b and c) (FRR 0530) and three strains of A. penicillioides; (d, e and f) JH06GBM;
(g, h and i) JH06THH and (j, k and l) JH06THJ. Length of the pre-germination phase (a, d, g and j), maximum rate of spore germination (b,
e, h and k), and maximum rate of germ-tube development (c, f, i and l) were determined on Malt-Extract Yeast-Extract Phosphate Agar
(MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to 50 days. Media were supplemented with: glycerol (red dots), at
7.0 and 7.1 M, with water-activity values of 0.707 and 0.664, respectively; glycerol (5.5 M) 1 NaCl at 0.5, 1.0, 1.5 and 1.6 M (green dots), with
water-activity values of 0.765, 0.741, 0.709 and 0.692, respectively; glycerol (5.5 M) 1 sucrose at 0.25, 0.50, 0.65 and 0.80 M (blue dots), with
water-activity values of 0.734, 0.699, 0.674 and 0.637, respectively; glycerol (5.5 M) 1 NaCl (0.5 M) 1 sucrose at 0.3 and 0.5 M (black dots),
with water-activity values of 0.701 and 0.685, respectively; glycerol (5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M and glycerol
(5.5 M) 1 glucose (1.0 M) 1 fructose at 1.0 M (both grey dots), with water-activity values of 0.694 and 0.649 respectively (see Supporting
Information Table S2). Values for length of the pre-germination phase were derived by extrapolation (see Experimental procedures), and
maximum rates of germination and germ-tube development were determined from the curves shown in Fig. 3. For any colours which are not
featured in the plots, there was no germination observed for the corresponding range of media. Linear regression was used to determine lines
of best fit, shown in the colour used for the appropriate medium range, which were used to derive theoretical water-activity minima for
germination for selected strains (see main text).
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Fig. 5. Progress of spore germination for Eurotium amstelodami; (a and b) (FRR 2792), E. echinulatum; (c and d) (FRR 5040), E. halophilicum;
(e and f) (FRR 2471), and E. repens; (g and h) (JH06JPD). Percentage germination (a, c, e and g) and mean germ-tube length (b, d, f and h)
were determined on Malt-Extract Yeast-Extract Phosphate Agar (MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to
50 days. Media were supplemented with: glycerol (red lines), at 7.0 and 7.1 M, with water-activity values of 0.707 and 0.664, respectively;
glycerol (5.5 M)1NaCl at 0.5, 1.0, 1.5 and 1.6 M (green lines), with water-activity values of 0.765, 0.741, 0.709 and 0.692, respectively; glycerol
(5.5 M) 1 sucrose at 0.25, 0.50, 0.65 and 0.80 M (blue lines), with water-activity values of 0.734, 0.699, 0.674 and 0.637, respectively; glycerol
(5.5 M) 1 NaCl(0.5 M) 1 sucrose at 0.3 and 0.5 M (black lines), with water-activity values of 0.701 and 0.685, respectively; glycerol
(5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M and glycerol (5.5 M) 1 glucose (1.0 M) 1 fructose at 1.0 M (both grey lines), with water-activity
values of 0.694 and 0.649 respectively (see Supporting Information Table S2). For all media types, and regardless of fungal strain, germination
occurred first at the highest water-activity; for each medium type there are less individual media represented on this display than in Supporting
Information Table S2, indicating that strains failed to germinate on the lower water-activity media in the range. Grey bars indicate standard errors.
For any colours which are not featured in the plots, there was no germination observed for the corresponding range of media.
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Fig. 6. Kinetic profiles for germination of E. amstelodami; (a, b and c) (FRR 2792), E. echinulatum; (d, e and f) (FRR 5040), E. halophilicum;
(g, h and i) (FRR 2471) and E. repens; (j,k and h) (JH06JPD). Length of the pre-germination phase (a, d, g and j), maximum rate of spore
germination (b, e, h and k), and maximum rate of germ-tube development c, f, i and l) were determined on Malt-Extract Yeast-Extract
Phosphate Agar (MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to 50 days. Media were supplemented with:
glycerol (red dots), at 7.0 and 7.1 M, with water-activity values of 0.707 and 0.664, respectively; glycerol (5.5 M)1NaCl at 0.5, 1.0, 1.5 and
1.6 M (green dots), with water-activity values of 0.765, 0.741, 0.709 and 0.692, respectively; glycerol (5.5 M) 1 sucrose at 0.25, 0.50, 0.65 and
0.80 M (blue dots), with water-activity values of 0.734, 0.699, 0.674 and 0.637, respectively; glycerol (5.5 M) 1 NaCl (0.5 M) 1 sucrose at 0.3
and 0.5 M (black dots), with water-activity values of 0.701 and 0.685, respectively; glycerol (5.5 M) 1 glucose (0.8 M) 1 fructose at 0.8 M and
glycerol (5.5 M) 1 glucose (1.0 M)1fructose at 1.0 M (both grey dots), with water-activity values of 0.694 and 0.649 respectively (see
Supporting Information Table S2). Values for length of the pre-germination phase were derived by extrapolation (see Experimental
procedures), and maximum rates of germination and germ-tube development were determined from the curves shown in Fig. 5. For any
colours which are not featured in the plots, there was no germination observed for the corresponding range of media. Linear regression was
used to determine lines of best fit, shown in the colour used for the appropriate medium range, which were used to derive theoretical water-
activity minima for germination for selected strains (see main text).



(22.14 kJ g21; i.e. chao-/kosmotropicity neutral) (Fig. 7).

By contrast, X. bisporus FRR 1522 failed to germinate on

glycerol 1 NaCl at �0.688 water activity (26.49 kJ g21; i.e.

mildly kosmotropic), and glycerol only at �0.707 water

activity (18.43 kJ g21 chaotropic activity); for other media

its profile was the same as that of strain FRR 0025

(Fig. 7).

For media on which there was no germination of any

strains, it may be that the biophysical activities of these

stressor combinations/concentrations (water activity and/

or chaotropicity), if also present in natural substrates,

would render the latter effectively sterile and uninhabit-

able. Generally, germination of most strains occurred on

media in the range 0.765–0.674 water activity; approxi-

mately half of strains were able to germinate from 0.668

to 0.664; and only occasional strains were able to germi-

nate on selected media in the range 0.654–0.637 (Fig.

