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Abstract: As the largest “immune organ” of human beings, the gut microbiota is symbiotic and
mutually beneficial with the human host, playing multiple physiological functions. Studies have long
shown that dysbiosis of gut microbiota is associated with almost all human diseases, mainly including
type II diabetes, cancers, neurodegenerative diseases, autism spectrum disorder, and kidney diseases.
As a novel and potential biological medicine for disease prevention, intervention and drug sensitiza-
tion, the gut microbiota has attracted more and more attention recently. Although the gut microbiota
is a comprehensive microbial community, several star bacteria have emerged as possible tools to fight
against various diseases. This review aims to elucidate the relevance of gut microbiota dysbiosis
with disease occurrence and progression, and mainly summarizes four well-known genera with
therapeutic and sensitizing potential, Akkermansia, Bifidobacterium, Lactobacillus and Parabacteroides,
thoroughly elucidate their potential value as biological drugs to treat diverse disease.

Keywords: gut microbiota; Akkermansia; Bifidobacterium; Lactobacillus; Parabacteroides; cancer;
neurodegenerative diseases; type II diabetes; kidney diseases; autism spectrum disorder

1. Gut Microbiota

The human body contains more than 1014 microorganisms, of which about 70% of
the microbial symbiotic community colonizes the gastrointestinal tract, namely the gut
microbiota, which is a complex microbial community and makes the gastrointestinal tract
the largest interface between the human body and the external environment [1,2]. The total
number of genes of microorganisms contained in the gut microbiota is about 100 times
that of the human genome, as well as the fact that they also endow many functions that
humans do not have [3]. The co-evolution of the host and the microbe over millions of
years promotes a symbiotic relationship, in which the microbiota contributes to many
physiological processes of the host, and the host provides the microbe with a nutrient-rich
and habitable environment [4]. The gut microbiota is known to provide many benefits to
our body, including pathogen protection, nutrient absorption and synthesis, metabolism
and immune response, etc. [5]. In recent years, studies have shown that gut microbiota
dysbiosis is also linked to a variety of diseases, including tumors, neurodegenerative
diseases, type 2 diabetes, kidney disease, autism, and so on [6–9].

2. Classification and Function of Gut Microbiota

The gut microbiota is dominated by bacteria, but also includes viruses, archaea,
fungi and other eukaryotes [10]. Bacteria dominate the gut microbiota, with more than
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1000 species, more than 90% of which belong to Bacteroidetes and Firmicutes, and the rest of
the bacteria are included in four main phyla (Actinobacteria, Fusobacterium, Proteobacteria,
Verrucomicrobia) and other minor phyla [11]. The colonization of humorous gut microbiota
has also brought a series of benefits and played an important role in maintaining the normal
physiological functions of the body.

2.1. Pathogen Protection

The protective effect of gut microbiota on pathogens in the gastrointestinal tract can be
roughly divided into two aspects: physical and biological. Physically, gut microbiota can
play a protective role by reducing the exposure of pathogen epitopes via colonizing intesti-
nal epithelial cells. Germ-free mice are more susceptible to intestinal damage than normal
mice, and it can be reversed by microbial colonization, suggesting that commensal colo-
nization reduces pathogen epitope exposure and susceptibility to intestinal damage [12].
Biologically, gut microbiota can play a protective role by producing bacteriocins, indoles, ex-
tracellular vesicles, and short-chain fatty acids (SCFAs) [13]. Bacteriocins are polypeptides
produced by certain bacteria that can kill or inhibit the growth of pathogens [14]. Bacillus
thuringiensis DPC 6431, isolated from human feces, inhibits the growth of the Clostridium dif-
ficile by producing the bacteriocin Thuricin CD [15]. In addition, other important biological
functions are summarized as follows.

2.2. Synthesis and Absorption of Nutrients

The gut microbiota plays a pivotal role in the synthesis of essential vitamins that
the body cannot synthesize. Abundant research has shown that the gut microbiota can
synthesize a variety of vitamins, especially vitamin K and B, including biotin (B7), cobal-
amin (B12), folic acid (B9), niacin (B3), pantothenic acid (B5), pyridoxine (B6), riboflavin
(B2) and thiamine [16]. María P. Taranto et al., reversely demonstrated that Lactobacillus
reuteri CRL1098 can produce vitamin B12 using a sugar-glycerol co-fermentation reaction
in a medium without vitamin B12 [17]. Some scholars have shown that certain Bifidobacteria
and Lactobacilli can synthesize vitamins (such as folic acid), and intake of these bacterial
preparations can increase the content of folic acid in the intestine and plasma [18].

