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Identifying the hallmarks of cancer is essential for cancer research, and the genes
involved in cancer hallmarks are likely to be cancer drivers. However, there is no
appropriate method in the current literature for identifying genetic cancer hallmarks,
especially considering the interrelationships among the genes. Here, we hypothesized
that “dense clusters” (or “communities”) in the gene co-expression networks of cancer
patients may represent functional units regarding cancer formation and progression,
and the communities present in the co-expression networks of multiple types of cancer
may be cancer hallmarks. Consequently, we mined the conserved communities in the
gene co-expression networks of seven cancers in order to identify candidate hallmarks.
Functional annotation of the communities showed that they were mainly related to
immune response, the cell cycle and the biological processes that maintain basic cellular
functions. Survival analysis using the genes involved in the conserved communities
verified that two of these hallmarks could predict the survival risks of cancer patients
in multiple types of cancer. Furthermore, the genes involved in these hallmarks, one of
which was related to the cell cycle, could be useful in screening for cancer drugs.

Keywords: cancer hallmarks, gene co-expression network, cancer prognosis, pan-cancer analysis, drug target

INTRODUCTION

Cancer is a complex disease characterized by uncontrolled cell growth. The burden of cancer
worldwide will increase from 14 million in 2012 to 24 million in 2035 (Stewart et al., 2016) and
cancer is one of the leading causes of death in the world (Jemal et al., 2010). Meanwhile, accurate
prognosis is essential for the treatment of cancer patients (Domany, 2014). With the development
of high-throughput technology, using high-throughput data to screen for genes related to cancer
prognosis has become a key technique (Eytan, 2014) and prognostic genes are candidate drug
targets. However, the cancer-related genes identified in this way lack robustness (Chang et al., 2005).
As different cancers share common characteristics (cancer hallmarks) (Hanahan and Weinberg,
2011), it is of great significance to study the common characteristics of patients with different types
of cancer. The genes involved in cancer hallmarks may be more robust.

Recently, several pan-cancer analysis methods have been proposed to identify the common
genetic characteristics among multiple types of cancer (Aran et al, 2015; Knijnenburg et al,
2015; Dhawan et al., 2017). However, cancer is a complex polygenic disease (Bredberg, 2011).
The occurrence of cancer is usually caused by a combination of genes, while most of the
above-mentioned pan-cancer analysis methods ignore the interrelationships among the genes.
The biological networks have been proved to be a powerful tool to study complex diseases
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(Chen et al, 2016a,b, 2017, 2018a,b,c,d,e; Chen and Huang,
2017; You et al,, 2017), drug-disease associations (Zhang et al.,
2018d,e), drug-drug interactions (Zhang et al., 2017a, 2018a),
drug side effects (Zhang et al, 2017b, 2018b), and IncRNA-
proteins interactions (Zhang et al, 2018c,f), and thus the
adoption of biological networks in pan-cancer analysis may be
useful. Conserved functions and genes can be found by analyzing
gene co-expression networks of different types of cancer (Yang
etal., 2014). Therefore, mining the hallmarks of multiple cancers
using gene co-expression networks is a promising approach.

In biological networks, the dense subnetworks that are closely
interconnected can work together as functional “communities”
(Zhou et al., 2014). The communities in multiple different cancer
networks may be essential in these cancers, and thus are more
likely to be cancer hallmarks. In this study, we integrated the
mRNA expression data of seven types of cancer [ovarian cancer
(OV), breast cancer (BRCA), lung adenocarcinoma (LUAD),
acute myeloid leukemia (LAML), lung squamous cell carcinoma
(LUSC), pleomorphic glioblastoma (GBM), and kidney renal
clear cell carcinoma (KIRC)] from The Cancer Genome Atlas
(TCGA). First, considering the relationships among genes, we
constructed the gene co-expression networks of the seven
cancers. Then, using permutation tests, we mined dense clusters
(communities) that were conserved in all the networks. Next,
we functionally annotated these communities to see whether the
genes involved in these communities could reveal the biological
mechanisms underlying cancer. Afterward, survival analysis was
used to select the communities that could significantly distinguish
between cancer patients in terms of survival regarding multiple
types of cancer. We regarded the communities that were related
to cancer prognosis in multiple types of cancer as cancer
hallmarks. Finally, we explored whether the genes involved in the
hallmarks could be useful in screening for cancer drugs.