7a). There was no germination observed on glycerol-only

media at 0.647 or 0.635 water activity (Fig. 7), although

these were beyond the known chaotropicity tolerance of

these xerophiles, see below. This said, some strains are

known to be, and in this study were, more chaotropicity-

tolerant than others (see below; Williams and Hallsworth,

2009). Whereas Aspergillus strains were generally able

to germinate well on glycerol 1 NaCl media, salt-

containing media were relatively hostile at �0.651 water

activity even for these strains, and there was no germina-

tion observed on any salt-containing media at �0.639

water activity (Fig. 7a). In total, there were 18 media

types on which no strains germinated (Fig. 7), and it is

noteworthy that only two of these media were within the

water-activity range where germination took place (i.e.

>0.637 water activity) (Fig. 7a).

Whereas most media which were kosmotropic (>25.15

kJ kg21) appeared hostile to fungal germination, this was

attributable to their low water-activity (i.e. <0.637) rather

than kosmotropicity per se (Fig. 7b). One glycerol 1 NaCl

medium in this range, however, did enable germination of

A. penicillioides JH06THJ; water activity 5 0.640 (Fig. 7b).

Studies of xerophilic and halophilic microbes have not yet

Fig. 7. Culture media used for germination assays which permitted (orange) or prevented germination of xerophile strains (black and grey) in
relation to their water activity (a) and chao-/kosmotropicity (b). For (a), grey shading indicates media which were beyond the empirically
determined chaotropicity limit for germination of these xerophiles (see main text); for (b), grey shading indicates media which were beyond the
empirically determined water-activity limit for germination of these strains. Germination assays (see Figs 1–6) were carried out on Malt-Extract
Yeast-Extract Phosphate Agar (MYPiA) supplemented with diverse stressor(s) and incubated at 308C for up to 50 days. For full names of
media, and further details of their composition and properties, see Supporting Information Table S2.
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yielded any evidence that kosmotropic activity can act as a

stress parameter which prevents microbial growth inde-

pendently of osmotic stress or water activity (Williams and

Hallsworth, 2009; de Lima Alves et al., 2015; Fox-Powell

et al., 2016). Several chao-/kosmotropicity-neutral media

were hostile for germination of any strain (Fig. 7b); these

were mainly glycerol 1 sucrose media which were <0.637

water activity (Fig. 7a). However, one chao-/kosmotropicity

neutral medium, a glycerol 1 NaCl 1 sucrose 1 KCl medi-

um, was also hostile in as much as it did not permit

germination of any strain (Fig. 7b); the water activity of this

medium was 0.639; close to the value which prevented the

germination process even for X. bisporus strains (Fig. 7a);

its salt content, however, did not permit germination of X.

bisporus. Glycerol-only media with a chaotropic activity of

18.43 and 19.59 kJ kg21 were hostile for germination of

the majority of strains, and the glycerol-only medium with a

chaotropicity of 21.58 kJ kg21 prevented germination of 11

out of the 12 strains (Fig. 7b). At 22.36 kJ kg21, the next

glycerol-only medium in the range was sufficiently chaot-

ropic to prevent germination, regardless of strain (Fig. 7b);

this observation is consistent with the extreme chaotropic-

ity of glycerol at molar concentrations (Hallsworth et al.,

2007; Williams and Hallsworth, 2009; de Lima Alves et al.,

2015; Stevenson et al., 2015a). For instance, Williams and

Hallsworth (2009) reported that a medium supplemented

with glycerol at 7.65 M (0.644 water activity; 20.88 kJ

kg21) prevented mycelial growth for a range of xerophile

strains, including a number of those used in this study; a

finding also consistent with the limit for Aspergillus wentii

strain IMI 017295ii on high-glycerol media (de Lima Alves

et al., 2015). There was no germination on the five media

with higher chaotropicity values (Fig. 7b); these media

were particularly hostile because, in addition, they were

below a water activity of 0.637.

Kinetics of germination on high-glycerol substrates

At water activities of <0.700, the shortest times for the pre-

germination phase were exhibited by X. bisporus FRR 0025

and FRR 3443, X. xerophilum FRR 0530, A. penicillioides

JH06GBM, JH06THH and JH06THJ (between 3 and 4

days; Figs 2a, j; 4a, d, and g and h) and, for Eurotium spp.,

by E. amstelodami FRR 2471 and E. echinulatum FRR

5040 (5 days; Fig. 6a and c); and the germination process

proceeded at a faster rate for X. bisporus and A. penicil-

lioides strains than for X. xerophilum FRR 0530 or any

Eurotium strain. Germ-tube extension was most vigorous

for X. bisporus strains FRR 2347 and FRR 3443, X. xero-

philum FRR 0530, and A. penicillioides strains JH06THH

and JH06THJ depending, in each case, on medium compo-

sition (Figs 2i and l; 4c, i and I); and germination occurred at

<0.660 water activity only for X. bisporus (regardless of

strain), A. penicillioides strains JH06GBM and JH06THJ,

and E. halophilicum FRR 2471 (Figs 2a–l; 4d–f, j–l; 6g–i).

