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ABSTRACT The clinical course of cystic fibrosis (CF) lung disease is marked by acute drops of lung
function, defined clinically as rapid decline. As such, lung function is monitored routinely through pulmonary
function testing, producing hundreds of measurements over the lifespan of an individual patient. Point-of-
care technologies aimed at improving detection of rapid decline have been limited. Our aim in this early
translational study is to develop and translate a predictive algorithm into a prototype prognostic tool for
improved detection of rapid decline. The predictive algorithm was developed, validated and checked for
6-month, 1-year, and 2-year forecast accuracies using data on demographic and clinical characteristics
from 30879 patients aged 6 years and older who were followed in the U.S. Cystic Fibrosis Foundation
Patient Registry from 2003 to 2015. Predictions of rapid decline based on the algorithm were compared
to a detection algorithm currently being used at a CF center with 212 patients who received care between
2012-2017. The algorithm was translated into a prototype web application using RShiny, which resulted from
an iterative development and refinement based on clinician feedback. The study showed that the algorithm
had excellent predictive accuracy and earlier detection of rapid decline, compared to the current approach, and
yielded a prototype platform with the potential to serve as a viable point-of-care tool. Future work includes
implementation of this clinical prototype, which will be evaluated prospectively under real-world settings,
with the aim of improving the pre-visit planning process for CF point of care. Likely extensions to other
point-of-care settings are discussed.

INDEX TERMS  Decision support systems, longitudinal data analysis, patient monitoring, predictive
algorithms, user centered design.

I. INTRODUCTION

The most common and deadliest inherited disease that affects
Caucasians is cystic fibrosis (CF). Currently there are nearly
30,000 individuals in the US and 70,000 individuals world-
wide who are living with CF [1]. The leading cause of death
in CF is respiratory failure [2]; therefore, maintaining lung
function is essential for survival. Acute drops in lung function
over the clinical course of CF have been clinically termed
“rapid decline” (Fig. 1). Further adding to the complexity

of identifying rapid decline at its onset is the lack of a clear
definition [3].

Numerous epidemiologic studies by these authors [4] and
others [5]-[7] have employed various statistical approaches
to estimate trajectories of lung function decline. These trajec-
tories exhibit nonlinearity over the lifespan with substantial
variation both between subjects and within an individual
subject over time. Despite unique approaches, each study
has demonstrated that the most severe bouts of rapid decline
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FIGURE 1. Lung function (expressed as FEV1, y-axis) over age (in years,

x-axis) for a male CF patient, initially stable then declining nonlinearly
over age.

tend to occur during adolescence and early adulthood. Indeed,
recent work suggests that, although there are distinct patterns
or phenotypes of rapid decline, those individuals with the
highest lung function initially are at risk for the most severe
declines early in life [8]. In addition, adults with CF experi-
ence rapid decline [9], suggesting that this requires clinical
monitoring throughout the lifespan.

A. CF POINT-OF-CARE TECHNOLOGIES

While numerous therapeutic advancements and quality
improvement initiatives have extended life expectancy, point-
of-care algorithms and technologies that harness well-
developed epidemiologic findings regarding prediction—as
opposed to explanation—of rapid decline within the indi-
vidual CF patient are limited. Efforts to translate statistical
innovations into CF point of care began with spiromteric ref-
erence equations [10], [11], which initially were separated by
children and adults but have recently been extended through
advanced methodology [12].

Treating rapid decline from the clinician perspective typi-
cally includes a series of treatment decisions in response to
decline. Real-time clinical data availability and utilization,
along with implementing evidence-based prescribing algo-
rithms, have been shown to improve lung function in CF [13].
Furthermore, clinical algorithms that retrospectively identify
rapid decline have been successfully implemented to trigger
interventions and slow lung function loss [14].

B. RECENT ADVANCES

Home spirometry has been studied, in which patients’
FEV1 data were monitored for onset of acute respiratory
events known as pulmonary exacerbations [15], [16]. This
study involved more frequent FEV 1 collection and elucidated
the variation in FEV1, which has been shown to be a sig-
nificant predictor of subsequent FEV1 decline [17], and it
also shows the difficulty in developing a medical monitoring
intervention in CF. On the other hand, a recent diagnostic tool
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development highlights the feasibility of CF point-of-care
technologies for diagnosis [18], but does not address routine
care and clinical surveillance that are necessary to treat rapid
disease progression.