2.3. Metabolism

The gut microbiota is involved in various metabolic processes in our body, includ-
ing energy, glucose and lipid metabolism [19]. The gut microbiota contains various
carbohydrate-degrading enzymes, such as glycoside hydrolase (alpha amylase, type 1
pullulanase), polysaccharide lyase (inulin lyase, inulinase), carbohydrate esterase (poly
Galacturonidase, acetylesterase, pectin lyase, pectin methylesterase), can degrade in-
digestible carbohydrates so that they can be used by the human body and the rest of
the microbiota [20].

2.4. Immune System

The role of gut microbiota on host immunity has been extensively studied in germ-free
animals. Germ-free mice have numerous immunodeficiencies, including low expression of
antimicrobial peptides in the epithelium, reduced T lymphocyte numbers and activation,
reduced plasma cell numbers, and impaired IgA production [21]. June L. Round et al.
found that Foxp3+Treg cells were reduced in germ-free mice, while mice colonized with in-
testinal bacteria Bacteroides fragilis could proliferate and activate these cells [22]. SCFAs pro-
duced by gut microbiota metabolism can up-regulate anti-inflammatory and down-regulate
pro-inflammatory cytokines through different mechanisms, resulting in a comprehensive
anti-inflammatory effect [23].

2.5. Drug Biotransformation

The diverse gut microbiota naturally contains a variety of metabolic enzymes, so the
impact on drugs is obvious. The gut microbiota and its enzymatic products and subsequent



Nutrients 2022, 14, 4220 3 of 13

products, such as SCFAs and bile acids, play an important role in the biotransformation
of drugs by directly or indirectly affecting their absorption, toxicity, metabolism, and
bioavailability [24,25]. It is widely known that gut microbiota (such as Bifidobacterium H1)
can exert metabolic activity by converting polar ginsenosides to non-polar ginsenosides
through enzymes such as β-glucosidase [26,27]. Enterohepatic circulation of mycophenolate
mofetil (MMF) requires gut microbiota to convert stable phenolic glucuronide (MPAG)
without pharmacological activity into active mycophenolic acid (MPA) via β-glucuronidase
(GUS) [28]. 5-Aminosalicylic acid (5-ASA) is rapidly absorbed orally and cannot play a role
in the intestinal mucosa of inflammatory bowel disease (IBD) patients, so its prodrug,
Olsalazine, was developed. Olsalazine is composed of two 5-ASA molecules linked by
a diazonium bond, which is poorly absorbed in the upper gastrointestinal tract, but in
the large intestine, the diazonium bond is cleaved by anaerobic and aerobic bacteria to
generate 5-ASA, which is used to exert its medicinal effect [29]. Although there are many
examples of drug toxicity and bioavailability reduction caused by gut microbiota, there
are also many examples of drug efficacy through the design of prodrugs. More in-depth
research is still needed to serve the clinic and making full use of the intestinal flora for the
biotransformation of drugs can also benefit humans.

3. The Relationship between Gut Microbiota and Disease

In recent years, more and more scientists have realized the importance of gut mi-
crobiota to the body. The study of intestinal flora has been one of the hotspots for the
last decade. With the continuous development of 16S rRNA technology, more and more
studies have shown that the imbalance of gut microbiota is inseparable from many diseases.
Below, we will focus on the following key diseases for a detailed review (Figure 1), whose
supplements are shown in Table 1.
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Figure 1. The relationship between gut microbiota and disease. Many diseases alter the composition
of the gut microbiota, which also plays a key role in disease progression. Gut microbiota changes in
patients with obesity, Type II Diabetes(T2D), cancer, psychiatric disorders, autism spectrum disorder,
and so on. Metabolites of gut microbiota have also been implicated in some disease processes, such as
cardiovascular disease. Gut microbiota offers new direction for disease treatment. Note: Alzheimer’s
disease, AD; Parkinson’s disease (PD). The meaning of a symbol in the table: red arrow, up-regulated;
green arrow, down-regulated.