Collectively, these data indicate that the most-xerophilic

strains, as determined by fungal germination, were X. bispo-

rus FRR 0025, A. penicillioides JH06GBM and JH06THJ

and, for Eurotium species, E. halophilicum FRR 2471 (see

also Stevenson et al., in press). These strains were first iso-

lated from fruits, wooden surfaces (both JH06GBM and

JH06THJ) and plant seeds respectively (Supporting Infor-

mation Table S1). The germination of X. bisporus FRR 0025

was most rapid on glycerol 1 sucrose and glycerol 1 gluco-

se 1 fructose media in the water-activity range 0.734–0.637,

according to rates of germination and germ-tube extension

(Fig. 2b and c). This preference for high-sugar concentra-

tions is consistent with both the primary habitats of this

species (Supporting Information Table S1) and the high-

sugar preference of other X. bisporus strains, which generally

excelled on glycerol 1 sucrose media (Figs 1 and 2). A. peni-

cillioides JH06GBM, less particular in its required medium

type, germinated vigorously on glycerol 1 NaCl, glycer-

ol 1 sucrose, glycerol-only and glycerol1 NaCl 1 sucrose

media in the 0.765–0.651 water-activity range (Fig. 4d–f),

a finding consistent with its ubiquity across hypersaline,

high-sugar habitats and other low water-activity environ-

ments (Supporting Information Table S1; Samson and

Lustgraaf, 1978; Arai, 2000; Zhang et al., 2013; Zhao et

al., 2014; Nazareth and Gonsalves, 2014; Okano et al.,

2015; Wei et al., 2015; Micheluz et al., 2016; Dannemiller

et al., in press; Paulussen et al., in press). The progress

of germination and germ-tube extension for strain

JH06GBM showed a close relation to water activity,

regardless of medium composition, suggesting that this

strain would make a useful model system to study water

relations of xerophilic fungi (Fig. 4d–f). Aspergillus penicil-

lioides JH06THJ, though unable to germinate on glycerol-

only or glycerol 1 glucose 1 fructose media, also exhibited

high levels of vigour, whether germinating on glycer-

ol 1 NaCl, glycerol 1 sucrose or glycerol 1 NaCl 1 sucrose

media (Fig. 4j–I). Like A. penicillioides, E. halophilicum is

somewhat indiscriminate in its habitat requirements (Sup-

porting Information Table S1; Samson and Lustgraaf,

1978; Juarez et al., 2015), as evidenced by the advanced

germination performance observed on glycerol 1 NaCl,

glycerol 1 sucrose as well as glycerol 1 NaCl 1 sucrose

media (Fig. 6g–i). For X. bisporus, the relatively low toler-

ance towards NaCl (and other salts) may arise from the

lack of a Na1-exporting ATPase, Ena, according to stud-

ies of its genome (Zajc et al., 2014; Leong et al., 2015).

This ATPase, and alternative cation transporters, are typi-

cally present in Aspergillus and Eurotium species, and

may enhance their salt-tolerance (Miskei et al., 2009, Kis-

Papo et al., 2014).

Of the 12 strains assayed, only four germinated on

glycerol-only media and, even for these strains, progress of
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germination was slow by comparison with that observed on

other media (Figs 2a–c; 4a–c, d–i). A previous study which

compared 42 yeast species with diverse NaCl tolerances,

demonstrated a connection between degree of halotolerance

or halophilicity on the one hand, and ability to take up and

retain glycerol across a concentration gradient on the other

(Lages et al., 1999). However, this factor is likely to be of less-

er importance in the high-glycerol spores and high-glycerol

substrates of this study. Diverse studies suggest that glycerol

does not behave as an osmotic stressor for microbial sys-

tems and that, at molar concentrations, this solute acts as a

chaotropic stressor which inhibits cellular metabolism via its

ability to reduce the entropic order of membranes and/or oth-

er macromolecular systems (Hallsworth et al., 2003a; Chin

et al., 2010; Cray et al., 2013b; 2015a; Ball and Hallsworth,

2015). Indeed, chaotropicity can become more limiting than

Fig. 8. Comparisons of germination using a high-glycerol approach (current study; solid circles/lines or solid bars) and other strategies
(previous studies; open circles/dotted lines or open bars) for: X. bisporus FRR 1522 (a); A. penicillioides JH06GBM (current study) and FRR
3722 (Gock et al., 2003) (b); E. halophilicum FRR 2471 (c) and X. bisporus FRR 0025, X. xerophilum strains FRR 0530 (current study) and
FRR 3921 (Gock et al., 2003), A. penicillioides strains JH06THJ (current study) and FRR 3722 (Gock et al., 2003), E. amstelodami FRR 2792,
E. echinulatum FRR 5040 (current study) and an unspecified strain (Snow, 1949), E. halophilicum FRR 2471 and E. repens strains JH06JPD
(current study) and FRR 2625 (Gock et al., 2003) (d). The previous studies from which data for other strains were taken are: Pitt and Hocking
(1977) (a); Andrews and Pitt (1987) (c); and Pitt and Christian (1968) for X. bisporus FRR 0025, Wheeler and Hocking (1988) for E.
amstelodami FRR 2792 and Andrews and Pitt (1987) for E. halophilicum FRR 2471 (d). Whereas the germination assays were carried out in
current study at 308C, all the data plotted here from all other studies came from assays carried out at 258C. Three plots show the adjustment
period prior to germination (i.e. the length of the pre-germination phase) (a–c). Polynomial trend-lines were constructed with Microsoft Excel;
the r2 values are 0.424 (solid line) and 0.925 (dotted line) (a); 0.416 (solid line) and 0.995 (dotted line) (b); and 0.997 (solid line) and 1 (dotted
line) (c). The fourth plot shows the water-activity minima for germination (d). For this study, black bars indicate empirical data whereas grey
bars indicate theoretical minima derived by extrapolation (see Experimental procedures; see Stevenson et al., 2015a).
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water-activity reduction at high concentrations of glycerol

(Williams and Hallsworth, 2009; de Lima Alves et al., 2015).

Recent work has been carried out to disentangle the biophys-

ical constraints imposed on the xerophile Aspergillus wentii

(i.e. chaotropicity, water-activity, osmotic stress, ionic

strength, etc) by stressors such as glycerol, sorbitol, glucose,

ethanol, NaCl, KCl, MgCl2, NH4NO3 and urea (de Lima Alves

et al., 2015); and those imposed on communities of halo-

philes by chemically diverse brines (Fox-Powell et al., 2016).

That biophysical constraints have considerable impacts on

the kinetics of germination in the low water-activity range

(Figs 126 and 8) is consistent with the convergence of maxi-

mal rates for germ-tube extension towards a common value

(0.80–1 lm h21) at�0.700 water activity, regardless of strain

or species (Figs 2c, f, i and l; 4c, f, i and l; 6c, f, i and l).

Studies of microbial ecology have demonstrated that

chaotropicity can determine the outcomes of competitive

interactions, both qualitatively and quantitatively (Cray

et al., 2013a; 2015a; 2016). Studies of glycerol, and those

of other chaotropic stressors, indicate that the biotic win-

dows of microbes in relation to low water-activity tolerance,

and the water-activity minima for growth, can be extended

by kosmotropic substances (Hallsworth, 1998; Hallsworth

et al., 2007; de Lima Alves et al., 2015; Stevenson et al.,

2015a; Yakimov et al., 2015). Other data reveal that glycer-

ol concentrations of 3.26 and 1.1 M are sufficient to

maintain flexibility of cellular macromolecules, and thereby

increase growth rates of xerophilic fungi and a psychrophil-

ic yeast, at 1.78C and 258C respectively (Chin et al., 2010;

C. L. Magill and J. E. Hallsworth, unpublished). Apart from

the chaotropes glycerol and fructose (and glucose, which

is close to chao-/kosmotropicity-neutral), NaCl, KCl and

sucrose that were used as stressors in this study are kos-

motropic (kosmotropic activities 5 211.0, 211.3 and

26.92 kJ kg21 M21 respectively) (Cray et al., 2013b). For

some strains, it is noteworthy that media supplemented

with glycerol 1 kosmotropic solute(s) facilitated germina-

tion, whereas glycerol-only media did not, and that

germination only occurred at high water-activities and/or

that the process was slower on glycerol-only media. it is for

this reason that we quantified the chao-/kosmotropic activi-

ties of the media, which ranged from a kosmotropic activity

of 224.90 kJ kg21 M21 for the 0.575 water-activity glycer-

ol 1 NaCl medium to a chaotropic activity of 29.05 kJ kg21

M21 for the 0.585 water-activity glycerol-only medium

(Supporting Information Table S2).

