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Crystalline solids undergo plastic deformation and subsequently flow when subjected to stresses beyond
their elastic limit. In nature most crystalline solids exist in polycrystalline form. Simulating plastic flows in
polycrystalline solids has wide ranging applications, from material processing to understanding
intermittency of earthquake dynamics. Using phase field crystal (PFC) model we show that in sheared
polycrystalline solids the atomic displacement field shows spatio-temporal heterogeneity spanning over
several orders of length and time scales, similar to that in amorphous solids. The displacement field also
exhibits localized quadrupolar patterns, characteristic of two dislocations of the opposite sign approaching
each other. This is a signature of crystallinity at microscopic scale. Polycrystals being halfway between single
crystals and amorphous solids, in terms of the degree of structural order, descriptions of solid mechanics at
two widely different scales, namely continuum plastic flow and discrete dislocation dynamics turns out to be
necessary here.

P
lastic flow is the continuum description of atomic displacements in a crystalline solid. It involves a hierarchy
of activities at a wide range of length and time scales. While individual dislocations move (glide/climb) at the
nanometer scale, cooperative movement of large number of dislocations causes grain boundaries to move at

micron scales, ultimately leading to macroscopic response of the solid to applied stresses. The biggest challenge in
the theoretical description of plastic flow is to bridge phenomena across these wide range of length and time
scales. In spite of our lack of theoretical understanding, polycrystals, which are probably the most commonly
occurring form of solids around us (metals and alloys, for example) are routinely processed in the industry1 using
phenomenological protocols. An efficient approach towards bridging across scales is to use a Molecular dynamics
(MD) simulation to extract parameters from a small system consisting of one or few dislocations, and then use the
parameters for constructing a coarse-grained phenomenological description at the next higher scale. Driven by
this philosophy here we study plastic flow in a micro-scale polycrystal consisting of few thousand atoms, a system
appropriate for studying interplay between dislocations and grains. We subject a two dimensional (2D) poly-
crystalline sample to a constant strain rate2, by confining it between two infinite parallel plates (located at y 5 0
and y 5 2H) and moving them in opposite directions at constant speeds, v0x̂ and {v0x̂, respectively as shown in
Fig. 1 (see methods). Most simulation studies employ quasi-static strain, whether it is for amorphous solids where
relaxational dynamics near equilibrium is studied3–5, or for crystalline solids where onset of plasticity mediated by
dislocations is of interest6. Here we focus on the non-equilibrium steady state of a sheared polycrystal subjected to
finite strain-rate v0/H. Finite strain rate ensures a continuous injection of dislocations through the boundaries.
These dislocations interact with the dislocations in the bulk, the free ones as well as the ones bound to the grain
boundaries, and some of them also escape through the boundaries, thereby establishing a steady state dislocation
density in the sample.

The velocity field in sheared polycrystals shows striking similarity with that in amorphous material.
Polycrystals exhibit heterogeneous distributions of velocity, vorticity and particle displacement which can be
attributed to the existence of large number of grains and dislocations. MD simulations of sheared amorphous
material, subjected to quasi-static strain rates3–5, have demonstrated that plastic displacements give rise to large
scale vortices and few isolated, active spots. These spots generate quadrupolar displacement pattern around them
and have been variously called STZs7 or elementary, plastic events4. Such localized spots are seen in sheared
polycrystals as well (circled in our Fig. 2a). In terms of particle motion such a quadrupolar displacement pattern
corresponds to emergence of an unstable saddle point. One stable and another unstable axes pass through such a
point and particles move towards and away, respectively, from the point along these axes. While for amorphous
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materials it is not understood how such singular points are created in
the interior of the system, in polycrystalline material generation of
such saddle structures can be explained through the dynamics of the
underlying dislocations, as we explain later. Similar saddle pattern
can be generated by the dislocation motion in a strained single crystal
also, near the onset of plasticity6. This implies that microscopic dis-
creteness has to be properly accounted for in a coarse grained

continuum description of the flow fields in a polycrystal. Picard
et al8 used continuum theory to study the effect of a localized shear
strain Eijd rð Þ, in a 2D viscoelastic medium (only the non-diagonal
elements of Eij were assumed to be nonzero and equal). They showed
how, through elastic interaction, the localized shear strain can induce
a long range strain field. However this strain field turned out to be
octapolar in nature, i.e., having four positive and four negative lobes.