C. AIM OF THE STUDY

The aim of this study was to translate a flexible algorithm
to accurately detect rapid lung function decline within the
individual patient into a clinical prototype for CF point of
care. Clinician feedback and prototype refinements were per-
formed iteratively based on application mock-ups of clin-
ical dashboards. Earlier developments were presented and
reported as conference proceedings [19].

Il. METHODS AND PROCEDURES

The Institutional Review Board at the Cincinnati Children’s
Hospital Medical Center (CCHMC) approved the study
(IRB No. 2017-7763). The request for patient registry data
access subsequently underwent a separate review process,
and approval was granted by the Cystic Fibrosis Foundation
Patient Registry Committee (Request No. PRR08S).

A. DATA

Data from the US Cystic Fibrosis Foundation Patient Reg-
istry (CFFPR) were used to develop the longitudinal model
and resulting algorithm. The timeframe included data from
January 1, 2003, until December 31, 2015, in order to reflect
the most modern era of CF care from the available data. This
registry has been tracking outcomes on patients with CF for
nearly 50 years; detailed descriptions of its contents have
been provided [20]. For model development in this study,
we utilized forced expiratory volume in 1 s of % predicted
(hereafter, FEV1) as a marker of lung function, and included
data on patients aged >6 years in order to obtain reliable
pulmonary function from the FEV1 measure.

Other clinical and demographic characteristics from
the CFFPR, which were used as model inputs, included
static variables: sex (male or female), genotype (copies
of F508del alleles coded as heterozygous, homozygous,
or none), birth cohort (a categorical variable defined
as birth year <1981, 1981-1988, 1989-1994, 1995-1998,
1999-2005, >2006), chronic infection with Pseudomonas
aeruginosa(Pa, defined as >4 positive cultures over
time), persistent methicillin-resistant Staphylococcus aureus
(MRSA, defined as >4 positive cultures over time); time-
varying variables: age (in years), low socioeconomic status
(defined as having received federal/state insurance). These
variables were chosen based on existing CF epidemiologic
literature on modeling FEV 1, which has been summarized in
a recent review article [21].

B. ALGORITHM DEVELOPMENT AND VALIDATION

A longitudinal model was developed to fit age-related
FEV1 progression and account for its nonlinearity by
expanding an established method that has been successfully
used to monitor markers of renal disease progression [22].
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The expanded model used in this paper was presented at the
40" European Cystic Fibrosis Society Meeting.

Let Y;; be a random variable representing the longitudinal
process of FEV1 taken on the i patient at the j time point

i=1,...,N;j=1,...,n); here, let time be represented
by age (in years). The longitudinal model can be expressed as:
Yy =f (ty) + X[ B + Ui + Wi (1) + &. ey

In Equation (1), the function f(-) is used to depict nonlin-
ear FEV1 progression over time f;, which is expressed as
age (in years); f(-) is represented using natural splines with
knots located at ages 11.3, 16.0, 21.2 and 29.8 years; the
term X/B represents the patient-specific vector of covariates
defined previously and corresponding coefficients; U; ~
N(O, 012]) are random intercepts allowing FEV1 trajectories
to be shifted across individual that follow a normal distri-
bution with mean O and variance 0(2]; W; (tl]) are indepen-
dent realizations of a zero-mean, continuous-time stochastic
process known as integrated Brownian motion, representing
change in a patient’s FEV 1 over time that cannot be accounted
for with the other terms in the model; ; ~ N(0, %2) is
independent, identically distributed measurement error.

Covariate selection was examined using the Akaike Infor-
mation Criterion (AIC) across a series of models. Results are
presented for models that were static (included only baseline
information), full (included all candidate inputs) and reduced
(resulting subset of covariates were obtained based on AIC).
Each model was fitted using the ‘lmenssp’ package available
in R.

Two types of validation were performed on each model
through a stratified split sample of the CFFPR cohort (Fig. 2).
Patients were randomly split into development and validation
sub-cohorts (80% and 20%, respectively). Within the devel-
opment cohort, a forecast validation sub-cohort was created
by randomly selecting roughly 20% of patients and mask-
ing the last two years of their data. Metrics included mean
absolute error (MAE), root mean square error (RMSE) and
mean absolute % error (MAPE), in order to assess the degree
to which FEV1 as predicted by the algorithm was similar
to observed FEV1. These metrics were calculated using the
actual data held out from either the primary validation sub-
cohort or the forecast validation sub-cohort. Over the two-
year window for the forecast validation sub-cohort, overall
and h-step ahead forecasts were computed; steps included
0.5 years, 1 year and 2 years for clinical horizons.