Nutrients 2022, 14, 4220 4 of 13

3.1. Obesity and Type II Diabetes (T2D)

Obesity is one of the most prevalent problems in the world, which is caused by
excessive accumulation of fat, and there are various metabolic abnormalities, of which
insulin resistance can also easily lead to diabetes. Routine feeding of germ-free (GF)
animals versus normal animals found that although normal mice ate less than GF mice,
they had 42% more total fat and 47% more gonadal fat than GF mice, indicating obesity
is related to gut microbiota [30]. Compared with normal individuals, obese individuals
had reduced gut bacterial diversity, with some bacteria taxa elevated, such as Firmicutes,
Proteobacteria, Fusobacterium, Lactobacillus, and Firmicutes/Bacteroidetes ratios, while others
are reduced, such as Bacteroidetes, Faecalibacterium palau, Akkermansia, Methanobacter smithii,
and Bifidobacterium [31]. Recent research on obesity-related probiotics is relatively sufficient.
Hafnia alvei HA4597 and Bifidobacterium animalis subsp. lactis 420 (B420) have shown good
effects in animals and clinical practice with good safety [32–34]. In addition, Akkermansia,
a new generation of probiotics, will be detailed later.

The prevailing view is that T2D is one of the attributes of obesity, and it is esti-
mated that more than 80% of patients with T2D are overweight [35]. In the reported
studies, the genera Ruminococcus, Fusobacterium, and Brucella were positively associated
with T2D, while Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and Rothella
were negatively associated with it [36]. An elevated proportion of Gram-negative bacte-
ria rich in lipopolysaccharide (LPS), increased cellular permeability, decreased beneficial
SCFA-producing bacteria, and diminished gut protection, resulting in low-grade systemic
inflammation considered one of the immune mechanisms of T2D [37].

3.2. Cancer

It has been discovered that the gut microbiota is closely related to the occurrence
and development of a variety of cancer types in the epithelial barrier and sterile tissues,
which also has been shown to modulate the efficacy of anticancer drugs [38,39]. Colorectal
cancer (CRC) is one of the most common cancers, its incidence ranks third and the mortality
rate ranks second in the world, as well as more and more studies have shown that gut
microbiota is related to the occurrence, progression and metastasis of CRC [40]. Elevated
abundances of Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Enterococcus
faecalis, Streptococcus cholangiolyticus, and Peptostreptococcus were frequently detected in the
feces of CRC patients, while Roseburia, Clostridium, Faecalibacterium, and Bifidobacterium
were reduced, of which Fusobacterium has potential as a biomarker [41]. Studies have
found that Fusobacterium adhesin A (FadA) is also frequently detected, which can interact
with E-cadherin on the endothelium and regulate the E-cadherin/β-catenin pathway to
promote tumorigenesis and development [42]. Pancreatic cancer (PC), one of the highest
mortality cancers, is also closely associated with dysbiosis of gut microbiota. Helicobacter
pylori, Fusobacterium, and Porphyromonas gingivalis were significantly more abundant in PC
patients, and interestingly, Enterococcus and Enterobacter were found in bile, suggesting
a possible role in the transport of gut microbiota to pancreatic tissue [43]. In addition, the
gut microbiota is also related to gastric cancer, breast cancer, liver cancer, prostate cancer
and others, which will not be discussed in detail here [25,42,44–46].

3.3. Neurodegenerative Disease

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two common neurodegen-
erative diseases for which no effective treatment is available yet. With the deepening of
investigation, the concept of the brain–gut axis has been further extended to the concept
of the microbe–gut–brain axis, which has been confirmed in the clinic, and gut micro-
biota holds promise as a potential diagnostic and therapeutic target for neurodegenerative
diseases, autism and depression [46]. A common feature of PD and AD patients is the
presence of Helicobacter pylori infection. For PD studies, increased Proteobacterial abundance
is consistent not only in clinical patients but also in animal models [47]. In AD patients, gut
microbiota of a high abundance of pro-inflammatory (Escherichia/Shighella) and a low abun-
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dance of anti-inflammatory (Escherichia rectale) were detected, which together promoted
the expression of pro-inflammatory factors [48].

3.4. Autism Spectrum Disorder (ASD)

ASD is a heterogeneous group of neurodevelopmental disorders, which is charac-
terized by deficits in communication, sociality, and cognition. However, most patients
had severe gastrointestinal disorders meanwhile, providing insights into the relationship
between ASD and gut microbiota [49]. After a number of experimental comparisons
and analyses, it can be determined that Clostridium spp. increased in the gut microbiota
in children with autism, while Bifidobacterium spp. decreased, compared with healthy
controls [50]. Gil Sharon et al. colonized ASD patients with gut microbiota in germ-free
mice by fecal microbiota transplantation (FMT) to induce hallmark autistic behaviors, thus
illustrating the possible causal link between ASD and gut microbiota [51].