We employ the modified phase field crystal (MPFC) model9,10 to
simulate the polycrystal. PFC and MPFC models have been very
successful in reproducing phenomenology of grain-boundaries11,
premelting transition12, dislocation motion13, liquid crystals15 and
glassy dynamics14. PFC and MPFC has also been derived16,17 from
microscopic density functional theory. The strength of the phe-
nomenological PFC model9,10 is that we can study dynamics of solids
at the microscopic (atomic) length scales but diffusive time scales,
much longer than that accessible by molecular dynamics (MD) simu-
lations. Also here dislocations are generated spontaneously without
any ad hoc rules being imposed.

PFC model is based on a Landau-Ginzburg type free energy func-
tional involving a conserved, scalar order parameter (OP) y(r, t)
which follows2,11
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,
where r is the effective temperature. f is the conserved noise and
strain is implemented2 by an imposed drift velocity field v(y) (see
methods). The parameters a1, a2 control the time scale of the phonon
modes propagating in the solid and the degree of their damping10.

Results
In the PFC model, the particles (atoms) are identified9 as the minima
of the OP field y(r, t). The grains in the 2D sheared polycrystal (see
Fig. 1) has triangular symmetry with atomic co-ordination number
six. Dislocations are identified2 by finding atoms with co-ordination
number 5 or 7. The local crystallographic orientation, which distin-
guishes the grains, is given by an angle h(r) g [0, p/3] in our 2D
geometry (see Fig. 1).
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Figure 1 | Sheared polycrystal: Spatial map of the local crystal orientation
h(r) with a range [0, p/3]. Dislocations, indicated by light/pink colors,

decorate the grain boundaries with high misorientation. This is consistent

with the Frank condition n / sin h18, which relates the line density of

dislocations, n along a grain boundary with the corresponding

misorientation angle h.
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Figure 2 | Velocity field of the sheared polycrystal. (a) Velocity pattern of the particles in the bulk showing vortices and isolated saddles (circled).

Velocity vectors in the boundary layers are omitted as they are too large compared to that in the bulk (see lower inset of ‘b’). (b) Semi-log plot of | Ævx(y)æ |
as a function of y (y increases towards the bulk). The velocity profiles for y . H (circles) and y , H (squares) are superimposed (after reflecting the y . H

portion across the mid-plane, y 5 H) to show anti-symmetry. The solid line shows the imposed drift velocity v(y) 5 v0 exp(2y/m). The same velocity data

is plotted in the upper inset (log-log) to show approximate scaling Ævx(y)æ , y2a in the bulk where a^2:75, and in the lower inset (regular x-y) to highlight

the separation between the boundary layer and the bulk.
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In simple, viscous liquids the velocity profile is linear between two
moving plates. However, in solids (amorphous/crystalline) that is not
the case. In a polycrystalline solid presence of grains results in a
strongly heterogeneous flow field. A grain resists motion till the
accumulated strain crosses its elastic limit when it either rotates with
respect to its neighboring grains or breaks up into smaller grains.
Fig. 2a shows the detailed velocity map of the particles in the bulk.
Despite the strong bias along x̂ (the shear direction) the flow field in
Fig. 2a shows significant motion along ŷ, giving rise to characteristic
vortical motion, and some irregular motion around few isolated
points (circled in Fig. 2a). On an average (see Fig. 2b), the flow
separates into a fast moving boundary layer and a slow moving bulk
region (Fig. 2b). Further, in the bulk the flow is strongly heterogen-
eous: very slow in the interior of the grains and relatively faster at the
grain boundaries. The slow large scale rotation which is visible on the
right part of Fig. 2a can be identified with rotation of a grain. This will
be discussed further later. The y–dependence of the average speed
along x–direction is shown in Fig. 2b which shows an approximate
power law behavior in the bulk and exponential behavior in the

boundary layer. All these features have bearing on the heterogeneous
displacement distribution discussed later.

