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Abstract

Background: The transmission of information about the photic environment to the circadian
clock involves a complex array of neurotransmitters, receptors, and second messenger systems.
Exposure of an animal to light during the subjective night initiates rapid transcription of a number
of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes
have known roles in entraining the circadian clock, while others have unknown functions. Using
laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a
comprehensive screen for changes in gene expression immediately following a 30 minute light pulse
in suprachiasmatic nucleus of mice.

Results: The results of the microarray screen successfully identified previously known light-
induced genes as well as several novel genes that may be important in the circadian clock. Newly
identified light-induced genes include early growth response 2, proviral integration site 3, growth-
arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose) polymerase.
Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved
CRE and associated TATA box elements in most of the light-induced genes, while other core clock
genes generally lack this combination of promoter elements.

Conclusion: The photic signalling cascade in the suprachiasmatic nucleus activates an array of
immediate-early genes, most of which have unknown functions in the circadian clock. Detected
evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes
suggest that the functional role of these elements has likely remained the same over evolutionary
time across mammalian orders.

Background

Circadian rhythms in mammals are driven by a clock
located in the suprachiasmatic nucleus of the hypothala-
mus (SCN) [1]. The SCN is directly innervated by the ret-
inas and photic information is transmitted to the SCN via
a NMDA and pituitary adenylate cyclase activating pep-
tide-dependent mechanism [2]. Photic input to the circa-

dian clock has differential effects on circadian rhythms
depending on the timing of exposure to light. Light pre-
sented in the early night delays the phase of the clock,
light during the late night advances the clock, and light
presented during the subjective day has little or no effect
on clock phase [3]. Photic signals during the subjective
night activate a MAP kinase signaling pathway leading to
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increased transcription of several immediate-early genes
[4] and the core clock gene Perl [2].

The roles of light-induced genes in the circadian clock
mechanism, other than the period genes, are not well
understood. For example, the best characterized of these
genes are Fos, Egrl, and Nr4al (nur77). The expression of
c-fos protein is commonly used as a marker for light-like
activation of neurons in the SCN. Fos knockout mice still
show behavioral circadian rhythms as well as a phase
response curve to light, but the amplitude of the circadian
rhythm of activity and the phase response curve are atten-
uated [5]. The threshold for photic induction of c-fos is
similar to the threshold for behavioral phase shifts, sug-
gesting a common mechanism [6], however, expression of
c-fos can be dissociated from behavioral shifts [7-9]. Fos
appears to be a component of the circadian response to
light, but not one that is absolutely necessary for phase
shifts to occur, and the mechanism by which Fos protein
is involved in photic signalling is unknown. In contrast,
Egr1 and Nr4al knockout mice show normal entrainment
patterns and no dysfunction in their response to light
[10]. The expression of egrl occurs over a broader area of
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the SCN than does c-fos [11], but the threshold for egr1l
induction is lower than for phase shifts of behavioral
rhythms or c-fos induction. These data suggest that Egrl
and Nr4al may not be directly involved in entrainment
pathways, but the lower threshold for stimulation of
expression suggests that egrl may be involved in other
SCN outputs, such as the one which regulates rhythmic
melatonin secretion from the pineal gland, which has a
lower light intensity threshold for photic regulation than
behavioral phase shifts.

In order to better understand the molecular events gov-
erning the response of the SCN to photic input, we per-
formed a microarray-based screen for genes rapidly
induced by light, followed by a comparative evolutionary
genomic analysis to identify common activation mecha-
nisms among this gene population.

Results

Light-induced immediate-early genes in the SCN

We used laser capture microscopy (Figure 1) to isolate
SCN tissue from mice immediately following either a 30
minute high-intensity light pulse or a sham light pulse.

