
 

Int. J. Mol. Sci. 2014, 15, 7429-7443; doi:10.3390/ijms15057429 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Communication 

Antenna-Specific Glutathione S-Transferase in Male Silkmoth 
Bombyx mori 

Xiang Tan 1, Xiao-Ming Hu 1, Xiao-Wu Zhong 2, Quan-Mei Chen 1, Qing-You Xia 1  

and Ping Zhao 1,* 

1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; 

E-Mails: xiangtan@swu.edu.cn (X.T.); xiaoximingpan@126.com (X.-M.H.);  

chenquan@swu.edu.cn (Q.-M.C.); xiaqy@swu.edu.cn (Q.-Y.X.) 
2 Medicine Research Center, North Sichuan Medical College, Nanchong 637000, Sichuan, China; 

E-Mail: zxw_strive@163.com 

* Author to whom correspondence should be addressed; E-Mail: zhaop@swu.edu.cn;  

Tel.: +86-23-6825-0885; Fax: +86-23-6825-1128. 

Received: 21 January 2014; in revised form: 14 April 2014 / Accepted: 16 April 2014 /  

Published: 29 April 2014 

 

Abstract: Glutathione S-transferases (GSTs) are multifunctional enzymes that are widely 

distributed in different species. GSTs detoxify exogenous and endogenous substances by 

conjugation to reduced glutathione. We characterized BmGSTD4, an antenna-specific GST, 

in male silkmoths. The full-length mRNA of Bmgstd4 was cloned by RACE-PCR and 

contained an open reading frame of 738 bp encoding a 245 amino acid protein. The antenna 

specificity of BmGSTD4 was validated at the mRNA and protein levels and BmGSTD4  

was shown to localize in the sensillum of male silkmoth antennae. Homology modeling and 

multi-sequence alignment suggested that BmGSTD4 was a typical GST belonging to the  

δ class and had a canonical GST fold with a conserved N-terminus, including a 

glutathione-binding site and a C-terminal domain harboring a hydrophobic substrate-binding 

site. Restricted expression of BmGSTD4 in silkmoth antennae combined with GST activity 

suggested that BmGSTD4 was involved in the detoxification of harmful chemicals. 
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1. Introduction 

Glutathione S-transferases (GSTs; E.C.2.5.1.18) are conserved enzymes that are widespread in both 

prokaryotes and eukaryotes. GSTs are phase II enzymes in the detoxification and metabolism of toxic 

compounds [1–3] that catalyze xenobiotic and endobiotic compound detoxification by conjugation with 

reduced glutathione (GSH). This process results in water soluble, less toxic conjugates that can be 

excreted. GSTs also have peroxidase [4] and isomerase activity [5], and are involved in regulating cell 

signaling pathways and biosynthesis [1]. Some GSTs noncatalytically bind endogenous and exogenous  

ligands [6–8].  

The three major GSTs are cytosolic GSTs, microsomal GSTs (also called membrane-associated 

proteins in eicosanoid and glutathione metabolism; MAPEG), and mitochondrial GSTs (also known as 

kappa class GSTs). Based on the nomenclature of the mammalian cytosolic GSTs [9], insect cytosolic 

GSTs are subdivided into six classes: δ, ε, ω, θ, σ, ζ, with some GSTs remaining unclassified [10]. The δ 

and ε classes are insect specific. Insect GSTs have been studied for insecticide resistance, especially for 

artificial insecticides, such as dichlorodiphenyltrichloroethane and pyrethroid [11].  

Previous studies identified and characterized GSTs related to olfaction or GSTs that are olfactory 

specific. These GSTs protect the olfactory system, but can have other functions. These kinds of GSTs 

were first found in the olfactory epithelium of cattle [12] and rats [13]. Rat GSTs are proposed to mediate the 

covalent modification of odorants for neutralization and clearance [14]. The olfactory-specific GST 

msolf1 in Manduca sexta protects the olfactory system from harmful xenobiotics and inactivates 

odorants [15]. A cDNA fragment for Hagst-olf, an antenna-specific gene in Helicoverpa armigera, was 

recently cloned [16]. A specific GST was shown to be preferentially expressed in the chemosensory 

organs of the swallowtail butterfly, Papilio xuthus L. [17]. In addition, olfactory GSTs from coho 

salmon (Oncorhynchus kisutch) have been cloned, expressed, and analyzed [18]. 