At the isolated points with high activity, the motion of particles
exhibit a quadrupolar pattern, essentially a saddle, in the displace-
ment field of the particles. We show that such a pattern emerges from
sideways approach of two oppositely ‘charged’ edge dislocations
towards each other. The sequence in Fig. 3a, b clearly shows time
development of the displacement field leading towards a saddle as the
dislocations approach each other. The saddle fades away after the
dislocations annihilate (see Supplementary movie M1). Similar velo-
city pattern which appears as a saddle only at a scale larger than the
minimum distance of approach between two oppositely ‘charged’
dislocations, have been reported by Moretti et al., near the onset of
plasticity in a single crystal, subjected to uniaxial, quasi-static strain.
In their system the dislocation pairs were nucleated at a distance
apart and they escaped to the boundary without forming a singular
point, unlike our case where the dislocation pair approach arbitrarily
close and eventually annihilate. Irrespective of these minor differ-
ences, which depends on the boundary condition, the strain protocol
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Figure 3 | Plastic events originate from dislocation dynamics. (a) and (b) focus on a small region of the 256 3 256 lattice. The circles represent the atoms

and the dark arrows on the circles represent their velocity vectors while the light/blue arrows represent the interpolated velocity field. The filled circles are

the atoms with five or seven (pink or red) neighbors, indicating an edge dislocation. (a) shows initiation of a saddle as two oppositely ‘charged’

dislocations approach. In (b) the boxed portion of ‘a’ is zoomed at a later time, showing development of the saddle as the dislocations get close to generate

a quadrupolar displacement pattern and annihilate subsequently (see Supplementary movie M1). Note that displacement is proportional to velocity for

short time intervals. (c) shows the superposed displacement field of two edge dislocations (with opposite Burgers vector) calculated using Eq. (2). The

parameters used are b 5 1 and n 5 0.1. The dislocation positions are (0, 0) and (21, 0).
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Figure 4 | Spatial distribution of vortical and extensional zones. (a) Okubo-Weiss field l(x, y) in the bulk, corresponding to the velocity fields a and b of

Fig. (b) clearly shows the prominent saddle (dark/violet shade) and the surrounding vorticity field (light/yellow shade) arranged in a quadrupolar shape.

Note that, in (a) also many saddles (violet) are visible but their intensity is two order of magnitude weaker than that in (b). (c) Log-log plot of the

distribution of the Okubo-Weiss field. We show separate distribution functions for the positive (vorticity) and negative (saddle) values of l, indicated by

l1 and l2 respectively (l2 5 | l | when l , 0). The distributions are nearly symmetric and has power law regime, indicating hierarchy in the strength of

activity.
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and the system size, saddles in polycrystals emerge from its under-
lying crystallinity at small scale.

If we assume that the strain field created by the dislocations is
quasistatic then the quadrupolar displacement pattern around a
oppositely ‘charged’ dislocation pair can be quantitatively under-
stood. This quasistatic approximation is plausible since the bulk is
highly screened by the boundary layers and therefore has a very slow
dynamics. Now it is known that the equilibrium strain field of an
edge dislocation generates a displacement dipole19 where the positive
and the negative lobes are oriented along the axis connecting the
atoms with coordination numbers 5 and 7. Such a 5 – 7 pair is like
a charge dipole and sideways arrangement of two such pairs form a
quadrupole. Essentially these two dislocations have opposite burgers
vectors~b and {~b along one of the symmetry axes of the crystal. In
comparison, dislocations with the same burgers vector can arrange in
a linear fashion ‘‘..5-7-5-7-5-7..’’ to form a dislocation wall (see Fig. 1)
which is rather stable. These walls are equivalent to high angle grain
boundaries (Fig. 1). The quadrupolar structure discussed above can
be quantitatively established by superimposing the elastic displace-
ment fields of two dislocations located close by. Fig. 3 shows the
resultant field from two dislocations located at ~r~ 0,0ð Þ and

{1,0ð Þ, where displacement field ~u rð Þ due to a dislocation at the
origin is given by19

ux~
b

2p
tan{1 y

x
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xy
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where n is the Poisson ratio and tan21
y
x
[ 0,2p½ �.

