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The environment in which a fetus develops is not only important for its growth and

maturation but also for its long-term postnatal health and neurodevelopment. Several

hormones including glucocorticosteroids, estrogens and progesterone, insulin growth

factor and thyroid hormones, carefully regulate the growth of the fetus and its metabolism

during pregnancy by controlling the supply of nutrients crossing the placenta. In addition

to fetal synthesis, hormones regulating fetal growth are also expressed and regulated in

the placenta, and they play a key role in the vulnerability of the developing brain and its

maturation. This review summarizes the current understanding and evidence regarding

the involvement of hormonal dysregulation associatedwith intra-uterine growth restriction

and its consequences on brain development.

Keywords: intra-uterine growth restriction, brain development, glucocorticoids, neurosteroids, insulin growth

factor, thyroid hormones

FETAL GROWTH RESTRICTION, BRAIN DEVELOPMENT, AND

HORMONES

Fetal growth depends on several factors of maternal, fetal and placental origin, in particular genetic
background, nutrients and oxygen supply to the fetus, maternal nutrition and various growth
factors and hormones (1). Suboptimal fetal growth is likely to be a key factor of disruption in brain
development and many neurodevelopmental disorders of motor and cognitive dysfunction have
their origins in the antenatal period (2, 3). Specifically, intra-uterine growth restriction (IUGR),
defined as the inability of a fetus to reach its genetically determined size is closely linked to
neurodevelopmental deficits. Indeed, infants exposed to IUGR conditions are at high risk not
only for neonatal death and cerebral palsy (4), but also for other neurodevelopmental morbidities
including mental retardation, a wide spectrum of learning disabilities and developmental
behavioral disorders associated with the onset of neuropsychiatric disorders later in life (5–7).
Several of these neurodevelopmental impairments are associated not only with deleterious effect of
brain undergrowth but also with IUGR-related injury of the developing brain. Magnetic resonance
imaging (MRI) has clearly revealed alterations of brain development in growth-restricted infants,
involving both white and gray matter (8, 9) and including altered neural circuitry identified
by diffusion MRI connectomics (10, 11) that correlate with functional cognitive, motor, and
psychiatric deficits later in life (12, 13).
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Hormonal balance has a crucial role in fetal growth
and maturation, parturition, neonatal adaptation, and brain
development (14). Hormones act as maturational and nutritional
signals controlling tissue development and differentiation and
closely interact with the in utero environment. Imbalance
between hormones due to placental dysfunction or antenatal
chronic stress conditions don’t only impair fetal maturation and
growth but could also induce obstetrical, perinatal and neonatal
complications including cesarean section, perinatal asphyxia,
respiratory distress syndrome, abnormal glycemic regulation or
inappropriate adrenal function, and hypothalamus pituitary axis
(HPA) responsiveness (5).

This review recapitulates state-of-the art data based on
a search in the PubMed library in English for the key
words “intra-uterine growth restriction,” “hormones,” and “brain
development.” The last search was done in October 2018.
No restriction of year and authors were applied and review
papers were used as references only for the general concepts.
We identified 6 dysregulated hormones in case of IUGR, as a
cause or as a result, closely related to brain development and
future neurobehavioral outcomes, including glucocorticoids and
oxytocin, estrogens and progesterone, insulin growth factor, and
thyroid hormones.

FETAL GROWTH RESTRICTION AND

CHRONIC EXPOSURE TO ENDOGENOUS

GLUCOCORTICOSTEROIDS

Fetal Growth Restriction, Chronic

Antenatal Stress, and Glucocorticoid

Exposure
Glucocorticoids (GCs) are key mediators of stress responses
involved during fetal development in the regulation of fetal
growth and maturation of fetal tissues and organs (15, 16).
Experimental and clinical evidence indicates that increased
exposure of the fetus to GCs is associated with adverse
outcomes including IUGR (17), postnatal hypertension, and
cardiovascular disease (18, 19), postnatal glucose intolerance,
increased postnatal activity in the HPA axis (20), and interference
with fetal brain development (21, 22). Conversely, placental
vascular diseases leading to IUGR were found to be associated
with higher plasma cortisol and lower ACTH levels compared to
eutrophic fetuses (23).