MATERIALS AND METHODS

Data Sets
We downloaded TCGA data sets for nine cancers: OV, BRCA,
LAML, LUAD, LUSC, GBM, KIRC, KIPAN, and COAD
(Mclendon et al., 2008). The data sets included clinical data
(survival time, survival state) and gene expression data (UNC
Agilent G4502A_07, level 3). The first seven data sets were used
to identified the hallmarks and the last two data sets were used to
validate our method. The details are shown in Table 1.
Additionally, drugs, indications, and drug targets were
obtained from the Therapeutic Target Database (TTD) (Chen
et al,, 2002), Drug-Gene Interaction Database (DGIdb) (Wagner
etal., 2016), and DrugBank (Wishart et al., 2008; Law et al., 2014).
The targets for each drug were set as the targets in any of the
three databases.

Construction of Gene

Co-expression Networks

Genes in one functional pathway may be strongly mutually
co-expressed, while genes in another functional pathway may
be weakly co-expressed (Ruan et al., 2010), and a value-based

TABLE 1 | Details of the cancer data sets.

Number of patients with Number of patients with

Data sets mRNA expression data clinical data
BRCA 593 528
GBM 473 468
KIRC 72 72
LAML 197 186
LUAD 32 32
LUSC 155 152
ov 559 538
KIPAN 88 88
COAD 172 159

method may ignore the weakly co-expressed, but essential, gene
pairs. Therefore, we applied a rank-based method (Ruan et al.,
2010) to construct the gene co-expression network for each
cancer type.

First, Pearson correlation (Benesty et al., 2009) was used to
calculate the correlation coefficient between each pair of genes
based on the mRNA expression data. The calculation method
was as follows:

1 S /X—-X\[/Vi-Y
S5 o

i=1

r=

where 7 is the number of cancer samples. X;,X, and ox represent
the gene expression value of gene X in the i-th sample, the mean
value of gene X in all the samples, and the standard deviation of
gene X in all the samples, respectively. In the same way, Yj, Y,
and oy represent the same meanings of the other gene, gene Y, in
the gene pair.

Second, for each gene, the top n most relevant genes, defined
by the correlation coefficient, were selected as its “neighbors.” In
this study, adopting a similar strategy to that used in our previous
study (Hu and Zhou, 2017), n was set at 10.

Finally, all the selected gene pairs were taken to represent the
gene co-expression network.

Network Visualization and
Community Detection

We used Cytoscape 3.4.0 to visualize and analyze each co-
expression network, and we used the MCODE (Bader and Hogue,
2003) plug-in for Cytoscape to detect the dense clusters (termed
communities) in the network.

Hallmark Mining Based on
Permutation Tests

The communities present in all cancers may be cancer hallmarks.
Therefore, we used permutation tests to mine the conserved
communities present in the gene co-expression networks of
all the cancers.

First, the communities in the gene co-expression network of
OV were detected by MCODE (Bader and Hogue, 2003).

Second, for the set of genes in each OV community,
a permutation test was used to assess whether the number
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of interactions among the same set of genes in another
cancer (cancer B) was significantly greater than the number of
interactions in a random gene set. The permutation test was
performed as follows:

(1) In cancer B, the number of edges in the gene set, which
involved the same nodes (genes) as in the OV community,
was calculated.

(2) The same number of genes was randomly selected,
and the number of the edges in the random gene set
was calculated.

(3) Step 2 was repeated 1000 times, and the number of
random gene sets with no less edges than in the
community in question in cancer B was counted.

(4) The significance level (p-value) of the community in
cancer B can be calculated as follows:

X
P—value = —— (2)
1000
where X represents the number of random gene sets with
no less edges than in the community in cancer B.

Finally, if the community, which had no less than 5 nodes
(genes), was significant (p-value < 0.05) in all the cancers, the
community was set as a candidate hallmark.

Survival Analysis of Cancer

Patients Using Hallmarks
To verify whether the genes involved in each conserved
community could distinguish the prognostic risks of cancer
patients, we performed a survival analysis in each cancer data
set using the genes in each conserved community as prognostic
markers. First, we divided the cancer patients in each data set
into two equal groups, with an equal ratio of surviving patients
in both. One was the training set and the other was the test set.