We identified BmGSTD4, a GST specifically expressed in antennae of male silkmoth, Bombyx mori. 

We cloned the full-length mRNA of BmGSTd4, expressed and purified recombinant BmGSTD4.  

This antenna-specific GST had GST activity, suggesting its importance for protecting antennae from 

harmful xenobiotics. 

2. Results 

2.1. Cloning and Analysis of Bmgstd4 

Bmgstd4 was cloned from total male silkmoth antenna RNA by 5'- and 3'-RACE-PCR.  

Bmgstd4 mRNA was 1049 bp (Figure 1) long and contained a 738 bp open reading frame (ORF) with a 

90 bp 5'-UTR and 221 bp 3'-UTR, a tail signal (AATAAA), and a poly(A) tail. The putative Bmgstd4 

gene encoded a 245 amino acid protein with an N-terminal signal peptide of 22 amino acids. These 

features made BmGSTD4 different from cytosolic GSTs isoforms identified from silkworms. After 

removal of the signal peptide, the calculated molecular weight of the mature polypeptide was 25,518 Da 

and the theoretical pI was 4.72. BLAST of the putative conserved domains showed that BmGSTD4 was 

a typical GST in the δ class with an N-terminal GSH binding site and a C-terminal hydrophobic 

substrate-binding site. 
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Figure 1. Nucleotide and deduced amino acid sequences of BmGSTD4. Full length Bmgstd4 

mRNA and deduced amino acids. The 5'- and 3'-lowercase characters show the 5'- and 

3'-UTR. Red underline: signal peptide. 

 

2.2. Phylogenetic Analysis of BmGSTD4 with Other Insect GSTs 

We downloaded amino acid sequences of 124 GSTs from B. mori (21), Drosophila melanogaster (37), 

Anopheles gambiae (31), Aedes aegypti (29), and Apis mellifera (6). These and MsGST-msolf1 (NCBI 

accession number: AAD28279), HaGST-olf (NCBI accession number: AAL23839) and PxGST-cs1 

(NCBI accession number: BAD99564) were used to construct the phylogenetic tree (Figure 2). 

Phylogenetic analysis showed that BmGSTD4 was grouped as a δ class GST. BmGSTD4 and 

BmGSTD1 form a cluster with MsGST-msolf1 and HaGST-olf. BmGSTD1 was preferentially 

expressed in the olfactory organs of larvae and moth [19]. Based on previous studies showing that 

MsGST-msolf1 and HaGST-olf are involved in olfaction [15,16], we hypothesized that the B. mori 

orthologs had similar functions, with BmGSTD4 being involved in silkworm olfaction. 

2.3. Structural Characterization of BmGSTD4 

The homology structure of BmGSTD4 was obtained via SWISS-MODEL [20–22] using the known 

structure of BmGSTD1 (Protein Data Bank (PDB) ID: 4E8E) as a template. A detailed homology model 

was generated by the website. The sequence conformity between the template and BmGSTD4 was 

69.95% with E-value 5.27869e−87 and QMEAN Z-Score [23] −2.309 for the BmGSTD4 model. The 

root-mean-square deviation (RMSD) between the model and 4E8E was 0.038 Å. The overall structure of 

the homology model is shown in Figure 3A. The overall structure of BmGSTD4 had a canonical GST 

fold with two distinct domains connected by a short linker. The N-terminal domain consisted of a typical 

βαβαββα motif topology and the C-terminal domain had six helices resembling a right-handed α-helical 

bundle. Multisequence alignment showed that the N-terminal domain of BmGSTD4 with the 
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GSH-binding site (G-site) was conserved, implying a common GSH-binding mechanism. Ser39 is 

proposed to be catalytically essential [24–26]. However, the C-terminal domain with the hydrophobic 

substrate-binding site (H-site) had relatively low sequence identity with other GSTs. This result was 

compatible with H-site sequence variations that are responsible for differences and diversities in 

substrate selectivity. 