The water-activity range assayed in this study was con-

sidered in the context of the entire windows for

germination of A. penicillioides JH06THJ, E. halophilicum

FRR 2471 and X. bisporus FRR 0025 on their preferred

media (glycerol 1 NaCl, or glycerol 1 NaCl 1 sucrose, and

glycerol 1 sucrose respectively) (Stevenson et al., in

press). The germination rates in the water-activity range

0.765–0.637 were between 37.5% and 0.02% of the

optimum rates (typically observed close to 0.900 water

activity), depending on the strain and culture-medium (Ste-

venson et al., in press). Similarly, pH and temperature

curves for these three strains (Stevenson et al., in press)

confirm that the pH of media used in this study (5.3–7.0;

Supporting Information Table S2) were within the optimal

pH range (typically 4.5–7.5), and that the 308C incubation-

temperature used in this study was optimal regardless of

strain.

For each species of xerophile assayed, the kinetics of

germination reported in the current study were more rapid

than those reported previously. Below 0.700 water activity,

germination had been observed only after a lag period of

38–80 days prior to this study, regardless of species (Pitt

and Christian, 1968; Pitt and Hocking, 1977; Andrews and

Pitt, 1987). The discrepancy between high-glycerol germi-

nation (current study) and the findings of earlier studies

was more apparent at lower water-activity values, and was

most prominent at �0.700 water activity. For instance, ger-

mination of A. penicillioides, E. halophilicum and X.

bisporus in the high-glycerol system occurred 16–73 days

earlier in the water-activity range 0.700–0.640, depending

on fungal species (Fig. 8a–c). Furthermore, (with the

exception of E. echinulatum), germination took place at

lower water activities in the current study, regardless of

species (Fig. 8d). Germination of X. bisporus FRR 0025

ascospores occurred at 0.637 water activity after 18.7

days (Fig. 2a), surpassing the previously established limit

of 0.644 after 80 days (Fig. 8a) at a germ-tube growth-rate

of 0.0104 mm d21 which is equivalent to 3.80 mm year21.

This germ-tube extension rate is consistent with hyphal

growth rates of 13.14 and 5.48 mm year21 reported for X.

bisporus strains FRR 2347 and FRR 3443, respectively, on

high-glycerol media at the slightly higher water activity of

0.640 (Stevenson et al., 2015a). It should be noted, how-

ever, that earlier studies were carried out at 258C (see Fig.

8), and we now know that germination of these xerophiles

is usually optimal at 308C (Stevenson et al., in press) so it

may be that part of the differences observed in Fig. 2 also

relate to this temperature difference.

High levels of intracellular glycerol are known to increase

rates of germination and germ-tube growth at moderate

water-activity values (and, indeed, at high concentrations

of ethanol), for non-xerophilic fungi (Hallsworth and

Magan, 1994a; 1995; Hallsworth et al., 2003b). Further-

more, high-glycerol spores of non-xerophiles, such as

Metarhizium anisopliae and Paecilomyces farinosus, were

able to germinate and develop germ tubes at lower water-

activities (�0.887 and 0.923, respectively) than low-

glycerol spores; i.e. �0.989 (Hallsworth and Magan,

1995). This information is consistent with the findings of

this study, and the key roles played by glycerol under con-

ditions which impose biophysical stresses. Recent

analyses of microbial growth kinetics suggest that cellular
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systems are sensitive to differences of 60.001 water activ-

ity (Stevenson et al., 2015b). The curves for germination

and germ-tube growth of X. bisporus FRR 2347 (Fig. 2h

and i) and A. penicillioides JH06THH (Fig. 4h and i),

respectively, which indicate sharp decreases in the pro-

gress of germination for each 0.002 decrease of water

activity, are consistent with this finding.

Extrapolations suggest water-activity minima of <0.600
for fungal germination

According to empirical determinations, the water-activity

minima for spore germination of the most xerophilic strains

were: 0.637 for X. bisporus on glycerol 1 sucrose supple-

mented media (all four strains tested), 0.640 for A.

penicillioides strain JH06THJ on glycerol 1 NaCl-

supplemented media, and 0.651 for E. halophilicum strain

FRR 2471 and A. penicillioides strains JH06GBM and

JH06THJ on glycerol 1 NaCl 1 sucrose-supplemented

media (Figs 2; 4e, f, k and l; 6h and i). All spores that ger-

minated in this study went on to form mycelium which

covered the surface of the medium (data not shown). The

water-activity limits reported here are comparable with

Snow’s (1949) 0.640-water activity limit for germination.

However, the assessment period used in this study was

relatively short (50 days, rather than 2 years); despite this,

germination was extremely rapid (Fig. 8) and trends for the

progress of germination of five strains indicate theoretical

water-activity minima of <0.600 (see below). Furthermore,

the removal of Petri-plate lids resulted in a reduction of

culture-medium water activity of up to 0.003 during the

course of the experiment (data not shown), and might

have thereby prevented germination on media of less than

0.637 water activity (Figs 1 and 2).

For studies of solute stress in microbial cells, especially

those carried out at <0.755 water activity, stressor solubili-

ty can restrict the types of experimental approach which

can be employed to determine water-activity minima (Ste-

venson et al., 2015a). However, theoretical water-activity

minima can be derived via extrapolation of datasets for

planktonic growth-, hyphal extension- and germination-

rates and have been experimentally validated (Rosso and

Robinson, 2001; Tassou et al., 2007; Huchet et al., 2013;

Stevenson et al., 2015a). In the current study, theoretically

determined water-activity minima were derived by extrapo-

lation of trend lines for strains which germinated at �0.674

water activity for three or more water-activity values on the

same type of medium, or two data points with the lower

water-activity value at <0.665 (Figs 2b, c, e, f, h, i, k and l;

4b, c, e, f, h, i, k and l; and 6e, f, h and i). These water-

activity minima were: <0.570 for A. penicillioides strains

JH06GBM and JH06THH on glycerol-only media (Fig. 4e, f,

h and i), and X. bisporus strain FRR 0025 on glycerol-

only and glycerol 1 sucrose media (Fig. 2b and c); <0.575

for X. xerophilum strain FRR 0530 on glycerol 1 NaCl and

glycerol1sucrose media (Fig. 4b and c); <0.600 for X.

bisporus strains FRR 0025 and FRR 1522 on glycerol1 glu-

cose1 fructose media (Fig. 2b, c, e and f); 0.646

(glycerol1 NaCl) and 0.635 (glycerol1 NaCl1 sucrose) for E.

halophilicum (Fig. 6h and i); and 0.655 for E. echinulatum FRR

5040 on glycerol1 sucrose media (Fig. 6e and f).