Figure |

Laser capture and gene expression in response to a light pulse. (a) Twelve um thick coronal section containing the
SCN, indicated by arrows. Sections are stained with hemotoxylin. (b) The same section after capture, showing the removal of

the paired SCN.
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The extent of the SCN was easily determined from the
density of hemotoxylin-labeled nuclei. We examined a
selected set of genes known to be markers of the SCN, but
not the surrounding tissue, to confirm that we were meas-
uring SCN gene expression. All 6 arrays displayed strong
hybridization signals for the mRNA for vasoactive intesti-
nal polypeptide (VIP), gastrin-releasing peptide, arginine
vasopressin, calbindin 28 K, Clock, enkephalin, BMAL,
and glutamic acid decarboxylase 67. VIP produced hybrid-
ization signals that were in the top 20 genes on 5 out of
the 6 arrays (21%t on the 6% array). In contrast, neural
markers that are not expressed in the SCN, but are
expressed in SCN-projecting neurons, received absent
calls from all 6 arrays, including neuropeptide Y, prepro-
hypocretin, tryptophan hydroxylase, and tyrosine hydrox-
ylase.

The 22,626 probe sets on the Affymetrix arrays were
reduced to 10,340 candidate transcripts for analysis based
on the criteria that each probe set was identified as being
present using the default settings of GCOS 1.1 software on
at least 3 of the 6 arrays. The results of these probe sets are
plotted in Figure 2. Differences between light pulse and
sham light pulse groups were assessed according to p-val-
ues generated using a Bayesian t-test calculated using the
logarithms of the signal intensities for each probe set. A
total of six genes were measured as being differentially
expressed using our most stringent criteria, which was the
application of a Bonferroni correction to the critical p-
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Figure 2

Gene expression after light pulse vs. sham light pulse.
Summary comparison of gene expression after a light pulse
vs. control dark pulse. Each point represents one gene that
was present on at least half of the arrays. The boxes indicate
data points that were subsequently confirmed as significantly
different between conditions by qPCR.
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value for significance (p < 4.84E-06). A second group of 9
genes was identified as meeting a lesser criteria of p <
0.001. All 15 genes of these genes were then analyzed for
differences in expression using quantitative real-time PCR
(gqPCR). All 6 of the genes in the first group were con-
firmed as having a more than 2-fold increase in expression
following the light pulse, while 6 of the 9 genes in the sec-
ond group were confirmed. In addition, we tested the
fold-change of 3 additional genes that had not been iden-
tified in our microarray analysis but had previously been
shown to be induced by a light pulse (Egr3, Perl, and
Per2) [12,13]. Of this group, Egr3 showed a significant
increase in expression following the light pulse but no sig-
nificant difference in Per1 or Per2 expression was detected.
The identities of these genes and their fold-changes as cal-
culated using the microarrays and qPCR are shown in
Table 1 and Figure 3. The correlation coefficient between
fold changes determined by microarray analysis and by
real-time PCR was 0.87 (Spearman's rank-correlation, p =
0.00003). There were no transcripts that showed a signif-
icant decrease in expression following the light pulse.

The failure to detect an increase in Perl expression was
unexpected, as some previous reports detected an increase
in Perl mRNA expression within 10 minutes of the onset
of a nocturnal light pulse [14]. However, we hypothesized
that the increase in Perl might be occurring later in our
study. Therefore, we harvested SCN tissue from mice one
hour after the start of a 30 minute light pulse or sham light
pulse, 30 minutes later than in our initial study. qPCR
assays of these captures revealed a significant increase in
both Perl (7.0x over dark pulse, 95% confidence interval
of 2.8 - 17.8, n = 4 per group) and Per2 (1.9x over dark
pulse, 95% confidence interval of 1.1 - 3.4, n = 4 per
group) expression after the light pulse as compared to the
sham light pulse.