Figure 2. Phylogenetic tree of insect GSTs. Alignment of 127 amino acid sequences  

was used to construct the phylogenetic tree. Bold red, cluster formed by BmGSTD1, 

BmGSTD4, MsGST-mslof1, and HaGST-olf. Characters after protein denotation, accession  

numbers in NCBI. B. mori (Bm), D. melanogaster (Dm), A. gambiae (Am), A. aegypti (Aa),  

A. mellifera (Am).  
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Figure 3. Structural characterization of BmGSTD4. (A) Homology model of BmGSTD4. 

Red, N-terminal domain; yellow, C-terminal domain; purple, linker. Line, Ser39, which is 

essential for catalysis; (B) Multi-sequence alignment of δ-class GSTs from insects.  

Amino acid sequences of δ class GSTs with resolved structures are from PDB [27]. PDB ID 

4E8E, 1R5A, 3VK9, 1JLV, 1PN9, 3EIN, 3F6F, 1JLW, 1V2A). Asterisk, serine essential  

for catalysis. 

 

2.4. Antenna-Specific of BmGSTD4 

Expression of Bmgstd4 in different tissues at larval and adult stages was studied using 

reverse-transcription polymerase chain reaction (RT-PCR), with no detection in any tissues investigated 

from day 3 fifth instar larvae (Figure 4A). More thorough examination of expression profiles of larvae, 

pupae, and adult moths was performed with no detection in larvae or pupae (data not shown). A weak 

signal was detected in day 1 adult male moths, but not adult female moths. Therefore, we examined the 

expression of Bmgstd4 in various tissues of day 1 adult moths (Figure 4B). The results showed that 

Bmgstd4 was highly and specifically expressed in male silkmoth antennae. 

To confirm the antenna specificity of BmGSTD4 at the protein level, recombinant BmGSTD4 protein 

was overexpressed in E. coli and purified (Figure 5A,B). Recombinant BmGSTD4 was expressed in 

supernatants under growth conditions of 16 °C and induction with isopropyl β-D-1-thiogalactopyranoside 

(IPTG), and compared to the control. Purified protein (>95% purity) showed a single band on 

SDS-PAGE of approximately 26 kDa, similar to the calculated molecular weight. Multiple rabbit 

antibodies for recombinant BmGSTD4 were produced. Western blots showed that BmGSTD4 was 

expressed only in male silkmoth antennae (Figure 5C).  
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Figure 4. Expression patterns of Bmgstd4. (A) Expression profiles of Bmgstd4 in various 

tissues from day 3 fifth instar larvae and (B) adult moths. 

 

Figure 5. Purification of recombinant BmGSTD4 from Escherichia. coli and Western 

blotting of BmGSTD4. (A) Expression of recombinant BmGSTD4 in E. coli;  

(B) Purification of recombinant BmGSTD4 using a nickel-chelating column. M: standard 

protein marker. Lane 1: supernatant from the pretreated sample; Lane 2: flow through;  

Lane 3–9: sample eluted with binding buffer using a step gradient concentration of 

imidazole 0, 20, 50, 100, 200, 500, and 1000 mM. Target protein was eluted in binding 

buffer with 500 mM imidazole; (C) Antenna-specificity assessment of BmGSTD4 on 

Western blot. BmGSTD4 was expressed specifically in silkmoth antennae. 
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BmGSTD4 localization was investigated via immunohistochemistry. Based on the Western blot 

results, only adult male silkmoth antennae tissue was investigated for distribution of BmGSTD4. Signals 

were detected in the sensillum of antennae (Figure 6) and no signal was detected in the negative control. 