Based on the training set data, the Cox coefficient of each
gene was calculated, which represents the correlation coefficient
between the gene expression levels and the prognostic risks of
the cancer patients in terms of survival. The Cox coeflicient
was calculated by the Cox proportional hazards regression
(Mauger et al., 2010), which is a semiparametric method and can
adjust survival rate estimation to quantify the effect of predictor
variables. Here, we applied it to quantify the effect of each gene to
the prognostic risks of cancer patients.

Thereafter, we used the Gene expression Grade Index (GGI)
formula (Sotiriou et al., 2006) to calculate the prognostic risk in
terms of survival of each patient in the test set:

GGI Risk Score = > " x; — > (3)

where x; is the expression level of a gene with a positive Cox
coefficient and y; is the expression level of a gene with a negative
Cox coefficient.

According to these GGI Risk Scores, the patients in the test
set were divided into two groups: the patients with a top 50%
GGI Risk Score were in the high-risk group and the other
half were in the low-risk group. Finally, the log rank test was
performed to test whether the difference in the actual survival risk

(based on the hazard ratio) between the two groups was
significant. The hazard ratio (HR) was used to evaluate the ratio
of the hazard rates of the true prognostic risks of the patients in
the two groups, which is divided based on the gene expression
levels of all the genes in the conserved community.

Gene Set Enrichment Analysis (GSEA)

We used GSEA (Subramanian et al., 2005) to investigate the
biological functions [Gene Ontology (GO): Biological process
(BP)] of the candidate hallmarks.

The hypergeometric distribution test was used to test whether
the intersection of genes involved in a hallmark and genes that
were drug targets was significantly greater than the number that
would be expected based on chance alone. The p-value was
calculated as follows:

p —value=1— F(x —1/M,K,N)

< (0 x )
=1-2 B A (4)
i=0 M

where x is the number of genes in the intersection set, K is the
number of genes involved in the hallmark, N is the number
of genes that were drug targets, and M is the number of
genes overall.

In addition, we used the hypergeometric distribution test to
assess whether the proportion of cancer drugs among the drugs
selected by screening according to a hallmark was significantly
higher than the proportion of cancer drugs among all the drugs
in the three databases.

RESULTS

In this study, we employed a rank-based method to construct
a gene co-expression network for each of the seven cancers.
Subsequently, power-law fitting was performed to test whether
the networks were scale-free. After that, permutation tests
were used to mine the conserved communities present in all
the networks. In addition, the biological functions of these
communities were investigated using an enrichment analysis.
Afterward, survival analysis was used to select the communities
that could significantly distinguish between cancer patients in
terms of survival regarding multiple types of cancer. Finally, the
hallmark genes were used to screen for drugs based on the drug
targets. The detailed results of our study are as follows.

Gene Co-expression Networks

Are Scale-Free

As the rank-based method (Ruan et al., 2010) can capture both
strong mutual co-expression and weak co-expression, we used
it to construct a co-expression network for each cancer based
on gene expression data from the TCGA. In each network,
for each gene, the top 10 most related genes were selected
as its “neighbors.” The number of nodes and edges of the
gene co-expression networks of all the cancers are listed in
Supplementary Table S1, and all the co-expression networks of
the seven cancers are shown in Supplementary Tables S2-S8.
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TABLE 2 | Correlations and R-squares of the power-law fitting in the seven
networks.

Networks Correlation R-square
BRCA 0.971 0.948
GBM 0.964 0.958
KIRC 0.839 0.951
LAML 0.443 0.885
LUAD 0.997 0.868
LUSC 0.824 0.952
oV 0.898 0.942

Furthermore, power-law fitting was applied to all the networks
and the results are shown in Table 2. This table indicates
that almost all the correlations and R? values of the fitting
were >0.80 (except the correlation of the fitting in the LAML
network), which indicates that all the networks fitted the power-
law distribution exactly. That is, all the gene co-expression
networks were scale-free, which conforms with the topological
characteristics of biological networks. Therefore, we were able
to use the topological components of our networks, such as the
communities, for further study.