Besides high concentrations of GCs observed in pregnancies
complicated by IUGR, their biological effects are dependent on
glucocorticoid receptors (GR), mineralocorticoid receptors, and
11beta-hydroxysteroid dehydrogenase 1/2 (11β –HSD1/2) whose
expression varies over time during the antenatal period. Speirs
et al. demonstrated critical periods of GC sensitivity related to
changes in the expression of these molecules during antenatal
development in the mouse (24). Using in situ hybridization they
showed that GR mRNA levels were very low at embryonic day
(E9.5) in the fetus but not in the placenta, and then variably rose
during gestation in several tissues, including the central nervous
system (CNS). In humans, both GR and the MR are highly
expressed in the hippocampus from 24 weeks of gestation (25).

Fetal 11β-HSD1 mRNA expression, which could enhance
GC levels locally was detected at low levels in a few brain
regions, including the hippocampus only after E16.5 in mice
(24). In sheep, a specific increase in the expression of 11β-HSD1
mRNA in growth-restricted fetuses in late gestation has been
reported (26). In the rat, placental 11β-HSD2 is considered as
a “barrier” to endogenous GCs and genetic mutations of this
enzyme were found to be associated with low birthweights (27).
In humans, the 11β-HSD2 gene mutation also produces IUGR
which is associated with reduced placental activity of this enzyme
also highly expressed in the developing brain (28). Altogether,
these data, both in animals and in humans, strongly suggest
that the effects of high circulating cortisol levels associated
with IUGR could be potentiated by specific changes in gene
expression involved in their biological response in many tissues
including CNS.

Glucocorticoids, Developing Brain, and

Microglia Phenotypes
In humans, GCs regulate several developmental processes in
the CNS, including hippocampal neurogenesis with variable
effects on proliferation of progenitor cells, neurogenesis and
astrogliogenesis in response to either low or high concentrations
of cortisol (29). Low cortisol was found to increase proliferation
and differentiation of progenitors into S100beta-positive
astrocytes, and decrease neurogenesis. High cortisol was found
to decrease proliferation and differentiation into neuronal cells
without regulating astrogliogenesis. Inappropriate exposure
to high levels of GCs early in pregnancy could therefore
interfere with overall brain maturation. This programming
effect of endogenous GCs affecting notably the HPA axis has
been related to gene methylation and histone modifications
associated with IUGR (30, 31) and can lead to long-lasting
effects on the developing brain (32). IUGR also has sex-specific,
persistent effects on hippocampal GR expression and its variants,
a mechanism involved in HPA axis reprogramming, mostly in
males (30).

GCs confer anti-inflammatory and immunosuppressive
effects but are also able to potentiate, at high concentrations,
inflammatory responses both at central and peripheral levels
(33). In a model of restraint prenatal stress associated with
higher levels of corticosterone investigated in juvenile and adult
rats, a shift of the immune response toward a pro-inflammatory
phenotype has been observed in adult rats (34). The change of
GC receptor expression or function induced by IUGR could also
change the microglia response toward pro-inflammatory insults
associated with intensive care of growth-restricted infants,
according to a multiple hit concept (35).

Extensive literature has demonstrated that chronic stress and
GC exposure can impair the developing brain facing a large
variety of insults, including hypoxia-ischemia, hypoglycemia,
oxygen radical accumulation, all conditions potentially observed
associated to IUGR (36). In preclinical models, IUGR-associated
brain damage is usually associated with neuro-inflammation
(5, 37–39), a key feature related to exacerbated activation
of microglia, the resident macrophages of the CNS, able to
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sensitize the developing brain to a secondary insult (40, 41).
Microglial cells can acquire distinct phenotypes in response to
perinatal stimuli that allow them to either disrupt developmental
processes, i.e., myelination, synaptic pruning or axonal growth,
or support repair, and regeneration. These diverse roles make
microglia critical modulators of brain injury and GC exposure
which are able to modulate microglial phenotype both in the
developing and mature brain (42–45). In the developing brain,
Gómez-González et al. showed that exposure to prenatal stress
alters microglia maturation leading to an imbalance between
immature and ramified microglia 1 day after birth in rat (46), and
increased microglial activation in the hippocampus in juvenile
animals (47, 48).