BmGSTD4 had a signal peptide, so the mature polypeptide could be secreted into the sensillum lymph, 

consistent with the immunohistochemistry results. The results indicated that Bmgstd4 was 

antenna-specific in male silkmoths and might have a particular function in the antennae. In addition to 

BmGSTD4, we identified BmGSTD1, another δ-class GST in silkworms, which was preferentially 

expressed in the olfactory organs of larvae and moth [19]. Both represent two novel olfactory-related 

GSTs in silkworms. Compared with reported olfactory-related GSTs in insects [15,17], BmGSTD4 

showed restricted expression in the antennae of male silkmoths. 

Figure 6. Localization of BmGSTD4. (A) Negative control for immunohistochemistry;  

(B) Immunohistochemistry of the BmGSTD4 protein in adult male silkmoth antennae 

showing distribution in the sensillum of antennae. Bar, 50 μm. 

 

2.5. Enzymatic Properties and GST Activity of BmGSTD4 

The enzymatic properties of BmGSTD4 were determined using purified recombinant BmGSTD4 

with 1-chloro-2,4-dinitrobenzene (CDNB) and GSH as substrates. The pH optimum of BmGSTD4 was 

6 to 6.5 (Figure 7A). BmGSTD4 was stable up to 35 °C (Figure 7B). Above 40 °C, BmGSTD4 retained 

about 20% of its 25 °C activity. 

Recombinant BmGSTD4 showed GSH-conjugating activity towards CDNB. The Km was 0.020 mM 

and Vmax was 176.302 μmol/mg/min (Figure 7C). The GST activity of BmGSTD4 showed that it might 

protect adult male moth antennae against potentially toxic chemicals. 

CDNB is insoluble and toxic, and a classic substrate for examining the detoxification activity of GST. 

Similar to other GSTs, BmGSTD4 had GSH-conjugation activity towards CDNB. From steady-state  

kinetic analysis using CDNB and GSH we determined Km and Vmax. In previous studies, several GSTs 

from B. mori were identified and kinetic data were determined with CDNB [28–32] (Figure 7D). 

BmGSTD4 had the highest GSH-conjugating activity towards CDNB. With specific localization of 

BmGSTD4 in male silkmoth antennae, these results indicated that BmGSTD4 might be important for 

detoxification of toxic compounds to protect antennae. 
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Figure 7. Enzymatic Properties and GST activity of BmGSTD4. (A) Optimum pH of 

recombinant BmGSTD4 assayed at 100 mM acetate-phosphate buffer at various pHs;  

(B) Optimum temperature of recombinant BmGSTD4. Activity was assayed by preincubation 

of the enzyme solution at various temperatures; (C) GST activity of BmGSTD4 with indicated 

concentrations of CDNB and a fixed concentration of GSH; (D) Kinetic data from BmGSTs 

in the literature. 

 

3. Discussion 

This study identified BmGSTD4, an antenna-specific GST in male adult moths from the silkworm  

B. mori. We cloned the full-length mRNA of Bmgstd4 by RACE-PCR. Phylogenetic analysis results 

showed that BmGSTD4 formed a distinct cluster with MsGST-msolf1 and HaGST-olf, which are 

olfactory GSTs. Recombinant BmGSTD4 was overexpressed and purified, and showed GST activity 

towards the classic substrate CDNB. The antenna specificity of Bmgstd4 was characterized by transcript 

and protein expression. BmGSTD4 was localized in the sensillum of antennae. The restricted expression 

of BmGSTD4 in male silkmoth antennae might represent unique functions. 

Homology structures of BmGSTD4 showed similarity to BmGSTD1 (PDB ID: 4E8E) and 

BmGSTD2 (PDB ID: 3VK9) [33] with RMSD 0.038 Å for BmGSTD1 and 0.749 Å for BMGSTD2. 