C. CLINICALLY DEFINING RAPID DECLINE
In the analysis cohort used to develop the predictive algo-
rithm, there were N = 30,879 patients “at risk” of
rapid decline with a total of Zf\/: 1 hi = 619,960 observed
FEV1 data points and j = 1, ..., n; < 89 visits per patient.
Age range during follow up was 6 to 83 years. The covariate
history on patient i up to time ¢ can be denoted as H; () =
{i, (1, y) = 15 > 1},

The first derivative of Equation (1) may be used as
an estimate of rate of change in FEVI. A threshold of
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FIGURE 2. Flowchart of analysis cohorts for predictive algorithm
development/validation cohorts using the Cystic Fibrosis Foundation
Patient Registry (CFFPR). @ Patients randomly selected for model
development and forecast assessment; P Remaining patients held out of
model development for validation; ¢ Patients randomly selected to have
all observed data used for model development; 9 Remaining patients
whose last two years of observed data were excluded from model
development and used to evaluate forecast accuracy.
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FIGURE 3. Rate of change in lung function. Smooth curve in (A) depicts
typical progression in FEV; over age modeled by cubic b-splines and the
corresponding derivative over age (B). The dashed horizontal line

in (B) represents the cut-off chosen to mark rapid decline

(—1.5% predicted/year in Equation (3). Rates of change that are less than
this clinical threshold signal rapid decline in the prediction models.

—1.5% predicted/year was selected based on clinical judg-
ment and graphical inspection (Fig. 3). In order to identify
periods in which a given patient is at risk of rapid decline
based on this threshold, the following probability needs to be
estimated.

P (i Y; (1) < —1.5|H; (t)) 2)
dt

This probability in Equation (2) corresponds to the risk of
rapid decline for patient i based on his or her information his-
tory, which includes clinical and demographic data as well as
past FEV 1. By conditioning probabilities on this information,
more accurate risk predictions are expected.
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FIGURE 4. Iterative clinician feedback process to develop and refine
prognostic prototype for improving detection of rapid decline.

D. PROTOTYPE DEVELOPMENT AND REFINEMENT
Clinician feedback was sought at various points in Phase II
of the study (Fig. 4), which focused on translating the pre-
dictive algorithm into a clinical prototype for point of care
use. A combination of convenience and purposive sampling
was used to acquire preliminary feedback from clinician
researchers and care providers at CF Data and Chart Review
Conferences at CCHMC. The predictive algorithm approach
was described, attendees were prompted to review and com-
ment on a basic web application translating the algorithm
(Fig. 5, upper panel). This preliminary dashboard shows
observed FEV1 (black dots, top graph) for a female CF
patient with data available beginning at 6.1 years of age.
Her risk of rapid decline (bottom graph) is elevated around
10-12 years of age (see red arrow). Other patients can be
selected (see black arrow). Several refinements were made
to improve upon the base application. An interim dashboard
is shown (Fig. 5, lower panel) for another female patient,
including additional covariate inputs.

E. COMPARISON TO CURRENTLY EMPLOYED ALGORITHM
Prior to the algorithm described in this study, a local center
study was conducted to develop and implement a systematic
algorithm specific to rapid decline in pediatric patients [14].
Those patients whose peak FEV1 in the prior 3 months
was not within 10% predicted of their highest FEV1 in the
prior 12 months were classified as high-risk ‘“Red Zone”
patients. Modifiable risk factors for this degree of FEVI
decline included untreated/newly identified infectious organ-
isms, gaps in or failure to prescribe pulmonary therapies,
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FIGURE 5. Mock-up clinical dashboards depicting translation of
predictive algorithm (see text for additional patient profile explanations).

gastroesophageal reflux disease, unrecognized allergic bron-
chopulmonary aspergillosis and infrequent clinic follow up.

The local Red Zone algorithm to identify rapid decline
was compared to the algorithm described in this paper with
respect to age at which rapid decline was first identified
using a retrospective analysis of 212 patients (age range:
6-22.3 years) who received care based on the Red Zone algo-
rithm at CCHMC (2012-2015). Age at which the algorithm
first estimated probability of rapid decline to be >0.80 was
considered high risk.