During the 50-day assessment period, none of these

strains germinated below the empirically determined water-

activity limits reported above (Supporting Information Table

S2; Fig. 7). However, a prolonged lag-phase is typical even

for extreme xerophiles at water-activity values of <0.640

(i.e. 4 months to 2 or more years, according to Snow [1949]

and Pitt and Christian [1968]). Furthermore, there is a dis-

connect between the length of the pre-germination phase

and subsequent rates of germination and germ-tube exten-

sion. For instance, germination and germ-tube extension

rates were comparable at 0.765 and 0.649 water activity

(on glycerol 1 NaCl and glycerol1 glucose 1 fructose

media, respectively) for X. bisporus strain FRR 0025 (Figs

1a and b; 2a–c); at 0.709 and 0.694 water activity (on glyc-

erol 1 NaCl and glycerol 1 glucose 1 fructose media,

respectively) for X. xerophilum FRR 0530 (Figs 3a and b;

4a–c); and at 0.699 and 0.694 water activity (on glycer-

ol 1 sucrose and glycerol 1 glucose 1 fructose media,

respectively) for A. penicillioides strain JH06GBM (Figs 3c

and d; 4d–f), and yet in each case there was a 15-day time

interval between the commencement of germination on the

different types of medium. It is plausible, therefore, that ger-

mination could occur in high-glycerol systems at <0.637

water activity or over timescales of >50 days: it has already

been established that detectable growth of microbes, if not

single cell divisions, in diverse types of habitats can take

place over periods of years or decades (see Johnston and

Vestal, 1991; Sun and Friedmann, 1999; Parkes et al.,

2000; D’Hondt et al., 2002; Lomstein et al., 2012). Previous

studies have demonstrated the fluidity of microbial growth

windows in relation to biophysical parameters. For instance,

chaotropes can reduce temperature minima for specific

microbes by 5–108C (Chin et al., 2010; Cray et al., 2015a);

a phenomenon which has also been observed for fungi

growing at low temperature on high-glycerol media (see

above). It may be, therefore, that fungi could germinate on

the hostile media listed above under environmental condi-

tions other than those used in the current study.

Additional implications for microbial ecology

In the experimental system used in this study, A. penicil-

lioides was vigorous (Figs 3c and d; 4d–f) relative to the

slower-growing X. bisporus (Figs 1 and 2); the latter is a

specialist fungus which has a low competitive ability

(Leong et al., 2015). However, like the proverbial hare and

tortoise, it is the slower of these two—X. bisporus—which
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ultimately germinates at the lowest water activity (Fig. 2b,

c, e, f, h, i, k and l). For instance, A. penicillioides

JH06GBM had germinated, or was germinating, on nine

types of media by Day 10, and all germination was com-

plete by Day 22, regardless of water activity (3c and 4d),

whereas X. bisporus FRR 2347 was germinating on only

three types of media by Day 10, and all germination was

complete by Day 35 (Figs 1e and 2g). However, X. bispo-

rus FRR 2347 germinated down to 0.649 and 0.637

on glycerol 1 glucose 1 fructose and glycerol 1 sucrose

media, respectively, whereas A. penicillioides JH06GBM

did not germinate on any media below 0.651 water activity

(Figs 2i and 4f).

This study, like other recent studies, has confirmed that

water activity acts as a universal life-limiting parameter.

For instance, there is a convergence of water-activity mini-

ma towards a common value for: extremophiles of each

domain of life (see below); spores and hyphae of fungi

such as X. bisporus (see above); and diverse fungal xero-

philes such as X. bisporus and A. penicillioides (see

theoretical minima for germination in Figs 2 and 4, and

mycelial limits in Stevenson et al., 2015a). This said, other

parameters can influence the water-activity windows for

microbial activity: chaotropicity, turgor changes, ionic

strength, temperature, pH, nutritional factors, etc (Williams

and Hallsworth, 2009; de Lima Alves et al., 2015; Harrison

et al., 2015; Stevenson et al., 2015a; Fox-Powell et al.,

2016). Based on manipulations of these interacting param-

eters, recent studies have revealed that extremely

halophilic bacteria and Archaea are not constrained to

water activities of �0.755 (equivalent to saturated NaCl),

but retain activity down to values close to 0.600 water

activity (see above); and the lower limit for mycelial growth

of extremely xerophilic fungi has been revised from 0.656

(Pitt and Christian, 1968) to 0.640 water activity, with a the-

oretical minimum of 0.632 (Stevenson et al., 2015a). The

findings of this study suggest that metabolism and multipli-

cation of some microbes is plausible at <0.605 water

activity, and it may be that intra- and/or extracellular glycer-

ol can facilitate this in some natural habitats of fungal

xerophiles. Indeed, there is evidence to suggest that fungal

spores produced in nature on low water-activity substrates

selectively accumulate low molecular weight polyols such

as erythritol or glycerol; see also below.

Whereas there have been studies of glycerol production

and utilization for natural microbial communities in situ

(e.g. Oren, in press), little is known about the biophysics of

glycerol in relation to ecosystem function. For instance,

glycerol is hygroscopic in nature and so may draw external

water into microbial biomass that is located in water-

constrained habitats; applications of glycerol can correct

water-repellency in non-wetting sandy soils (Bonnardeaux,

2006) and increase soil organic-carbon content (Qian

et al., 2011). It may be, therefore, that knowledge-based

approaches to manipulate the microbial ecology of glycerol

can be used to enhance ecosystem development (e.g. to

enhance function of soil saprotrophs or encourage desir-

able plant:microbe interactions) in arid environments. We

do know that mesophilic microbes, as well as xerophile

systems, can depend on glycerol for optimal function, e.g.