BmGSTD4 is an insect-specific δ-class GST with a canonical GST fold. The conserved N-terminal 

domain suggested that BmGSTD4 had GSH-binding interactions common to known insect δ-class 

GSTs. Ser39 appeared to be significant for enzyme catalysis. The H-site sequence of BmGSTD4 showed 

variations responsible for differences in substrate selectivity. 
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The olfactory system is important for insects to obtain information from the environment. However, 

olfactory tissues of insects are exposed to xenobiotics and natural compounds, some of which are toxic 

or affect signal transduction. Therefore, tissue-specific enzymes such as olfactory GSTs are expressed 

for metabolizing and degrading xenobiotics [15,17,34]. GSTs are multifunctional enzymes involved in 

the detoxification of hydrophobic and electrophilic toxicants ranging from drugs, herbicides, 

insecticides to environmental pollutants. The tissue-specific and species-specific expression and 

distribution of GSTs are considered an adaptive response to the toxicity of endogenous and exogenous 

metabolites [1,35,36]. Detailed functions of olfactory GSTs need to be clarified and olfactory GSTs are 

being studied [18]. Olfactory GSTs from insects have been identified [15,17] and various functions in 

the olfactory system have been proposed. GST-msolf1 in M. sexta moths is proposed to protect the 

olfactory system and inactivate aldehyde odorants. GST-pxcs1 from P. xuthus might protect olfactory 

organs and alternatively or additionally be involved in chemosensory signal transduction. Antennae are 

important organs for adult silkmoth and are crucial in mating and oviposition sites because they 

recognize and discriminate between diverse chemicals, such as pheromones. The restricted expression 

of BmGSTD4 in male silkmoth antennae suggested that BmGSTD4 GST activity was important because 

BmGSTD4 might detoxify toxic compounds attacking the antennae. BmGSTD4 contained a signal 

peptide, so it could be secrete into the sensilla lumen and bind hydrophobic ligands, as proposed 

previously [3,6–8,37]. BmGSTD4 might act as extracellular odorant carrier, and we tested BmGSTD4 

binding to odorants. Since BmGSTD4 was antenna specific, functional analysis of BmGSTD4 in 

addition to detoxification will be studied in the future. 

4. Experimental Section 

4.1. Materials and Tissue Collection 

The silkworm strain DAZAO, kept in the State Key Laboratory of Silkworm Genome Biology 

(Southwest University, Chongqing, China), was bred routinely on mulberry leaves at 25 (±1) °C with a 

relative humidity of 60%–75% until eclosion. Silk glands, testes, ovaries, fat bodies, midguts, 

integuments, hemocytes, Malpighian tubules, heads, maxillary palpus, and antennae from day 3 fifth 

instar larvae were dissected on ice. Tissues from male and female moths were dissected into legs, 

integument, wings, caudal sheaths, gonads, heads, and antennae. All tissues were immediately frozen in 

liquid nitrogen and stored at −80 °C. For Western blots, only male and female moth antennae were 

dissected, with other tissues used as controls. 

4.2. Extraction of RNA and Synthesis of First-Strand cDNA 

Total RNA was isolated from dissected tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA), and the RNA concentration was determined using a NanoDrop 1000 spectrophotometer  

(Thermo Scientific, Waltham, MA, USA). First-strand cDNA was synthesized using M-MLV reverse 

transcriptase (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. The silkworm 

cytoplasmic actin A3 gene (GenBank accession number: NM_001126254) was used as an internal 

control to normalize cDNAs. 
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4.3. RT-PCR 

RT-PCR primers were designed based on reported sequences [38] with forward (F) and reverse (R) 

primer pairs: F (5' ATGCTGACAGCGAGTGTCTTGGGAG 3') and R (5' TCATTCATCATCCTTAT 

TTATAAAC 3'). PCR amplification was performed in 25 μL containing normalized cDNA, 15 pmol of 

each primer, 2 mM MgCl2, 0.25 mM dNTP, and 2.5 units Taq DNA polymerase (Takara, Dalian, China) 

in supplied buffer. PCR was performed at  95 °C for 10 min; 30 cycles of 95 °C for 45 s, 60 °C for 40 s, 

and 72 °C for 1.5 min, and 72 °C for 10 min. Amplification products were analyzed on 1.5% agarose gels. 