Functions of the Conserved
Communities Are Related to Known

Cancer Hallmarks

The hypothesis of this study is that the communities present
in multiple gene co-expression networks may be candidate
hallmarks. As the OV data set had the largest number of
samples, with gene expression data as well as clinical information,
the co-expression network of OV was applied to mine the
communities using MCODE (Bader and Hogue, 2003). As a
result, 450 communities were detected using default parameters.
Subsequently, permutation tests were used to verify whether these
communities were conserved in the co-expression networks of
other cancers. Consequently, 58 communities, which existed in
all seven networks, were selected as candidate hallmarks.

Gene Set Enrichment Analysis (Subramanian et al, 2005)
was performed to investigate the biological functions of the 58
conserved communities. The function of each community was
set as the most significant biological process. Among the 58
communities, 43 were significantly enriched. Some functional
annotations of these communities are shown in Figure 1.

The enrichment of these communities mainly involved three
types of biological processes. The first type was biological
processes that were related to basic cellular functions, such as
“Protein localization,” “RNA processing,” and “Regulation of
RNA splicing.” The second type of biological process was related
to immune system. There were four communities that were
directly significantly related to “Immune system process,” and
two were significantly related to “Adaptive immune response”
Regulation of immune system process, respectively. As we
know, avoiding immune destruction is one of the emerging
hallmarks of cancer (Hanahan and Weinberg, 2011) and the
immune response of cancer patients is essential for cancer
therapy (Medler et al., 2015). Therefore, our findings concur

with the findings of previous studies. The third type of biological
process was related to the cell cycle and cell adhesion. For
example, the 17th conserved community was significantly related
to “Homophilic cell adhesion via plasma membrane adhesion
molecules” and the 22nd and 53rd conserved communities
were significantly related to “Mitotic cell cycle” and “Cell
cycle)” respectively. Activating cancer cell invasion and metastasis
is a cancer hallmark (Hanahan and Weinberg, 2011), and
cell adhesion molecules are indispensable for cancer cell
invasion and metastasis (Oka et al, 1993; Kannagi et al,
2004). Sustaining proliferative signaling is also a hallmark, and
the cell cycle is an important component of these processes
(Hanahan and Weinberg, 2011).

From the above results, a conclusion could be drawn that
some conserved communities were indeed related to known
cancer hallmarks.

Two Cancer Hallmarks Can Distinguish
the Prognostic Risks of Cancer Patients

Regarding Four Types of Cancer

The genes involved in the conserved communities may be
robust regarding accurate cancer prognosis. Therefore, we
employed the genes involved in each conserved community
as a prognostic signature to predict the prognostic risks of
cancer patients in all the cancer data sets, so as to select
the communities that could distinguish the prognostic risks
of cancer patients regarding multiple cancers. These conserved
communities that could distinguish the prognosis risks were
regarded as cancer hallmarks.

As a result, many conserved communities were found to be
able to distinguish the prognostic risks of cancer patients in at
least one cancer data set (Supplementary Table $9). Among these
hallmarks, two could predict the prognosis of cancer patients
in four data sets. The number of LUAD sample was too small
for survival analysis (Table 1), but the two hallmarks could
distinguish between cancer patients in terms of survival in four
out of the remaining six data sets.

The first hallmark was annotated as “Mitotic cell cycle”
(p-value = 1.9200e—20), and the genes involved in this
community (Supplementary Table S10) could distinguish
between cancer patients in terms of survival in the BRCA, KIRC,
LUSC, and OV data sets (Figure 2). Figure 2 indicates that
the log-rank p-values of our prognostic model in the four data
sets were 3.3234e—05, 1.7249e—04, 8.0868e—08, and 0.0236,
respectively, and the hazard ratios in the four data sets were
4.9755, 1.2735e08, 6.0294, and 1.4189, respectively.

Obviously, deregulation of the cell cycle may result in aberrant
cell proliferation, and the genes involved in the cell cycle may
be appropriate biomarkers for cancer detection and prognosis
(Williams and Stoeber, 2012). Our finding concurs with the
findings of previous studies, which indicate that the genes
involved in the “Mitotic cell cycle” community may be essential
in the prognosis of multiple types of cancer.

The other hallmark was annotated as “RNA processing”
(p-value = 2.4000e—06). Survival analysis reflected that the
prognostic model based on the genes involved in the “RNA
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FIGURE 1 | Function annotations of the conservative communities.

processing” hallmark (Supplementary Table S11) could predict
the prognosis of cancer patients in the BRCA, GBM, LUSC, and
OV data sets (Figure 3).