Ill. RESULTS

A. ALGORITHM PERFORMANCE

Patients in the development and first-level validation cohorts
were similar in age at entry, length of follow up, sex, and
genotype, as well as other morbidity and mortality character-
istics that have been identified as risk factors of rapid decline
(results not shown). Parameter estimates for the covariate
associations and statistics for goodness of fit are shown in
the Appendix (Table El). Associations between included
covariates and FEV| were similar across static, full and
reduced models. In the final reduced model, having two
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F508del alleles, being male and born into an older cohort,
and having MRSA, CFRD and more frequent pulmonary
exacerbations in the prior year corresponded to lower over-
all FEV, while having Pa more clinic visits were associated
with higher overall FEV;. More rapid FEV; decline was
associated with having fewer F508del alleles, being female
and born into an older cohort, and not having CFRD. Each
model similarly decomposed sources of variation in FEV1,
with the largest source estimated as residual error, followed
by between-patient heterogeneity. The full model, which
included all candidate covariates, performed similarly to the
reduced model omitting socioeconomic status and the inter-
action between MRSA and age. However, this reduced model
had better fit than the full model (LRT statistic: 12, P =
0.007). The static model had the poorest fit, compared to
the full and reduced models (LRT statistics: 2526 and 2514,
respectively, both P < 0.001).

TABLE 1. Predictive performance and forecast accuracy.

Models®
Predictive Performance Full Static Reduced
(n=6,175)°
RMSE, % pred 7.745 7.752 7.746
MAE, % pred 5.535 5.537 5.535
MAPE, % 8.989 8.995 8.730
Forecast Accuracy
(n=4,490)°
RMSE, % pred
Clinical horizon, years
0.5 5.073 5.086 5.073
1 5.847 5.861 5.847
2 6.536 6.543 6.536
MAE, % pred
Clinical horizon, years
0.5 3.108 3.113 3.107
1 3.801 3.808 3.800
2 4.394 4.393 4.394
MAPE, %
Clinical horizon, years
0.5 5.556 5.570 5.555
1 6.940 6.957 6.941
2 8.589 8.589 8.588

MAE = mean absolute error; MAPE = mean absolute percentage error;
RMSE = root mean-square error. "Each model was developed using the
unmasked data from the development cohort (Fig. 2). Metrics calculated for
the held-out validation cohort and for last two years of follow-up for data
that were masked from patients in the development cohort. “Clinical horizons
are duration (in years) after the last observed (unmasked) FEV1 and
covariate values included in the model development dataset. Model estimates
are provided in the Appendix (Table E2).

The held-out validation cohort exhibited predictive perfor-
mance that was similar across the models (Table 1), indi-
cating that the static model provided reasonable accuracy
for patients who were excluded from the model develop-
ment cohort. In the forecasting of data that were masked
from patients whose earlier data had been included in model
development, the static model had the highest RMSE, MAE
and MAPE, suggesting some loss of prediction if measures
over time could not be incorporated into the models. The full
and reduced models performed similarly over the forecast-
ing term. As expected, forecasting errors increased over the
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clinical window; however, MAPE values at two years out
were within range of held-out validation estimates (8-9%)

B. CLINICIAN FEEDBACK AND

PROTOTYPE IMPROVEMENTS

The interim dashboard (Fig. 5, lower panel) served as a key
interim point in the clinical evaluation of the displays. Com-
pared to the base dashboard, we included 95% confidence
bands to provide a measure of uncertainty about the trajectory
estimations. There was also a desire to view a snapshot of
covariate information, ranging from genotype to time-varying
inputs, such as infection statuses. As a result, we decided
to build the app using the full model, which included all
covariate inputs that were considered. Although this model
suffered from a lack of parsimony, it had similar predictive
accuracy to its counterparts with fewer parameters (Table 1)
and had improved clinical utility.

At this point in Phase II, dashboards were constructed
using Microsoft PowerPoint slides. These slides were shown
to conference attendees, who provided input on data visual-
ization and clinical relevance of various thresholds of rapid
decline (e.g., —1.5% predicted per year, Fig. 3) as well as
degree of predictive probability that constitutes rapid decline
(e.g., 0.80 or higher). Clinicians were also interested in hav-
ing forecast intervals or horizons of up to 2 years ahead.
The interim dashboard as shown represented an improvement
from the base dashboard; however, clinicians preferred ver-
tical stacking of the graphs depicting observed FEV1, rate
of change in FEV1 and predictive probability distributions.
In addition, value was placed on having normative data across
patients and patient subgroups, in order to provide context
for clinical status of an individual patient relative to his or
her peers in the data. Clinician preferences were subsequently
programmed into the web application using RShiny. A look-
up table was used to display data points in each sub-graphic.
Dynamic medians calculated at quarterly intervals over age
were used to create patient normative data, with display
enabled through check-box functions.