4.4. Rapid Amplification of cDNA Ends of Bmgstd4 

The full-length cDNA of Bmgstd4 was cloned using a GeneRacer Kit (Invitrogen, Carlsbad, CA, 

USA) according to the user manual. Gene-specific primers and nested gene-specific primers for 5'- and 

3'-rapid amplification of cDNA ends (RACE) were designed from known sequences [38]: 5' GSP primer  

(5' CTCTGCACCGGTCTGGTCGATGT 3'), 5' nested GSP primer (5' GGGTTCTTAGGGTACAACG 

CATCGTT 3'), 3' GSP primer (5' GAATCCTCAACATACCATACCGACT 3') and 3' nested primer  

(5' ATCGACCAGACCGGTGCAGAGA 3'). RACE products were obtained from 1.5% agarose gels 

using gel extraction kits (Watson Biotechnologies, Shanghai, China), and purified fragments were cloned 

into pEasy-T1 simple vector (TransGen, Beijing, China) and sequenced (Sangon, Shanghai, China). 

4.5. Sequence Analysis 

The ORF of Bmgstd4 was predicted using analysis tools. The deduced amino acid sequence was 

aligned with the NCBI Blast website using the PDB database, and analyzed on ExPASy server [39] for 

biochemical parameters, SignalP 4.1 server [40] for signal peptides, and SMART server [41] for 

conserved domains. 

4.6. Phylogenetic Analysis 

Amino acid sequences of GSTs from B. mori were downloaded from silkDB [42,43], and sequences 

of D. melanogaster, A. gambiae, A. aegypti and A. mellifera were searched in NCBI according to GSTs 

used in a previous study [44]. Sequences of olfaction GSTs, MsGST-msolf1, HaGST-olf, and 

PxGST-cs1 were also downloaded. The phylogenetic tree of insect GSTs was reconstructed by 

Neighbor-Joining (NJ) methods in the program MEGA 6.0 [45]. The evolutionary distance was 

determined with the Jones-Tayor-Thornton model amino acid matrix. The complete deletion option was 

used in tree construction and the tree topology accuracy was assessed by 1000 bootstrap replicates. 

4.7. Homology Modeling of BmGSTD4 

The homology structure model of BmGSTD4 was generated by submitting the amino acid sequence 

without signal peptide to SWISS-MODEL [20–22]. An automated model was created with the resolved 

structure of BmGSTD1 (PDB ID: 4E8E). Model and quality information were exported in pdf format. 

Pictures of three-dimensional structures were generated with PyMOL [46]. The amino acid sequences of 
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insect δ-class GSTs with resolved structures were obtained from the PDB database [27]. Multisequence 

alignments were performed in MultAlign [47] and graphed in ESPript [48]. 

4.8. Expression and Purification of Recombinant BmGSTD4 

Recombinant BmGSTD4 without signal peptide was expressed in an E. coli system. To obtain 

soluble recombinant protein, the amino acid sequence was truncated at the first two residues of glycine 

and proline. Primers for expression were: Forward 5'-GCTACATATGAAAAAGCTAGTGGCGCC 

TATAAAAC-3' and Reverse 5'-CCGCTCGAGTCATTCATCATCCTTATTTATAAAC-3'. Nde I and 

Xho I recognition sites were incorporated into primers (underlined). PCR fragments were purified using 

PCR cleanup kits (AxyGen, Union, CA, USA) and subcloned into p28 vector (derived from pET28a, 

Novagen, Darmstadt, Germany). Recombinant clones were validated by restriction digestion and 

sequenced in both directions. The recombinant plasmid Bmgstd4-p28 was transformed into E. coli strain 

Rosetta (DE3) (Novagen, Darmstadt, Germany) competent cells for protein expression. To detect 

expression, E. coli competent cells without transformation were used as a negative control. 

Protein-expressing cells were grown at 37 °C using 2× YT culture medium (5 g NaCl, 16 g 

bacto-tryptone, 10 g yeast extract/L) until approximately 0.6–0.8 optical density (OD) at 600 nm. 