Balance Between GCs and Oxytocin
Oxytocin (OXT), an essential hormone during the perinatal
period and parturition, is a neuropeptide released by the
paraventricular nucleus and by the supraoptic nucleus of the
hypothalamus, which is also known to be balanced against GCs.
Indeed, studies carried out in rodents and in humans showed a
close link betweenHPA axis activity andOXT release. OXT is also
implicated in autism (49–51) and in the down-regulation of the
central inflammatory response to injury in the mature brain (52,
53). In the developing brain, an association between IUGR, low
expression of OXT and neuroinflammation, leading to defective
myelination and abnormal brain function has been recently
reported (54). Pharmacological treatment using carbetocin, a
brain permeable long-lasting OXT receptor (OXTR) agonist, was
found to be associated with a significant reduction of microglial
activation and provided long-term neuroprotection. OTX also
alleviated the HPA axis activation reducing GC release (55, 56),
supporting the hypothesis of indirect anti-inflammatory action
of OXT. These findings make OXT a promising candidate for
neuroprotection, in particular in the context of IUGR.

SEX STEROID HORMONES

Sex Steroids in Human Pregnancy and

Placenta
Estradiol (E2) and progesterone (P4) are highly expressed during
pregnancy (57). Sex steroids are excreted by syncitiotrophoblasts
into the intervillous chambers, entering the maternal circulation,
and also the fetal vessels after crossing layers of cytotrophoblasts
and stromal cells. While fetal circulating E2 and P4 are mainly
of placental origin, hormonal concentrations differ between
maternal and fetal circulation (58), implying that some of these
hormones are converted in the villi (59, 60). 17β-hydroxysteroid
dehydrogenase-2 (HSD17β2) converts E2, testosterone and 14-
androstenedione (14-dione) into estrone (E1), P4, and 20α-
dihydroprogesterone, respectively (61, 62). These conversions
could be involved in a protective effect from excessive fetal
feminization or virilization, but could also play other roles (63).
In primary culture of rat hippocampal neurons, it has been
shown that E2 confers protection against excitotoxic-induced cell
death (64), and some E2 metabolites have various effects on fetal
brain development through their receptors by promoting neurite
outgrowth, myelination, and synaptogenesis (3, 65, 66) as well as

neuroprotective roles (67). P4 is already used as a treatment in
human adult traumatic brain injury (68).

Interestingly, recent human studies have suggested that
maternal serum concentrations of E2, P4 and some of
their metabolites are modified during human pregnancy
complicated by preeclampsia and/or IUGR with lower placental
aromatization and E2 levels and higher P4 inactivation (20α
hydroxylation) (69–75).

While growing evidence demonstrates that steroidogenic
enzymes are highly expressed in the CNS, below, we describe data
suggesting that changes in P4 and E2 induced by IUGR could
have an impact on fetal brain development and adaptation to
hypoxic stress.

Progesterone and Allopregnanolone and

the Fetal Brain
Both in rodents and in humans, a large variety of brain
structures (including olfactory bulb, hypothalamus, striatum,
hippocampus, cerebral cortex, and cerebellum) and cell types
(including glial, Purkinje, and Schwann cells) synthetize P4
(76, 77). Its 3α,5α-tetrahydroprogesterone (allopregnanolone)
metabolite is mainly expressed in the cerebellum of neonatal rats
(78). Progesterone receptors are expressed in rats by Purkinje
cells and in the cerebellum.

Both P4 and allopregnanolone have a recognized role in
neuroprotection (79). P4 has been found to induce inhibition
of voltage-gated calcium channels (80) in the rat brain.
Allopregnanolone found at high concentrations in maternal
(81) and fetal sheep circulation (82) has been shown to have
neurotrophic effects on neurons and glial cells (83, 84) in the
ovine fetal brain (85).

In humans, available studies comparing controls and
preeclamptic women reported conflicting results with
unchanged, or higher maternal P4 concentrations (69, 74, 75).
Using a reliable gas chromatography/mass spectrometry
technique, no difference in maternal blood P4 and
allopregnanolone concentrations was reported in women
with vascular IUGR with or without preeclampsia compared
to normal pregnancy (69). In contrast, in pregnant women
with preexisting chronic hypertension, the development of
preeclampsia was associated with higher allopregenalone
concentrations (75).

In a model of IUGR developed in guinea pigs subjected to
partial devascularization of the uterine horns during pregnancy,
decreased allopregnanolone concentrations have been observed
in fetal plasma and brain (79, 86). Moreover, in this model,
despite increased expression of progesterone receptors in the
brain, myelination was found to be decreased in the hippocampal
region (87). Nevertheless, further studies are needed to better
assess changes in P4 and its metabolite concentrations and
signaling pathways involved in the adaptive response of the fetal
brain to stress.