In the BRCA data set, the hazard ratio between the high-
and low-risk groups was 4.9819e07 and the log-rank p-value was
7.1813e—10. In addition, the hazard ratios of the patients divided
by our prognostic model in the GBM, LUSC, and OV data sets
were 1.3543 (p-value = 0.0305), 11.4010 (p-value = 2.0163e—07),
and 1.6402 (p-value = 0.0031), respectively.

“RNA processing” is a biological process that is related to
the basic function of the cell. Previous studies have reported
that dysregulation of RNA processing may drive colorectal
and lung cancer (Bordonaro, 2013; Sanidas et al., 2014), and
RNA processing may be a potential therapeutic target in Ewing
sarcoma (Grohar et al., 2016). Our results indicate that abnormal
RNA processing may be common in cancers and useful in
screening for cancer drugs.

Cancer Hallmarks Could Be Useful for

Screening for Cancer Drugs

As described above, two conserved communities could
distinguish between cancer patients in terms of survival
regarding four types of cancer, and the genes involved in the

communities may be potential therapeutic targets. Therefore,
these genes were used to screen for drugs.

We investigated 5837 drugs (along with drug targets and
indications) from TTD (Chen et al., 2002), DGIdb (Wagner et al.,
2016), and DrugBank (Wishart et al., 2008; Law et al., 2014). Each
drug was identified as an appropriate drug if it could significantly
target the genes in the either of the two hallmarks. Regarding
the “Mitotic cell cycle” hallmark, 55 drugs were identified as
appropriate drugs (Supplementary Table S12). Among these
drugs, 48 (87%) were indicated for cancer. Of the 5837 drugs
in the databases, 2442 (42%) were indicated for cancer. The
proportion of drugs indicated for cancer that were identified
using the hallmark was significantly higher, with a p-value of
2.7935e—12 based on the hypergeometric distribution test.

The genes involved in the “RNA processing” hallmark were
also used to prioritize drugs. Of all the drugs tested, 57 were
identified as appropriate drugs (Supplementary Table S13).
Among these drugs, 31 (54%) were indicated for cancer.
The hypergeometric distribution test indicated that the genes
involved in the “RNA processing” hallmark could be used to
screen for cancer drugs, with a p-value of 0.03712.

According to the above results, a conclusion could be drawn
that the genes involved in the two hallmarks could be useful for
screening for cancer drugs.
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FIGURE 2 | Survival analysis using the hallmark “Mitotic cell cycle” in four cancer data sets. (A) BRCA, (B) KIRC, (C) LUSC, and (D) OV.
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Our Method Is Robust With Different

Parameters
The hallmarks identified by our method may be influenced by
the selection of different parameters or data sets. For example,
the selection of different number of neighbors to construct the
gene co-expression networks, and the using of cancer data sets for
mining the communities. Therefore, we used different parameters
and data sets to select the hallmarks and test whether the
results are stable.

In this work, the rank-based method (Ruan et al., 2010) was
used to construct the gene co-expression network for each cancer
and top ten gene, which are the most relevant ones, were set as

the neighbors for each gene. Here, when constructing the gene
co-expression network, for each gene, we selected the top 5 genes
as its neighbors. Beyond that, the same strategy was used to
mine the conservative communities. As a result, 44 conservative
communities were obtained and 23 unique GO terms was
annotated (Supplementary Table S14). As we know, 37 unique
GO terms were enriched by the original method. The number
of common GO terms identified by the two methods was 7 and
a p-value of 3.4379e—10 was obtained using the hypergeometric
distribution test, based on the size of the universal set of 4436. In
addition, the hallmark “Mitotic cell cycle” was also found in the
intersection set of the two GO term sets.
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In the original pipeline, as the number of samples with clinic
information in OV data set was the largest, we mined the
dense clusters based on the gene co-expression network of OV.
To investigate whether the hallmarks would be biased by the
selection of different data sets, we used the gene co-expression
network of breast cancer (the number of samples of breast cancer
in TCGA was also very big) to mine the communities, based on
which, 57 conservative communities were obtained. Among the
57 conservative communities, 29 unique GO terms was annotated
(Supplementary Table S15). The intersection set between the
29 different GO terms and the 37 unique GO terms identified

by the original method was also significant, with the p-value
of 6.1118e—13. What’s more, the “Mitotic cell cycle” was also
enriched by this strategy.