186 Male 6.1 1999-2005

Heterozygous

8

FIGURE 6. Finalized prototype web application (see text for patient
profile explanations). Detailed description and video illustration available
in the Appendix materials (see section E2).

The finalized prototype includes de-identified data from
the forecast validation sub-cohort (Fig. 6). As shown below,
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a given patient can be selected using the scroll-down selection
bar on the leftmost pane. This pane also includes features
to toggle patient selection based on age and FEV1 at entry.
Other factors are provided for selection, ranging from sex
to birth cohort. A bookmark feature is available to save a
particular patient and feature combination from the app. The
middle panel shows observed FEV1 (black dots) versus
age, and it includes the estimated FEV1 trajectory based on
observed data (gray line). Forecast regions are provided in
red for the last two years of follow up, which also illus-
trate predictive accuracy of the model for the masked data.
Similarly, information is provided for rate of FEV1 decline
over age in the middle graph. Finally, the risk of rapid
decline is graphed using the predictive probability distribu-
tion. As shown, the gray shaded area shows real-time risk
of rapid decline, while the red shaded area shows predictive
risk of rapid decline. Having these features was deemed
important by clinicians, as it is sometimes desirable to look
retrospectively at a patient’s FEV1 progression. A third
panel is available measuring covariate information using a
heat map for frequency variables and a dichotomous color
scheme (red/gray) for present/absent characteristics, such as
having CFRD.

The patient shown in the final prototype graphic is a male
F508del heterozygote, whose first available FEV1 was 84%
pred and was taken at 6.1 years of age. He was born dur-
ing 1999-2005. His FEV1 declines in a nonlinear fashion,
as shown by the observed FEV 1 and estimated rate of decline.
His risk of rapid decline increases over age, becoming high
risk around 12 years of age. Based on the covariate snapshot,
he appears to have developed MRSA infection around this
time and was affected by Pa infection around age 10 years.
His other information shows relatively few pulmonary exac-
erbations and a slight increase in clinic visits over age. He is
reported as using state/federal insurance, which has been
associated previously with accelerated FEV1 decline [23];
he does not, however, have CFRD. A comparison of his data
to overall norms, as provided by the app, suggests that his
progression is relatively similar to others in the population.
Using check boxes to subset normative data to individuals
with his same covariate inputs, we see that this progression
is slightly above the normative data (see website and video
file in Section E2 of the Appendix).

C. COMPARISON TO CURRENTLY EMPLOYED ALGORITHM
There were 212 patients aged 6-22 years old who contributed
3,846 observations over the timeframe at the single CF care
center. The prediction model and center-level algorithm both
identified 120 patients (57%) experiencing rapid decline over
the study period. Mean (range) of the timing of rapid decline
based on the predictive algorithm and center-level algorithm
was 12.2 (6 to 19.5) and 12.75 (6.3 to 20.7), respectively.
For these patients, rapid decline was identified earlier using
the prediction model, compared to the clinical algorithm
(mean difference: 0.65 years, 95% CI: 0.41 to 0.89, P <
0.0001). The prediction model detected a similar subgroup of
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patients experiencing rapid decline to those identified using
the standard clinical algorithm (sensitivity: 83%) but detected
a distinct subgroup of patients who were classified as not
experiencing rapid decline (specificity: 25%).

IV. DISCUSSION

The ultimate aim of this study was to develop a predictive
algorithm to identify rapid lung function decline and create a
corresponding prototype for CF point of care.

A. CLINICAL UTILITY

We have developed and translated a novel point-of-care prog-
nostic algorithm for improving early detection and forecast-
ing of rapid pulmonary decline in CF. A series of models
were examined, and all relied upon covariates that are rou-
tinely obtained during clinic visits and contributed by over
200 accredited centers to a patient registry, providing indi-
vidualized predictions drawn from a broad national cohort.
We found that predictive accuracy was robust across a series
of models ranging from a basic collection of static covariates
to a comprehensive collection of time-varying measures, and
that a reduced model including genotype, sex, infection with
MRSA or Pa, diagnosis of CFRD, birth cohort and rolling
covariates for frequencies of clinical visits and pulmonary
exacerbations was the most accurate of all models considered.
Predictive accuracy was excellent in the held-out validation
cohort, indicating that future FEV data for newly diagnosed
patients could be predicted within 8.7% of actual values.
The model exhibited viable clinical utility for looking ahead
at rapid decline over 6 months, 1-year and 2-year intervals,
forecasting FEV| within margins of 5.6%, 6.9% and 8.6%,
respectively, for patients with existing data. Root mean-
square errors for the forecast intervals (Table 1) approached
the estimated within-patient SD that has been reported in a
Danish CF registry study (6.3% predicted) that employed a
similar covariance structure [24], suggesting that our algo-
rithm’s predictive performance falls within the natural FEV,
variation experienced by a given patient over time.