Isopropyl IPTG was added to a final concentration of 0.1 mM. Cells were harvested after 20 h at 16 °C 

and homogenized in lysis buffer (100 mM NaCl, 20 mM Tris, pH 8.5), and sonicated in ice water. After 

centrifugation at 16,000 rpm at 4 °C for 30 min, target proteins in supernatants were purified by a HiTrap 

nickel-chelating column (Qiagen, Venlo, Netherlands) and a HiLoad 16/60 desalting column (GE 

Healthcare, Little Chalfont, UK) equilibrated with 100 mM NaCl, 20 mM Tris, pH 8.0. Protein purity 

was assayed by SDS-PAGE. Purified recombinant protein was concentrated by ultrafiltration (Millipore 

Amicon, Billerica, MA, USA) and stored at −20 °C in 1 mM DTT and 40% glycerol. 

4.9. Western Blotting and Immunochemistry 

Antibodies for recombinant BmGSTD4 were produced by immunizing a rabbit with purified 

recombinant protein. Total proteins were extracted from antennae and other tissues of male and female 

silkmoths after grinding in liquid nitrogen and lysis in RIPA lysis buffer (Beyotime, Shanghai, China). 

The concentration of extracted protein was determined using Bradford Protein Assay kits (Beyotime, 

Shanghai, China). Samples containing equivalent proteins (80 µg) were separated via SDS-PAGE  

(12.5% (w/v) polyacrylamide gel) and transferred to PVDF membranes (Roche, Branford, CT, USA). 

Membranes were blocked with 1% (w/v) dry skim milk overnight and incubated with antibody at 1:5000 

with Tris-buffered saline containing Tween 20 (TBST) and washed with TBST. Horseradish 

peroxidase-labeled goat anti-rabbit IgG (H+L) (Sigma-aldrich, St. Louis, MO, USA) as secondary 

antibody was added at 1:10,000 with TBST, followed by washing with TBST. Signals were detected 

with Amersham ECL Advance Western Blotting Detection Kits (GE Healthcare, Little Chalfont, UK) 

using an imaging system (CLiNX, Shanghai, China). 

Antennae sections were dissected from day 1 adult male silkmoths. Sections were fixed in 4% 

paraformaldehyde at 4 °C overnight, embedded in paraffin and cut to 5–6 μm. Sections were blocked 

with goat serum at 37 °C for 1 h. Primary antibodies were used at a dilution of 1:100 and the 

FITC-labeled goat anti-rabbit IgH (H+L) (Sigma) was used as a secondary antibody at 1:300. DAPI 
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displays blue fluorescence under UV light. Sections were examined under a BX51 inverted fluorescence 

microscope (Olympus, Tokyo, Japan). 

4.10. Enzymatic Assays 

Enzymatic activity assays for BmGSTD4 used CDNB and GSH as standard substrates and a DU800 

spectrophotometer (Beckman Coulter, Brea, CA, USA). Optimal pH and temperature measurements 

used fixed concentrations of CDNB (0.25 mM) and GSH (1 mM). Optimum pH for activity was assayed 

using acetate-phosphate buffer at pH 4.0, 4.5, 5, 6.0, 6.5, 7.0, 7.5, 8.0 or 8.5. Thermostability was 

determined by preincubation of the enzyme solution at 10, 20, 25, 30, 35, 40, 50, or 60 °C before activity 

was assayed. GST activity assay conditions with different concentrations of CDNB and 1 mM GSH were 

in 0.1 M phosphate buffer (pH 6.5) under conditions described previously [49]. Reactions were 

monitored at 340 nm, ε = 9600 M−1·cm−1. 

5. Conclusions 

In summary, we identified BmGSTD4, an antenna-specific GST in male silkmoths. The full-length 

mRNA of Bmgstd4 was successfully cloned. BmGSTD4 was a typical GST belonging to the δ class and 

adopted a canonical GST fold. Recombinant BmGSTD4 showed GST activity towards the reference 

substrate CDNB. Antenna specificity of Bmgstd4 in male silkmoths was characterized at the mRNA  

and protein levels. BmGSTD4 was localized in the sensillum of antennae. This work presented  

initial research on BmGSTD4. Future studies will clarify the functions of BmGSTD4 in addition  

to detoxification. 
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