In order to study the spatial distribution of vorticity and saddles in
our 2D plastic flow we employ a quantitative measure used in fluid
turbulence20. For 2D inviscid, incompressible flows the Okubo-
Weiss parameter is defined as l~det Livj

� �
. This is an invariant of

the flow and can be recast as l~ v2{E2ð Þ=4. Here ~v~~+|~v is the
vorticity vector and E2~

P
i,j E

2
ij, where Eij~ LivjzLjvi

� �. ffiffiffi
2
p

is the
strain rate tensor. Even in viscous flows l turns out to be an useful
measure21 and regions with vortices have l . 0, while the strain
dominated regions have l , 0. Note that a saddle corresponds to
stretching in one direction and compression in the orthogonal dir-
ection, essentially creating a strain dominated region. Our system is
not strictly incompressible, but in terms of total particle number, the

 0.001

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1

P
(u

)

u

100
200
500

1000
2500
5000
7500

10000

10 10 10 10
010

10

10

10
0

10
1

10
2

t 
P

(u
)

100
200
500
1000
2500
5000
7500
10000

ba

-

-2-3
-3

Figure 5 | Displacement distribution exhibiting spatio-temporal heterogeneity. (a) Distribution P(u) of displacement magnitudes(u) of the particles in

the bulk, collected after different time intervals t (shown in arbitrary units in the figure). (b) shows collapse of the plots shown in ‘a’, into a single

master curve, after rescaling of u by t, and P(u) appropriately. The collapse occurs since the average x–displacement Æuxæ 5 Ævxæt dominates u. Origin of the

scaling behaviors, fitted by the solid lines P(u) / u and / u21.2), are explained in the text.
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Figure 6 | Grain rotation in sheared bicrystal. (a) shows an equilibrated 2-D bicrystal having misorientation of 30u at the high angle grain boundary.

Local crystal orientation field is indicated in the color bar. Dislocations (5–7 pairs in pink and red) arrange vertically along the grain boundary.

Dislocations at the second grain boundary located at the vertical edges of the box (due to periodic boundary condition) are not shown here. b) shows

rotation and distortion of the grain boundary once shear is applied, by imposing a constant strain rate. (c) shows a polycrystalline grain structure which

results after sufficient time.
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fluctuation is less than 1% (less than 20 in 2000). For computing l we
interpolated the particle velocities onto a finer square grid. Fig. 4a, b
shows a spatial map of the Okubo-Weiss field l(r) corresponding to
the velocity fields in Fig. 3a, b. We also compute the probability
distribution function (PDF) of l which is shown in Fig. 4c. It shows
that, spatially, strain dominated regions occur almost as frequently as
vortex dominated regions. Further, approximate power law scaling of
P(l) indicates that these regions are organized in a scale free hier-
archical structure.

Finally we report intriguing power laws in the probability distri-
bution function (PDF) of the particle displacements ~uj

�� ��, in the bulk
(excluding the boundary region where Ævx(y)æ is large). Here j is the
particle index. The displacements~uj after large time intervals show
characteristic patterns, around the plastic events (figure not shown
here). The PDF of u: ~uj

�� �� is shown in Fig. 5a, which, at large time
intervals t, shows two clear power law regimes. Rescaling u with t
(and also P(u) appropriately) the PDFs’ collapse nicely (see Fig. 5b),
although the PDFs’ for short t do not have any power law regime and
is dominated by fluctuations.

Discussion
The displacement distribution turns out to be an excellent marker for
spatio-temporal heterogeneity. The different scaling regimes of P(u)
can be connected to distinct kind of particle motion in the bulk of the
sheared polycrystal. P(u)du is the fraction of particles undergoing
particular type of motion and is therefore approximately propor-
tional to the area fraction occupied by these particles in a typical
velocity map like Fig. 2a. For example, the displacements are small
at the core of the large grains where motion is vortical. Assuming a
slow rotational speed v0, the displacement u, for v0t=1, is u , v0rt,
where the radius r is measured with respect to the center of the grain.
Thus P(u)du / dA 5 2prdr and using u , v0rt, we get P uð Þ*
u