Estradiol
In rats, estradiol (E2) is synthetized by the hippocampus (88)
and cerebellum (89) and potentially by other parts of the
brain with some gender differences (90). E2 effects on the
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brain are not yet well understood as both protecting (64, 91)
and damaging effects (90, 92) have been described in primary
cultures of rat hippocampal neurons. This hormone has been
shown to promote axonal growth notably in cell cultures of
fetal rat neurons derived from the ventromedial nucleus of
the hypothalamus (93). In the oligodendroglial lineage, E2 also
promotes the proliferation of immature oligodendrocytes, their
differentiation into myelinating oligodendrocytes, and strongly
reduces apoptotic cell death and neuro-inflammation in response
to insult (94). On the other hand, as a potent regulator of the
depolarizing actions of GABA, E2 can insult fetal brains subjected
to hypoxic conditions by increasing the response to excessive
GABA release via excess of free intracellular calcium (90).

Aromatase is a key enzyme for estrogen synthesis and several
studies suggested a placental aromatase reduced activity in
pregnancy with preeclampsia (70–75, 95) or with IUGR (69).
As placenta is the major source of fetal estrogens, significantly
lower maternal concentrations of E2, E1, or E1/14-dione were
reported in these pregnancies which may affect fetal estrogen
levels. It can be hypothesized that during an IUGR pregnancy,
a lack of fetal estrogens could disturb brain development.
However, to our knowledge, no fetal or neonatal blood estrogen
profile has been reported yet. Whether this abnormal placental
steroidogenesis might induce changes in the steroid profile in
the fetal compartment with potential brain insult remains to be
determined. In addition, it is important to keep in mind that
the developing brain itself has the capability to synthesize and
convert sex steroids adding complexity to the interpretation of
blood level data.

Despite these limitations, current evidence increasingly
supports that E2, P4, and allopregnanolone play a key role in
brain development and might be important modulators of brain
vulnerability in the fetus with IUGR.

ROLE OF THE

GLUCOSE-INSULIN-INSULIN-LIKE

GROWTH FACTOR I (IGF-I) AXIS IN

PLACENTAL AND FETAL GROWTH

Regulation of IGF Signaling in Growth

Restricted Fetuses
The regulation of fetal growth depends not only on the nutrients
available to the fetus but also on the regulation of Insulin-
IGF/IGF binding protein 3 (IGFBP-3) axis (96, 97). The IGF
factors I and II work together to control fetal growth through
changes in size and function of the placenta. IGF-II is important
for placental growth and development, and therefore allows
more nutrients to reach the fetus. IGF-I acts as a “nutrient
sensor” and finely regulates nutrient transfer across the placenta
according to both the maternal environment and fetal demand.
The production of IGF-I, particularly sensitive to maternal
undernutrition and parental imprinting, regulates its signaling
through its receptor (98). Disruption of this imprinting causes
growth disorders including Beckwith–Wiedemann syndrome,
associated with fetal overgrowth, and Silver-Russell syndrome,
associated with IUGR (99). Several studies have shown that

infants born growth restricted have lower levels of IGF-I, IGFBP-
3, and insulin compared to appropriate for gestational age infants
(100–102). The IGF system, IGF-I and IGF-II in particular, plays
a critical role in fetal and placental growth. Disruption of the IGF-
I, IGF-II, or IGF-IR gene induces IUGR, whereas disruption of
IGF-IIR or overexpression of IGF-II enhances fetal growth (103).

Placenta and IGF Signaling
Many metabolic adaptations of pregnancy are regulated by
placental hormones which undergo dramatic changes during
gestation including placental estrogen and progesterone (104).
Placental hormone expression is supposed to interact with
fetal growth through polymorphic or epigenetic regulation
of placental growth hormone (PGH) and human chorionic
somatomammotropin (CSH) expression could alter the
expression of other critical hormones including insulin or
IGF-I (105). However, definitive evidence supporting that
specific placental hormones are required for normal pregnancy
and fetal growth is currently lacking. It is possible that other
hormones of maternal origin, such as pituitary GH and/or
prolactin, might partially compensate for reduced expression of
placental hormones.