3.5. Kidney Diseases

The kidney is an important organ for maintaining homeostasis (acid-base balance,
water balance, glucose homeostasis) [52,53], and existing studies have shown that gut
microbes are closely related to kidney disease and have a potential role in regulating the
prognosis of kidney disease [54]. The concept of the gut–kidney axis has also been gradually
extended to the brain–gut–kidney axis and the gut–kidney–mind axis, showing the close
relationship between gut microbes and kidneys and other diseases [55–57]. FengXia Li et al.
measured the intestinal bacteria of clinical patients and found that Parasutterella, Rothia,
Lactobacillus, Olsenella, Paraprevotella, Lactococcus, and Helicobacter were highly expressed
and positively correlated with the disease in patients with chronic kidney disease (CKD),
while Akkermansia, Lactobacillus, Parasutterella, and Clostridium IV were negatively correlated,
and the former two may be potential markers for the diagnosis of CKD [58]. It has been
reported that in acute kidney injury (AKI) caused by ischemia-reperfusion, the relative
abundances of Escherichia and Enterobacter were increased, while the relative abundances of
Lactobacillus, Ruminococcaceae, Faecalibacterium and Lachnospiraceae were decreased [59].

Table 1. Gut microbiota and disease.

Disease Gut Microbiota Mechanism Ref.

Obesity

Firmicutes, Proteobacteria, Fusobacterium, Lactobacillus,
Firmicutes/Bacteroidetes ratios ↑

N/A [31]Bacteroidetes, Faecalibacterium palau, Akkermansia,
Methanobacter smithii, Bifidobacterium ↓

Type II Diabetes
Ruminococcus, Fusobacterium, Brucella ↑

LPS ↑
SCFA ↓ [36,37]Bifidobacterium, Akkermansia, Bacteroides,

Faecalibacterium, Rothella ↓

Colorectal Cancer

Fusobacterium nucleatum, Escherichia coli, Bacteroides
fragilis, Enterococcus faecalis, Streptococcus

cholangiolyticus, Peptostreptococcu ↑

Genotoxicity (DNA damage),
Gut Barrier

Disruption, Inflammation ↑
[41]

Roseburia, Clostridium, Faecalibacterium, Bifidobacterium ↓

Pancreatic Cancer
Helicobacter pylori, Fusobacterium,

Porphyromonas gingivalis ↑
NF-κB, MAPK

signaling pathways ↑ [43]
Enterococcus, Enterobacter (in bile)

Gastric Cancer

Helicobacter pylori, Lactobacillus coleohominis, Klebsiella
pneumoniae, Acinetobacter baumannii ↑ MAP kinase, ERK1/2, VEGF,

Wnt/β-catenin ↑ [42]Porphyromonas, Neisseria, the TM7 group, Prevotella
pallens, and Streptococcus sinensis ↓

Alzheimer’s Disease
Helicobacter pylori, Escherichia, Shighella ↑ Proinflammatory cytokines ↑ [48]Escherichia rectale ↓
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Table 1. Cont.

Disease Gut Microbiota Mechanism Ref.

Autism Spectrum Disorder Clostridium spp. ↑ Amino acid
metabolism (Taurine) [50,51]Bifidobacterium spp. ↓

Chronic Kidney Disease
Parasutterella, Rothia, Lactobacillus, Olsenella,

Paraprevotella, Lactococcus, Helicobacter ↑ IL-10, IL-4, IL-6 [58]
Akkermansia, Lactobacillus, Parasutterella, Clostridium IV ↓

Acute Kidney Disease
Escherichia, Enterobacter ↑

IL-17, TNF-α, IFN-γ [59]Lactobacillus, Ruminococcaceae,
Faecalibacterium, Lachnospiraceae ↓

Note: Nuclear Factor Kappa B, NF-κB; Mitogen-Activated Protein Kinase, MAPK; Extracellular Reg ulated Protein
Kinases, ERK; Vascular Endothelial Growth Factor, VEGF; Interleukin, IL; Tumor Necrosis Factor-α, TNF-α;
Interferon-γ, IFN-γ. The meaning of a symbol in the table: ↑, increased; ↓, decreased.