By translating this model into a point-of-care tool, there
are several implications for clinical care and shared decision
making. Having substantial risk of rapid decline (e.g., pre-
dictive probability >0.80) could serve as a trigger to initiate
more frequent clinical visits, assessments for infections or
mobile reporting of cough symptoms. The approach could
complement methods to monitor patients outside the clini-
cal setting, such as aforementioned efforts made to collect
at-home spirometry. The web application could be expanded
to enable shared decision making between the provider and
patient, enabling the patient to view her accrued data and risk
of rapid decline. Real-time updating could be accomplished
by integrating the application with electronic health record
data as it is accrued at the center level. The prognostic utility
of the model could be compared to current clinical algorithms
for the treatment of rapid decline in a prospective study.
The algorithm used as a comparator in this study has shown
effectiveness of using decision rules to identify rapid decline.
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B. CONSIDERATIONS FOR PERSONALIZED CARE

Our prognostic model has implications for other clinical/
translational research into point of care. With the dawn of
CFTR modulators and novel biomarkers taken on the micro-
biome and proteome level [25], accurate prediction of read-
ily available clinical outcomes, like FEV|, augmented with
other markers will be paramount to CF precision medicine.
The structure of the predictive algorithm and point-of-care
platform could be expanded to assess performance of novel
markers and therapies as additional model inputs. However,
other considerations would be needed to incorporate/evaluate
treatment effectiveness given the confounding-by-indication
bias that has been shown to exist in the CFFPR [26].

C. LIMITATIONS

This study has some limitations. Medication use was not
incorporated in the predictive algorithm, although compar-
ative effectiveness of specific medications over a subset of
eligible patients could be further assessed with some care-
ful attention to the aforementioned indication bias that is
pervasive in patient registries [27]. It is possible that CFTR
modulators could impact future predictions; however, it is
unlikely that this impact was significant in the current study as
therapeutics such as Orkambi were not available until 2015.
There is aloss to death as shown in a previous study [4], which
could impact the reliability of predictions during adulthood.
Additional considerations would be needed to incorporate
this potential survivor bias into the prediction model and
assess performance. It is possible that intensity of patient
follow-up is affected by disease severity, as shown by the
significant association between number of clinic visits in the
prior year and decline in FEV1 (Table E1); however, results
from this model are similar to previous studies using nonlin-
ear curves but relying on quarterly FEV as the outcome [28].

D. FUTURE WORK

Upcoming project phases include a formal clinician focus
group study, in order to optimize the prototype for CF point
of care. This future work will involve setting up realistic
scenarios in parallel with real-time clinical care, which are
meant to elicit clinician adjudication regarding the use of the
prediction tool in confirming rapid decline. Additional work
should be done to assess how clinicians discuss rapid decline
in care management teams and with patients and families.

It will be essential in later-stage translation to discuss
among researchers, clinicians, engineers and informaticists
how to integrate the finalized prediction application into point
of care given the existing electronic health systems, which
vary across CF centers. Another consideration is where to
embed the application. Discussions with clinicians and infor-
maticists have included division-specific intranets, medical
electronic health record programs and applications allowing
for cell phone accessibility.

Once the prototype application has been evaluated in a
real-world clinic setting, its extension to other centers and
evaluation of efficacy will require additional considerations
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related to healthcare systems and clinical management prac-
tices. Although CF care has been standardized through var-
ious pulmonary and nutritional guidelines [29] [30], [31],
variation in care still exists among CF centers [32].
These variations may necessitate customizable dashboards,
allowing users to customize interfaces in real time [33].

V. CONCLUSION

This study demonstrates the power of utilizing routinely col-
lected clinical data for point-of-care prediction technologies.
Registries like the CFFPR not only can be used to describe
prior events and associations but can predict current course
as well as future events in clinical settings in a way that can
be generalized to a broad spectrum of patients. Predictive data
on rapid decline and its clinical translation to the patient had
been a critical missing piece in CF care, and now collectively
provide capacity to arm caregivers with information needed
to personalize patient prescribing and identify those requiring
intervention in real time. External validation in international
CF cohorts and prospective evaluation as a prognostic tool for
timely treatment of rapid decline are needed.
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