Hallsworth and Magan (1995) and Mattenberger et al. (in

press). The high-glycerol system used in this study can be

viewed as an anthropogenic intervention in the usual biolo-

gy of the fungal system. However, both artificial and

natural fungal substrates which have stressfully low water-

activity values yield spores with high amounts of the low-

Mr polyols glycerol and, to a lesser extent, erythritol (Halls-

worth and Magan, 1994a,b,c; 1995; Magan, 2001;

Hallsworth et al., 2003a; Andersen et al., 2006; Bhaganna

et al., 2010; Rangel et al., 2015a). This includes, for

instance, conidia produced by entomopathogenic fungi on

the insect cadaver (Magan, 2001). Furthermore, microbial

cells can efficiently sequester trace amounts of glycerol

present in their environment according to studies of halo-

philic species (Oren and Gurevich, 1994; Oren, 1995;

2010), and studies of both mesophilic and xerophilic fungi

demonstrate that glycerol can be taken up and retained in

the cytosol under hyperosmotic conditions (Hallsworth and

Magan, 1994c; de Lima Alves et al., 2015). The findings of

this study are, therefore, pertinent to fungi in natural habi-

tats. Further, a recent study of an extreme halophilic

archaeon, Natrinema pallidum, demonstrated that, when

present in brines, glycerol helped to reduce the water-

activity minima for growth to an unprecedented value;

0.681 (Stevenson et al., 2015a). Glycerol can also boost

the stress tolerance of bacterial cells (Vilhelmsson and

Miller, 2002; Bhaganna et al., 2010; 2016). It is, therefore,

plausible if not, indeed, likely that glycerol facilitates the

activity of diverse types of microbial cell/community under

low water-activity conditions. In this way, glycerol may

determine the extent of, and failure points for, the functional

biosphere on Earth (Hallsworth et al., 2007; Stevenson

et al., 2015b; Yakimov et al., 2015). This has implications

in the field of astrobiology, as glycerol can enhance macro-

molecular flexibility at low temperature and may also

facilitate the habitability of brines which are found on other

extraterrestrial bodies.

Conclusions

The findings presented in this study indicate that, where-

as some xerophiles have requirements for additional

solutes, glycerol catalyzes spore germination at the

water activities corresponding to the limits for microbial

life. The combination of high concentrations of intra- and

extracellular glycerol can enhance both the kinetics of

germination at water activities down to 0.637, and

reduce the water-activity minima for biotic activity of
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individual strains. The only undisputed reports for micro-

bial growth or germination below the 0.637 water-activity

limit for conidial germination of X. bisporus (current

study) are those of halophilic Archaea growing in bittern

brine (at 0.644; Javor, 1984; Stevenson et al., 2015a),

and X. bisporus aleuriospores germinating at 0.605 (Pitt

and Christian, 1968) (for discussions of the various con-

troversial and unsubstantiated reports, see Pitt and

Christian, 1968; Hallsworth et al., 2007; Stevenson and

Hallsworth, 2014; Stevenson et al., 2015b). Whereas

these findings have yet to be reproduced, we have no

reason to doubt these reports. Indeed, the promotion of

xerophile germination by glycerol (Figs 126 and 8) sug-

gests that microbial activity can occur at �0.600 water

activity. The relatively high germination rates observed

for some strains in the range 0.654–0.637 water activity

and the low theoretical water-activity minima, deter-

mined via extrapolation of data - i.e. down to 0.570-

(Figs 2, 4 and 6), act as strong indicators that extreme

xerophiles are capable of metabolic activity and structur-

al growth under hitherto unprecedented conditions.

Understanding the biophysical and ecophysiological

factors which interact to enable and constrain life has

important implications. The majority of microbiological

studies, even for extremophilic taxa, focus on organisms

growing under relatively benign conditions. Characteriz-

ing life under hostile conditions may be critical to

understand and manipulate nutrient cycling in the bio-

sphere; saprotrophic activity in arid soils for instance.

Furthermore, understanding what is (and is not) possible

on Earth will inform our search for potential habitats on

other planets. Some infectious organisms can inhabit

low water-activity environments (either in the human

body or in spaces cohabited with humans) and so knowl-

edge of these limits may facilitate novel antimicrobial

treatments or sterilisation techniques based on reducing

the water availability below these limits. Many microbe-

driven industrial processes, including food-, drinks- and

biofuel fermentations take place in low water-activity

milieu (Cray et al., 2015a). Greater understanding of

fungal physiology, and fungal interactions with other

microbes (e.g. Cray et al., 2013a; 2015b; Rangel et al.,

2015b), will facilitate their greater exploitation in biotech-

nology (in a similar way to the use of thermophiles and

their heat-tolerant biomolecules). Furthermore, our work

here suggests that careful supplementation of fermenta-

tion media with glycerol (possibly in combination with

other stressors) can enable the rational manipulation of

microbial metabolism and/or cell division targeted

towards specific industrial applications.

The findings of this study represent a paradox. On the

one hand, glycerol can be exceptionally stressful and

prevent cellular development. On the other hand, this

simple polyol may be essential for cells to function at the

water-activity limit for life, and this raises further intrigu-

ing questions. Several studies have shown that the DNA

of metabolically active cells becomes disordered/dam-

aged below 0.600 (Falk et al., 1963; Asada et al., 1979);

is it possible that glycerol can mitigate against this fail-

ure? What other component(s) of the cell or its

metabolism fail(s) at low water-activity; e.g. the cell

membrane or interactions between macromolecular sys-

tems; or is there a prohibitive energy requirement at

<0.600 water activity as suggested by Hocking (1993)?

Glycerol is infinitely soluble, and highly effective in

water-activity reduction, has diverse roles in cellular

stress-protection, can expand both vigour and windows

for biotic activity in the context of mechanistically diverse

sources of stress, and can enable growth and/or pre-

serve cellular structures at sub-zero temperatures; and

yet can ultimately act as a stressor itself. It is neverthe-

less certain that the biophysical activities of glycerol

intervene in interactions between solutes, macromolecu-

lar systems, and/or water. Further work is needed to see

whether the glycerol in foods (included that which is

added as a humectant) may inadvertently enhance food

spoilage by promoting microbial activity at low tempera-

ture and/or low water activity. Glycerol is the key

molecule used by microbes to mitigate a variety of

stressful conditions, and this study demonstrated that

glycerol enables microbial metabolism beyond the usual

water-activity constraints. There are special substances

in biology and biochemistry; nothing acts in heredity like

DNA; phosphate is unique in its activity as a buffer;

water is effectively irreplaceable as the milieu for life, as

is carbon as a versatile bonding atom or oxygen as a ter-

minal oxidising agent. And likewise, while other

compatible solutes are undoubtedly important, it is glyc-

erol that represents the most-ideal and most-special

stress-protectant in many circumstances. The exact

mechanisms by which water-activity curtails cellular

function on the one hand, and glycerol can mitigates this

on the other, nevertheless remain enigmatic.