4. Therapeutic and Sensitizing Effects of Gut Microbiota on Disease Treatment

In recent years, more and more studies have been conducted to clarify the feasibil-
ity of using probiotics from the gut microbiota to treat various diseases, or sensitizing
widely-used drug efficiency. With the clinical breakthroughs of FMT, researchers are more
interested in a single or several definite probiotic bacteria inoculation into the colorectum.
In the following, I mainly select several hot-spot star genera for introduction, such as
Akkermansia, Bifidobacterium, Lactobacillus and Parabacteroides (Figure 2).
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Figure 2. Therapeutic and sensitizing effects of gut microbiota on disease treatment. The application
of gut microbiota in the treatment and prevention of diseases has been in use for a long time, and with
the deepening of research, new probiotics have emerged. Except for the common Bifidobacterium and
Lactobacillus, Akkermansia and Parabacteroides are expected to become a new generation of probiotics,
with the potential to treat diseases such as obesity. What is more, Akkermansia and Bifidobacterium also
show promise in sensitizing PD-1/ PD-L1 therapy. Note: Toll-like Receptors 2, TLR2; Glucagon-like
Peptide-1, GLP-1; Programmed Cell Death 1, PD-1; Programmed Cell Death-Ligand 1, PD-L1; Total
Cholesterol, TC; Triglyceride, TG; Low-Density Lipoprotein Cholesterol, LDL-C; Dendritic Cells, DC.
The meaning of a symbol in the table: red arrow, up-regulated; green arrow, down-regulated.
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4.1. Akkermansia

Akkermansia is a genus in the phylum Verrucomicrobiota, and helps to regulate the
thickness of the intestinal mucosa layer and has been shown to strengthen the therapeutic
outcomes of chronic disease caused by a leaky gut, inflammation, insulin resistance, and
so on [60]. Akkermansia muciniphila (A. muciniphila) is the most widely studied species,
a strictly anaerobic bacterium that colonizes the outer mucosa, uses mucin as the sole
carbon and nitrogen source, and is considered a promising probiotic candidate [60]. In
healthy people, A. muciniphila constitutes 3–5% of all gut microbiota and is one of the most
abundant single species [61]. A large number of studies have shown that A. muciniphila is
inversely correlated with obesity, T2D, IBD and tumors, and strategies for supplementing
this bacteria to ameliorate these diseases are also emerging and some clinical trials are
being undertaken [62–65].

Numerous studies have shown that animals receiving live A. muciniphila no longer
exhibit insulin resistance and infiltration of inflammatory cells (CD11c) in adipose tissue.
Live A. muciniphila restores endogenous production of antimicrobial peptides, and also in-
creases endogenous production of lipids of the cannabinoid family with anti-inflammatory
activities that regulate endogenous production of gut peptides involved in glucose regula-
tion and the gut barrier, respectively, glucagon-like peptide-1 and 2 (GLP-1 and GLP-2) [66].
The current research shows that the safety of this bacteria translocation is satisfactory.
In a clinical trial of broad-spectrum antibiotic therapy, two patients with A. muciniphila
prevalence greater than 40% did not show significant signs of intestinal discomfort [67]. The
first clinical assessment of the safety of live and pasteurized A. muciniphila in obese patients
showed that oral administration for two weeks was well tolerated [62]. A recent clinical
trial shows that daily oral administration of 1010 live or pasteurized A. muciniphila is safe
and can improve insulin sensitivity in obese patients and reduce blood indicators related to
liver dysfunction and inflammation, and it is worth mentioning that A. muciniphila showed
a more pronounced effect [63]. Interestingly, in addition to the potential shown by live
and pasteurized A. muciniphila, some of its membrane and secreted proteins also have
beneficial effects. Membrane protein Amuc-1100 exhibits similar effects as A. muciniphila in
improving the metabolism of obesity and diabetes in mice, and it may be that A. muciniphila
activates Toll-like receptor 2 through Amuc-1100, regulates the expression of various tight
junction proteins, and improves the intestinal tract barrier. For the induction of antimicro-
bial peptides, the mechanism of action of the live A. muciniphila and Amuc-1100 is not the
same [62]. A. muciniphila also secretes an inducible protein P9 of GLP-1, interacting with
intercellular adhesive molecules 2 (ICAM-2), promoting the secretion of GLP-1, which can
improve glucose homeostasis and amelioration of metabolic disease in mice [68].