Analysis of promoter regions of light-induced genes

We reasoned that if these light-induced genes were impor-
tant to the basic mechanism of photic signalling to the
SCN and were activated by a common mechanism, they
may share common regulatory sequences. Ca2+/cAMP
response elements (CRE) have been shown to play a criti-
cal role in circadian rhythmicity and the photic entrain-
ment system [15,16]. We therefore took a comparative
evolutionary genomic approach to ask whether all of the
light-inducible genes in the SCN that we detected contain
conserved CRE elements in their promoters. We found at
least one highly conserved CRE element within 2 kb
upstream of the start codon in 12 of the 13 genes induced
by light immediately following the light pulse (Figure 4,
Table 2 Additional file 1). The only gene lacking a con-
served CRE element within 2 kb of the start codon was
Nr4al. Most of these CRE elements were highly conserved
not only at the nucleotide sequence level but also in their
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Table I: Fold change in expression following a light pulse
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Gene Symbol Gene Title Entrez Gene ID Fold-Array* p-value™*
Egrl early growth response | 13653 27.7 3.45E-13
Nr4al nuclear receptor subfamily 4, group A, member | 15370 10.2 2.13E-09
Egr2 early growth response 2 13654 47.3 4.19E-08
Duspl dual specificity phosphatase | 19252 5.8 6.18E-08
Rrad Ras-related associated with diabetes 56437 26.2 7.89E-08
Pim3 proviral integration site 3 223775 29 1.32E-06
Kif4 Kruppel-like factor 4 (gut) 16600 34 2.07E-04
Fos FBJ osteosarcoma oncogene 14281 29.3 2.18E-04
Gadd45b growth arrest and DNA-damage-inducible 45 beta 17873 32 2.58E-04
Btg2 B-cell translocation gene 2, anti-proliferative 12227 33 5.84E-04
Tiparp TCDD-inducible poly(ADP-ribose) polymerase 99929 2.4 6.02E-04
Jun Jun oncogene 16476 35 6.99E-04

* Fold-array indicates the fold-difference in gene expression following a light pulse as compared to a sham light pulse. ** Bayesian t-test using Cyber-

T software (see Methods section for details)

relative positions within the promoter region in the five
mammalian species examined (mouse, rat, human, cow
and dog), suggesting that these elements are important to
coordinate the regulation of this group of genes. Previous
studies have also demonstrated that cAMP-dependent
activation of transcription by p-CREB largely depends on
the presence of TATA elements downstream of the CRE
element [17]. We found that 8 out of the 12 genes with
CRE elements also possess TATA elements in proximity to
the CRE element, including the 4 genes that showed the
largest increases in expression following the light pulse.
By these same criteria, Per] has both a conserved CRE ele-
ment and a conserved TATA box, while Per2 has neither.
In contrast, in 8 other clock genes (Table 3) that were not
upregulated 30 minutes after the light pulse onset in this
study, only one (Csnkid) had both a conserved CRE ele-
ment and a nearby TATA box. This difference (12/13 vs. 1/
8) is statistically significant (Fisher's Exact Test, p < 0.001).
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Figure 3

Fold change of light-induced genes, measured by
qPCR. Fold change following a light pulse of genes signifi-
cantly upregulated following the light pulse as compared to
the sham light pulse, as measured by qPCR. Error bars repre-
sent 95% confidence intervals.

Discussion

The results of this study identify a total of 13 transcripts
that show significant increases in expression 30 minutes
after the onset of a light pulse during the early night. It is
important to note that this study examined gene expres-
sion in only the earliest moments of the response to
photic stimulation. It is likely that repeating this study at
later time points would reveal additional light-induced
genes.