Experimental procedures

Fungal isolates and culture conditions

Aspergillus penicillioides strains JH06GBM, JH06THJ and

JH06THH, and E. repens strain JH06JPD were isolated by

Williams and Hallsworth (2009) and are available from the cor-

responding author of this article. E. amstelodami strain FRR

2792, E. echinulatum strain FRR 5040, E. halophilicum strain

FRR 2471, X. xerophilum strain FRR 0530, and X. bisporus

strains FRR 0025, FRR 1522, FRR 2347 and FRR 3443 were

obtained from CSIRO Food and Nutritional Sciences Culture

Collection (North Ryde, NSW, Australia). Please note that E.

echinulatum, E. halophilicum and E. repens have recently

been renamed as Aspergillus brunneus, Aspergillus halophili-

cus and Aspergillus pseudoglaucus respectively (Hubka et al.,
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2013). Additional information on each xerophile strain is given

in Supporting Information Table S1. Cultures were maintained
on Malt Extract Yeast Extract Phosphate Agar (MYPiA; 10 g

malt extract, 10 g yeast extract, 1 g anhydrous K2HPO4, agar

15 g l21) supplemented with 5.5 M glycerol (0.821 water activi-
ty) at 308C.

Only 13 microbial species/communities have been

observed to grow and/or germinate in the water-activity range

0.690–0.605 according to empirical data obtained from experi-
ments carried out in vitro or, for microbial habitats, in situ

(Williams and Hallsworth, 2009; Stevenson et al., 2015a,b).

The majority of these are fungal xerophiles, and many of the

strains used in the current study were amongst them: X. bis-
porus FRR 0025 (the strain reported by Pitt and Christian

[1968] to have 0.644- and 0.605-water activity limits for germi-

nation of ascospores and aleuriospores respectively), FRR
1522, FRR 2347 and FRR 3443; X. xerophilum FRR 0530; A.

penicillioides JH06GBM, JH06THJ and JH06THH; E. amstelo-

dami FRR 2792; E. echinulatum FRR 5040; E. halophilicum
FRR 2471 and E. repens JH06JPD. Such xerophiles are com-

monly found in high-glycerol and/or sugar-rich habitats (Pitt,

1975; Lievens et al., 2015). However, A. penicillioides and
Eurotium spp. are also found in other environments, such as

solar salterns, crystallizer ponds and house dust (see above,

and Supporting Information Table S1); A. penicillioides, Euro-

tium spp., X. bisporus (e.g. strain CBS 328.83) and X.
xerophilum are found within saprotroph communities on surfa-

ces such as dried leaves, straw, wood and paper (Supporting

Information Table S1; Arai, 2000; Wang et al., 2001; Williams
and Hallsworth, 2009; Cray et al., 2013a; Juarez et al., 2015).

Production of spores and quantitation of glycerol content

Each xerophile strain was cultured on MYPiA supplemented

with glycerol (5.5 M; 0.821 water activity) for 10–14 days for A.

penicillioides, E. amstelodami, E. echinulatum and E. repens;
and for 21–28 days for the slower-growing/later-sporulating E.

halophilicum, X. bisporus and X. xerophilum at 308C. Media

were inoculated using 2-mm-diameter plugs of agar taken
from the periphery of an exponential-phase culture growing on

medium of the same composition, and plates of each medium

were placed in a sealed bag of low-density polyethylene to
maintain a constant relative humidity (thus maintaining water

activity), while allowing gaseous exchange (Hallsworth et al.,

1998). Spores were harvested into a sterile solution of NaCl

(5.3 M) and the resulting suspensions were filtered through
glass wool to remove hyphal fragments. Spore samples were

then freeze-dried and extractions were carried out with 5-mg

samples of spores that were sonicated in AnalaR water
(Merck, Darmstadt, Germany) and then immersed in a boiling

water bath as described previously (Hallsworth and Magan,

1997). Samples were sonicated for 120 s and placed into a
boiling water bath for 5.5 min as described by (Hallsworth and

Magan, 1997). Extracts were filtered (through a 0.2-lm filter)

and then injected onto a ICS-3000 Dionex Ion Chromatogra-
phy System (Dionex, Sunnyvale, CA, USA) fitted with a

CarboPac MA1 plus guard column (Dionex), and they were

quantified by pulsed electrochemical detection based on the
protocol reported in Hallsworth and Magan (1997). The mobile

phase was 100 mM NaOH (pH 14), and the flow rate was 1 ml

min21 and the limits of detection were 1.6 mg ml21 glycerol.

Characterization of germination of high-glycerol
propagules at low water-activity on media supplemented
with diverse stressors

For the 12 xerophile strains, ability to germinate and germination

kinetics at biologically hostile water activities (0.765–0.570) were
assessed using a range of 36 media (Supporting Information
Table S2), designed to emulate physicochemical stresses
experienced by microbes in both natural habitats and anthropo-

genic systems; these media include MYPiA supplemented with
glycerol 1 NaCl; glycerol 1 sucrose; glycerol 1 glucose 1 fruc-
tose; glycerol only; glycerol 1 NaCl 1 sucrose and

glycerol 1 NaCl 1 KCl 1 sucrose (see above). All media used in
this study were incubated in polyethylene bags with identical
media types at 308C (except for those used in temperature
assays described above), and were sterilized by autoclaving at

1218C (1 atm) except for those containing glucose 1 fructose.3

These were maintained in a water bath set at 808C for 30 min to
avoid reactions that would lead to the production of inhibitory

substances. Spores were harvested (see above), inoculated
(see below) onto the media listed in Supporting Information
Table S2, and germination was assessed, over a period of 50
days, as described below.

Data from germination assays were used to plot percentage
germination and germ-tube length versus time (Figs 1, 3 and
5). Plots of percentage germination versus time were used to
determine length of the pre-germination phase (i.e. the adjust-

ment period prior to germination), by extrapolating fitted
polynomial trend lines to a point of 0% spore germination for
each media type (data not shown). These plots were also

used to determine maximum rate of progress of germination;
i.e. during the exponential phase (data not shown). Similarly,
the plots of germ-tube length were used to determine maxi-
mum rate of germ-tube development; i.e. during the

exponential phase (data not shown). Data for the length of the
pre-germination phase, and maximum rates of progress of
germination and germ-tube development were then plotted

versus water activity (Figs 2, 4 and 6).