PD-1/PD-L1 immune checkpoint inhibitor (ICI) therapy is currently an important
treatment method for cancer therapy, but its usage is limited due to a lower response rate.
A. muciniphila has achieved inspiring results in sensitizing the efficacy of PD-1/PD-L1 ICI.
A clinical study showed that the relative abundance of intestinal A. muciniphila was higher in
metastatic renal cell carcinoma (mRCC) patients who responded to PD-1/PD-L1 ICI, while
the lower was not responsive to it, indicating that A. muciniphila has the effect of sensitizing
the efficacy of PD-1/PD-L1 ICI [69]. Bertrand Routy et al. found that FMT from patients
who responded to PD-1/PD-L1 ICI in sterile or antibiotic-treated mice improved ICI efficacy,
whereas FMT from non-responders failed to do so [70]. Pasteurized A. muciniphila and
outer membrane protein Amuc-1100 attenuate colitis and colitis-associated colorectal cancer
(CAC) by enhancing the activation and proliferation of CD8+T cells [62]. For Non-Small-
Cell Lung Cancer (NSCLC) patients treated with PD-1/PD-L1 ICI, the relative abundance
of intestinal A. muciniphila may predict prognosis, and accurate quantification of the relative
abundance of intestinal A. muciniphila and PD-L1 expression in NSCLC patients may be the
most important biomarker for outcome of immunotherapy [71].

From the above examples, we can see the potential of A. muciniphila as the next
generation of probiotics. It not only has the potential to treat obesity and diabetes, but
also has a certain effect on immunotherapy sensitization, and has well-tolerated oral safety.
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Surprisingly, pasteurized A. muciniphila seemingly has a better curative effect compared
with live bacterial colonization. Some outer membrane proteins and secreted proteins of
A. muciniphila also have certain therapeutic and sensitizing potential.

4.2. Bifidobacterium

Bifidobacterium is a Gram-positive bacteria, strictly anaerobic, non-spore-forming, ca-
pable of producing lactic acid, with a strong antibacterial effect. As a classic probiotic,
Bifidobacterium has been widely used in the food and pharmaceutical industries and has
been widely used in the supplemental treatment of constipation. Bifidobacterium animalis
subsp. lactis HN019 (HN019) was well tolerated and improved stool frequency, relieving
tension in patients with chronic idiopathic constipation in a 28-day clinical trial [72]. Many
clinical trials have shown that Bifidobacterium longum alone or in combination can effectively
improve the symptoms of IBD patients, and the probiotic product VSL#3 can effectively
reduce rectal bleeding in IBD patients with less recurrence [73]. An in vivo study showed
that oral administration of Bifidobacterium (B. breve and B. longum) alone can achieve almost
the same effect as PD-1/PD-L1 ICI in mouse subcutaneous B16.SIY melanoma and the
combination almost abolishes the tumor growth. Promoting dendritic cell function leading
to enhanced CD8+ T cell priming and accumulation in the tumor microenvironment may
contribute to its anti-cancer or sensitization effect [74]. Se-Hoon Lee et al. combined with
clinical data found that patients who responded to PD-1 treatment had high expression of
Bifidobacterium bifidum, and showed through abolition experiments that specific Bifidobac-
terium bifidumn strains (K57, K18 and MG731) can produce interferon-γ by to enhance T cell
activation to enhance the anti-tumor effect of PD-1 therapy [75]. As a veteran of probiotics,
with deep digging in various fields, supplemental Bifidobacterium may continue to bring
more prospects as an adjuvant therapy to diverse diseases.

4.3. Lactobacillus

Lactobacillus rhamnosus (L. rhamnosus) is a species of the genus Lactobacillus and one of
the most widely used probiotics. More and more studies have shown that these bacteria
also have the effect of preventing obesity, anti-depression, asthma, and so on. Mo Yang et al.
showed that L. rhamnosus JL1 administration can reduce liver injury index, TC, TG and
LDL-C, which prevents obesity caused by a high-fat diet, and improves liver inflam-
mation by activating the adenosine 5‘-monophosphate (AMP)-activated protein kinase
(AMPK) pathway to reduce TNF-α and IL-6 increased by excess fat intake [76]. Yunpeng
Liu et al. revealed that the anxiolytic and antidepressant effects of oral L. rhamnosus JB-1
are achieved through activation of CD4+CD25+T cells [77]. Pit-YeeVoo et al. showed
that the combined use of L. rhamnosus and corticosteroids (prednisolone) to treat a mouse
model of asthma showed that 50 uL of prednisolone combined with L. rhamnosus was
more effective than 75 uL of prednisolone Solomon alone, which can reduce airway re-
sistance and serum IgE and IgG1, inhibit the production of IL-4, IL-5, IL-6, IL-8, IL-13
and IL-17, up-regulate the production of serum IgG2a and Th1 immune responses were
enhanced and further improved at the pathological level [78]. Recent studies have shown
that L. rhamnosus exerts its antitumor activity by inducing IFN-β production through the
cGAS/STING/TANK-binding kinase 1/interferon regulatory factor 7 axis in DCs and can
enhance anti- PD-1 immunotherapy [79].