2p

v0tð Þ2
. Consequently a time independent collapse occurs in the

P(u)t versus u/t plot (Fig. 5b). At larger displacements the scaling
P(u) , u21.2 is dominated by Ævxæ which approximately scales as
Ævx(y)æ , y2a in the bulk (upper inset of Fig. 2b) and a^2:75.
Here, P(u)du / dA 5 Ldy (where L is the box length) and using

u , y2at, we get tP uð Þ* 1
a

u
t

� 	{ 1z1
að Þ

, again a t independent col-

lapse. But 1z
1
a

~1:4; this small mismatch (with numerical value

21.2) depends on the amount of the boundary layer that we exclude
while computing P(u), in particular the numerical exponent goes to
21.4 when we exclude more compared to that in Fig. 2a. This is
consistent with the observation that the boundary layer where
Ævx(y)æ , e2y/m, contribute u21 scaling, and therefore reduces the
effective exponent. Further we verified that the high displacement
tail comes purely from the active spots.

It is important to distinguish between the local vortical motion
which is initiated when two dislocations of opposite charge approach
each other (see Fig. 2a, 3b and 4b) and the slow rotation of the large
grains which leads to the linear scaling regime in Fig. 5. Transient
local motion of the first kind, induced by defect motion, has been
previously observed by Moretti et al.6 in their MD simulation where
oppositely charged dislocation pairs were nucleated near the onset of
plasticity under quasistatic, uniaxial, compressional strain. Grain
rotation, on the other hand involves a collective motion of many
dislocations as the grain boundary rotates in response to the strain
gradient which develops in the interior due to the external strain rate
applied at the boundaries. In Fig. 6 we show how the grain boundary
rotate and subsequently distort in a bicrystal in response to globally
applied strain rate. At finite strain rate (v0 5 0.07 in Fig. 6) a poly-
crystalline, nonequilibrium state is achieved after some time during
which the initial grains have rotated and distorted significantly. The
formation of polycrystalline structure in fact offers a mechanism for

dislocation storage, which is absent in single crystals near the onset of
plasticity with only few dislocations (see Ref. 6, 13).

In summary, we have shown that the plastic flow in sheared poly-
crystals show strong spatio-temporal heterogeneity which manifests
as three distinct regimes in the displacement distribution of the par-
ticles. Here, presence of grains of different sizes renders the motion
more heterogenous, as compared to amorphous solids. Furthermore,
the elementary plastic events of the flow field can be explained in
terms of the underlying dislocation dynamics. We imagine that such
a diverse flow field could be experimentally observed in sheared
colloids. Collective motion of particles, forming strings or showing
caged diffusion, have already been observed22 at grain boundaries of
colloidal polycrystals through particle tracking experiments.

Methods
The results presented here are from simulations on a square grid of size 256 3 256. No
qualitative difference was found for a bigger grid (up to 1024 3 1024), except that the
data could be much better averaged for the smaller grid due to shorter run time. The
conserved, Gaussian noise in Eq.1 is delta correlated in space and time and follows11,
f ~x1,t1ð Þf ~x2,t2ð Þh i~D+2d ~x1{~x2ð Þd t1{t2ð Þ,

ffiffiffiffi
D
p

being the noise amplitude. Eq.1 is
time evolved in the Fourier space using integrating factor method. In our shearing
scheme2 instead of moving only the top and the bottom surfaces of the solid, a drift
velocity profile~v yð Þ which decays exponentially away from the boundary surfaces
(towards the bulk) is imposed on the solid:~v yð Þ~v0 exp {y=mð Þx̂ for 0 , y , H and
~v yð Þ~{v0 exp { 2H{yð Þ=mð Þx̂ for H , y , 2H. We verified that keeping m fixed if
we increase the height 2H (5 256 R 512 R 1024) of the sample, the thickness of the
boundary layer (defined by the point where Ævxæ deviates from the , e2y/m scaling)
decreases with respect to 2H. We applied periodic boundary condition (with box size
L) in the horizontal direction. The values used for the simulations are a1 5 1, a2 5 1, r
5 20.5, �y~0:3, D 5 1, v0 5 0.45, m 5 40, dx 5 dy 5 p/2 and dt 5 0.025.
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