Assessment of germination; comparison with previous
studies

Spores were obtained from cultures incubated on MYPiA 1 gly-
cerol (5.5 M) for 10–14 days for strains of A. penicillioides, E.
amstelodami, E. echinulatum and E. repens; and 21–28 days
for strains of X. bisporus, X. xerophilum and E. halophilicum; X.

bisporus, X. xerophilum and E. halophilicum. Spores were har-
vested from colonies growing on MYPiA1 glycerol (5.5 M)
media by covering Petri plates with sterile solutions of 5.5 M

glycerol (15 ml); aerial spores were then dislodged by gently
brushing with a sterile glass rod. The resulting suspension was
then passed through sterile glass wool twice to remove hyphal
fragments as described in earlier studies (Hallsworth and

Magan, 1995; Chin et al., 2010). Spore suspensions were then
adjusted to a final spore concentration of 1 3 106 spores ml21.
Inoculation of media was carried out by pipetting spore

3A post-autoclave analysis of media containing sucrose

was not carried out, though there is a theoretical possibility

that some of the sucrose hydrolyzed to form glucose and

fructose.
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suspension (150 ųl) onto the medium; the suspension was

then distributed across the agar surface using a sterilize glass

spreader.

Germination was assessed by removing a 4-mm agar disc,

and immediately quantifying percentage germination, spore

diameter and germ-tube length using light microscope. Plates

were immediately resealed and placed back in the incubator

after removal of agar discs. Percentage germination was

determined via counts of 200 spores, and 50 individual germi-

nated spores were measured for germ-tube length; spores

with germ-tubes longer than their diameter were considered to

have germinated (Hallsworth and Magan, 1995). In each

case, percentage germination and mean germ-tube length

were determined for isolated spores and were not assessed

for any spores located in clumps. Assessments were made at

least daily over a 50-day period and all measurements were

carried out in triplicate.

Data obtained from low water-activity germination assays

(in the range 0.765–0.570) were presented as percentage

spore germination over time (Figs 1a, c, e and g; 3a, c, e and

g; 5a, c, e and g), and germ-tube length over time (Figs 1b, d,

f and h; 3b, d, f and h; 5b, d, f and h). The length of pre-

germination phase (Figs 2a, d, g and j; 4a, d, g and j; 6a, d, g

and j) was determined by extrapolation of percentage spore-

germination plots (Figs 1a, c, e and g; 3a, c, e and g; 5a, c, e

and 5g), which was carried out using polynomial regression

analysis as described below (data not shown), and then plot-

ted against water activity. Plots for maximum rate of progress

of germination versus water activity (Figs 2b, e, h and k; 4b, e,

h and k; 6b, e, h and k) and maximum rate of germ-tube devel-

opment versus water activity (Figs 2c, f, i and l; 4c, f, i and l;

6c, f, i and 6l) were constructed by determining exponential

rates for germination (% of total) and germ-tube length against

time as plotted in Figs 1, 3 and 5.

Germination kinetics for the three model strains, which had

been cultured on high-glycerol media, were compared with

those from extant datasets (Fig. 8). For X. bisporus strain

FRR 1522, the pre-germination phase for high-glycerol spores

(for water-activity range 0.780–0.620; current study) were plot-

ted against those for spores harvested from a basal medium

containing 2% w/v glucose (Pitt and Hocking, 1977; Fig. 8a).

Times for the inception of germination for high-glycerol spores

of A. penicillioides strain JH06GBM (for water-activity range

0.780–0.620; current study) were plotted against the highest

rates available for A. penicillioides strain FRR 3722, which had

been pre-cultured on a basal medium with no added solutes

(Gock et al., 2003; Fig. 8b). For E. halophilicum strain FRR

2792, the most-rapid germination data for high-glycerol spores

at a given water activity were plotted against those for spores

obtained from a basal medium containing 2% w/v glucose

(Andrews and Pitt, 1987; Fig. 8c). Polynomial regression was

applied to each dataset, utilising the highest regression coeffi-

cient, as described by Stevenson et al. (2015a), and the

lowest water activities at which germination was observed in

the current study are summarised and compared with those

reported for each of the extant datasets (Fig. 8d). Data were

obtained from: Pitt and Christian (1968; for ascospores of X.

bisporus); Gock et al. (2003; for A. penicillioides, X. xerophi-

lum and E. repens); Snow (1949; for E. echinulatum);

Andrews and Pitt (1987; for E. halophilicum) and Wheeler and

Hocking (1988; for E. amstelodami) for use in Fig. 8d.

Theoretical water-activity minima for the fungal strains used in

this study were determined by extrapolating linear trend-lines

of maximum rates of germination versus water activity (Figs

2b; 4e; 6b, e, h and k).

Quantitation of culture-medium water activity, chao-/

kosmotropicity and pH

The water activity of all media was determined empirically

using a Novasina Humidat-IC-II water-activity machine fitted

with an alcohol-resistant humidity sensor and eVALC alcohol

filter (Novasina, Pf€affikon, Switzerland). Water-activity meas-

urements were taken at the same temperature at which

cultures and germination assays were to be incubated, and

several precautions were employed to ensure accuracy of

readings, as described previously (Hallsworth and Nomura,

1999; Stevenson et al., 2015a). The instrument was calibrated

between each measurement using saturated salt solutions of

known water activity (Winston and Bates, 1960). The water

activity of each medium type was determined three times, and

variation was within 60.001. Media chao-/kosmotropicity val-

ues were determined using the agar-gelation method

described by Cray et al. (2013b). Extra-pure reagent-grade

agar (Nacalai Tesque, Kyoto, Japan), at 1.5% w/v and supple-

mented with stressors at the concentrations used in the

medium, was used to determine chao-/kosmotropicity values

for added solutes (see Hallsworth et al., 2003b; Cray et al.,

2013b). A Cecil E2501 spectrophotometer fitted with a ther-

moelectrically controlled heating block was used to determine

the wavelength and absorbance values at which to assay

compounds, and values for chao-/kosmotropic activity were

calculated relative to those of the control (no added solute) as

described by Cray et al. (2013b). The pH values for pre-

autoclaved media were determined using a Mettler Toledo

Seven Easy pH-probe (Mettler Toledo, Greifensee, Switzer-

land); values for solid media (post-autoclaved) were

determined prior to inoculation using Fisherbrand colour-fixed

pH indicator sticks (Fisher Scientific Ltd, Leicestershire, UK).
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