In addition to L. rhamnosus, clinical studies have shown that Lactobacillus casei variety
rhamnosus (Lc) can not only restore the number of intestinal probiotics (Lactobacillus and
Bifidobacterium), regulate the gut microbiota, but also increase levels of secreted IgA by
reducing intestinal inflammatory responses (e.g., fecal lactoferrin and calprotectin) [80].
What is more, a clinical trial showed that Lactobacillus reuteri enhanced the efficacy of
beclomethasone in the treatment of asthma in children and adolescents, improved the
Asthma Control Test scores, and increased the peak expiratory flow [81]. It is not difficult
to see that Lactobacillus has clear potential effects against obesity, inflammatory hepatitis,
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anxiety depression, asthma, and tumors and relative clinical studies are still being carried
out to confirm its real beneficial effect in the future.

4.4. Parabacteroides

In recent years, Parabacteroides as a possible probiotic has gradually emerged and has
been considered to be helpful in the treatment of obesity, chronic obstructive pulmonary
disease, epilepsy and acute pancreatitis. Parabacteroides administration reduces neutrophil
infiltration in acute pancreatitis (AP) by producing acetate, thereby attenuating endogly-
cosidase heparanase (Hpa)-induced AP [82]. Oral administration of the gut commensal
Parabacteroides goldsteinii improves cigarette smoking (CS)-induced chronic obstructive
pulmonary disease (COPD) in a mouse model with better safety, reduces intestinal in-
flammation and enhances cellular ribosomes and mitochondria in CS mice active [83].
Parabacteroides distasonis have metabolic benefits of reducing body weight gain, hyper-
glycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice, and play a key
role in regulating host metabolism through the production of succinate and secondary
bile acids [84]. New research shows that Parabacteroides goldsteinii MTS01 can improve the
gut microbiota composition in a mouse model of Helicobacter pylori infection, and reduce
serum triglyceride and cholesterol levels, reducing the level of gastric inflammation(COX-2,
IL-1β, and TNF-α) [85]. Although Parabacteroides distasonis has therapeutic effects, recent
studies suggest that it may induce depression-like behavior in a mouse model of Crohn’s
disease, so further in-depth research is needed for its usage [84]. A combined trial of
Akkermansia and Parabacteroides showed that a combination of these two bacteria decreases
gamma-glutamyltranspeptidase activity and gamma-glutamylation production and shows
seizure protection in vivo [86]. Parabacteroides is a new type of bacteria that has only been
studied in recent years and has shown beneficial effects in obesity, pancreatitis, Helicobacter
pylori infection and other diseases. It is expected that it will become a new bacteria that can
enter the clinic.

5. Conclusions

The gut microbiota has been one of the research hotspots in recent years, which is
symbiotic with the human body and is closely related to the health and physiological
functions of the human body. The gut microbiota is affected by various factors such as
diet, drugs, environment, and genetics, as well as the fact that its dysbiosis is associated
with many diseases. Not all gut microbiota has beneficial effects, and there are also
some pathogenic bacteria, and even the beneficial/harmful effects of the same bacteria
in different diseases are inconsistent and dependent on specific physiological conditions.
With the continuous advancement of research and technology development, people have
gradually discovered the therapeutic and sensitizing effects of certain intestinal bacteria.
FMT has achieved big success in clinical practice and has become an important treatment
for Clostridium difficile (CDI) infections that are prone to recurrence, refractory treatment
and multiple complications [87]. With the deepening of research, the real value of FMT
using a single genus or a combination of several genera will be thoroughly demonstrated.
This review summarizes several genera of Akkermansia, Bifidobacterium, Lactobacillus and
Parabacteroides that have therapeutic and sensitizing potential. It is hoped that further
research will speed up the application of these probiotics in human health.
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