In addition, we applied our method in two new cancer data
sets to evaluate whether our method could be applied in new data
set. In TCGA, there was a pan-kidney cohort, which contained
88 samples from Kidney Chromophobe (KICH), KIRC, and
Kidney renal papillary cell carcinoma (KIRP). Here, we also
used the gene expression data of the pan-kidney cohort to
construct a gene co-expression network, and test whether the
58 conservative communities identified by our method were also
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FIGURE 4 | Survival analysis in two validation cohorts using the genes in “Mitotic cell cycle.” (A) Pan-kidney cohort and (B) COAD data set.

0.4f

0.2

Low-risk group (n = 40)
High-risk group (n = 40)
+  Censored

! L L ! !
0 200 400 600 800 1000 1200 1400 1600
Days

significant in this network. As a result, among the 58 conservative
communities, 56 communities were significant (p-value < 0.05).
Furthermore, we also used the genes in the hallmark “Mitotic
cell cycle” (which could predict the prognostic risks of cancer
patients in four cancers) to predict the prognostic risks of cancer
patients in the pan-kidney cohort and found that the hallmark
could also distinguish the prognostic risks of cancer patients in
the data set (Figure 4A), with a log-rank p-value of 2.9968e—06.
We also validate our hallmarks in the COAD data set, which
contains gene expression profiles of 172 colon adenocarcinoma
samples. As a result, all the 58 conservative communities existed
in the gene co-expression network of COAD. In addition, the
hallmark “Mitotic cell cycle” was also used to distinguish the
prognostic risks of cancer patients in COAD. In this data set,
the hazard ratio between the high-risk group and low-risk group
is 2.5301 and p-value is 0.0391 (Figure 4B). That is, the genes
in this hallmark could also be used to predict the prognosis of
cancer patients in the COAD data set. Therefore, most of the
conservative communities identified by our method were also
conservative in the two new data sets and the genes in “Mitotic
cell cycle” may be also important in the prognosis of the cancer
patients of the two new data sets.

In conclusion, our method is robust with the selection of
different parameters and could be applied in new data sets.

DISCUSSION

Although there is high heterogeneity among
some hallmarks are still found. Most previous studies on
cancer hallmarks mainly studied the biochemical/metabolic
characteristics shared by several types of cancer. The
identification of common genetic features is still a challenge.
A community in a co-expression network for a particular

cancers,

cancer type may represent a functional unit in the formation or
progression of cancer. The communities in the co-expression
networks of multiple cancers may be common genetic features
in cancers. In this study, using the gene expression data of
seven cancers from TCGA, we used permutation tests to mine
the conserved communities in the co-expression networks of
these cancers in order to identify cancer hallmarks. First, the
topological properties of all seven networks were shown to
conform to the properties of typical biology networks. Based
on the seven networks, 58 conserved communities were mined.
Functional annotations of these communities showed that
they were mainly related to basic cellular functions, cell cycle,
and immune response. Most of the conserved communities
could distinguish between cancer patients in terms of survival
regarding at least one cancer. In particular, two hallmarks, which
were related to “Mitotic cell cycle” and “RNA processing” could
each predict the prognosis of cancer patients regarding four
types of cancer. Furthermore, both hallmarks were useful for
screening for cancer drugs. What's more, we also evaluated the
robustness of our method and found that some hallmarks could
be identified by using different parameters or data sets and could
be applied in new data sets.

Due to the high heterogeneity in cancers, it is hard to identify
the driver genes. However, genes involved in the common genetic
features of cancers may be more likely to be essential genes in
cancer. The results indicate that these genes are indeed cancer
related. In addition, these genes could be used to predict cancer
prognosis and screen for cancer drugs. Our method may provide
a new way to identify the key genes in cancer, and these genes may
have clinical value.

In this study, we only mined cancer hallmarks using gene
expression data. However, other genetic data and epigenetic
data may also facilitate the identification of common genetic
features of cancers. In the future, we will mine cancer hallmarks
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by integrating multi-omics data. Furthermore, experimental
validation of the identified genes will be performed.
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