Defective IGF Signaling and

Neurodevelopment
Abnormal fetal growth could also be associated with medically-
induced preterm delivery (106). Low IGF-1 levels in very
preterm infants and IUGR neonates were reported to be
associated with high risk factor for adverse outcomes including
chronic lung disease and retinopathy of prematurity. IGF-1
also plays crucial roles in the development and maturation
(107) of the CNS with potent effects on cellular neuroplasticity,
learning and memory, and confers neuroprotection following
brain injury. IGF-1 acts at several sites to induce cellular
plasticity through its receptor IGF-1R in neuronal and non-
neuronal cells. IGF-1R is known to induce cellular plasticity
by acting on glutamate receptors including AMPA/kaïnate-R,
NMDA-R, calcium channels, and neurotransmitter release (108).
Abnormal excitatory synaptic transmission observed in genetic
diseases associated with behavioral disorders can be corrected
by restoring SHANK3 expression or by treating neurons with
IGF-1 (109). Regarding microglial activation, a major factor of
brain injury, aging-related decrease in IGF-1 may contribute to
the defective switch of microglia toward immunomodulatory and
repair phenotype (110). During development, the IGF-1 level
in cerebral spinal fluid is high, consistently with its important
role in brain development, neuronal growth promotion, cellular
proliferation, and differentiation (111). Finally, IGF-1 induces
anti-inflammatory properties both in the developing and mature
brain related to down-regulation of brain cytokine expression
(112–114). Studies investigating the effects of intra-nasal IGF-1
demonstrated neuroprotection in models of LPS-induced white
matter injury in the developing rat brain (115), cerebral hypoxic-
ischemic injury (116, 117), and other neurodegenerative damages
(118), probably through the phophatidylinositol-3 kinase/Akt
pathway (119). However, the causality between low IGF-1
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levels and neuroinflammation associated with IUGR remains to
be confirmed.

THYROID HORMONES

Thyroid hormones are essential for fetal brain development
and maturation. Severe but also mild or subclinical neonatal
hypothyroidism has been associated with neurodevelopmental
impairment (120–124). However, all neonates with subclinical or
mild hypothyroidism are not identified by newborn screening
programs (Guthrie test). Factors associated with neonatal
hypothyroidism include prematurity and IUGR (125, 126).
IUGR and/or preeclampsia can be the consequences of placental
insufficiency associated with overexpression of sFlt-1 (soluble
fms-like tyrosine kinase-1) a soluble form of the vascular
endothelial growth factor- type 1 (VEGFR-1) (127), several
weeks before the beginning of maternal clinical signs (128). sFlt-
1 has anti-mitogenic properties on endothelial cells (129) by
trapping VEGF and placental growth factor (PlGF) leading to
hypertension and proteinuria (127, 130). When IUGR occurs
in human, higher sFlt-1 or sFlt-1/PlGF ratio concentrations
in maternal blood have also been observed compared to the
control group (131, 132). A nested case control study showed
that preeclampsia predisposes to reduced maternal thyroid
function (transient or permanent) (133) as others report (134).
This thyroid insufficiency seems to be mediated by sFlt-1
which impairs fenestrated capillary endothelium present in
endocrine glands (135). By disrupting VEGF/VEGF-R signaling
in adult mice, Kamba et al. showed capillary regression in
different organs, the amount of regression was dose- and organ-
dependent with the highest effect in thyroid (135). Recovery
of thyroid capillary density has been observed within 2 weeks
after cessation of treatment. Since sFlt-1 crosses the placenta,
an impact of fetal thyroid function could also be suspected
with risk of subsequent neurodevelopmental impairment. Cord
blood sFlt1 concentrations have been found to be inversely
correlated to birthweight (136) and free T4 and positively
correlated with thyroid stimulating hormone (TSH) (137).

However, conflicting findings have been reported regarding
the effect of IUGR on fetal serum concentration of thyroid
hormones. In a series of 49 growth-restricted fetuses who
had cordocentesis during pregnancy, higher concentrations of
TSH and lower concentrations of free T4 have been found
compared to fetuses with appropriate growth for gestational
age, and changes in TSH concentrations were correlated to
fetal hypoxia and academia (138). In contrast, others reported
unchanged or low TSH levels in IUGR cord blood compared to
controls (139–142). Variability in fetal exposure to sFlt1 could
be involved in TSH regulation and may partly explain these
conflicting findings.

In summary, IUGR leads to neuropathological consequences
for the developing brain with heterogeneous features and long-
term neurocognitive and behavioral consequences (5, 143). Many
factors contribute to the vulnerability of the developing brain,
including age of delivery, severity of in utero compromise, co-
morbidities occurring during the perinatal period, complications

associated with medically-induced preterm delivery. Changes in
several hormones strongly involved in the regulation of brain
development and maturation are likely to play a key role. More
research is needed to better understand these crosstalks.
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