Four of the differentially expressed transcripts identified
in the microarray analysis have not previously been iden-
tified as being induced by light: Egr2, Pim3, Gadd45b, and
Tiparp. Egr2 is a zinc-finger transcription factor of the
same family as Egrl and Egr3. There is insufficient infor-
mation available to generate a clear hypothesis about the
function of Egr genes in the SCN. Pim3 is a serine/threo-
nine protein kinase that has anti-apoptotic functions in a
variety of tissues [18,19], but its role in neurons has not
been investigated. In contrast, the known functions of
Gadd45b and Tiparp suggest potential connections to SCN
function. In beta cells, Gadd45b inhibits apoptosis as well
as JNK and ERK activation [20]. Gadd45b has similar
functions in hematopoietic cells [21]. Gadd45b is upregu-
lated in the hippocampus in response to electroconvulsive
shock, consistent with a neuroprotective function [22]. If
Gadd45b acts to inhibit ERK activation in the SCN, then
that would be consistent with the idea that some of these
light-induced genes act to downregulate the sensitivity of
the SCN to subsequent stimuli, and possibly contribute to
the SCN's strong resistance to excitotoxicity [23].

Tiparp encodes TCDD-inducible poly [ADP-ribose]
polymerase and is activated through an aryl hydrocarbon
receptor-dependent pathway [24]. Activation of this path-
way by tryptophan photoproducts alters the expression of
clock genes and inhibits glutamate-induced phase shifts
in SCN 2.2 cells [25]. The aryl hydrocarbon receptor
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Conserved promoter elements in light-induced genes. Conserved CRE and TATA-box elements in promoter regions
of four immediate-early genes in five mammalian genomes: (A) Egr/, (B) Fos, (C) Perl and (D) KIf4. Translational start codon
ATG begins at +1. Alignment gaps are shown as dashes (-), dots (.) indicate identity to the first sequence. For KIf4, genomic
sequence of dog was not available. Predicted conserved CRE elements are outlined with shaded boxes; putative TATA-boxes

are shown with white boxes.

shares significant structural similarity with Bmal1, a core
clock gene, and may interact directly with Bmal1, provid-
ing a potential substrate for altering clock function [26].
The induction of Tiparp provides another potential mech-
anism for altering clock function, although the targets for
ribosylation in the SCN are unknown.

Three genes identified in our study (Rrad, Btg2, Kif4) were
recently reported as light-induced in a study using high-
coverage expression profiling [27], and another gene,
Dusp1, was also recently characterized as light-induced
[28]. Dusp1 encodes MAP kinase phosphatase 1 (MKP1),
and is now thought to play a role in the termination of the
photic signalling cascade. One of the critical steps in the
response of the SCN to photic signaling is the phosphor-
ylation of the extracellular signal regulated kinases (ERK),
leading to phosphorylation of CREB and changes in tran-
scription [29,30]. An increase in functional MKP1 would
reduce the sensitivity of the SCN to photic stimuli, and
shut down the transcriptional mechanisms turned on by
light. It also might help explain the extraordinary resist-
ance of SCN cells to excitotoxicity [23], by downregulat-
ing the responses of SCN cells during periods of extended
stimulation.

Rrad, Btg2, and Kif4 have not been examined in the con-
text of circadian clock function. However, given what is
known about the role of Rrad in other systems, increased
Rrad protein would also serve to downregulate the
response of SCN cells to subsequent stimulation. Rrad

encodes a small GTPase that binds to calmodulin and
CaM Kinase II [31]. Increased Rrad expression is associ-
ated with the removal of voltage-gated calcium channels
from the plasma membrane [32], which would reduce the
response of SCN neurons to excitatory stimuli. In addi-
tion, CaM Kinase II has already been shown to play a role
in the regulation of light-induced phase delays, through
actions leading to the transcription of Perl [33,34]. Con-
sistent with this theme of downregulating cellular
responses to stimuli, Btg2 and KIf4 both have anti-apop-
totic functions in other cellular systems [35,36], but their
role in the SCN remains unknown.

The remaining five genes are well known light-induced
genes: Egrl, Egr3, Fos, Nr4al, and Jun. Investigations into
the function of these genes in the response of the SCN to
photic stimuli have been extremely limited. Mice lacking
functional copies of Egrl and Nr4al (nur77) do not show
altered circadian rhythms, suggesting that these genes do
not play an important role in entrainment [10], although
there could be compensatory mechanisms in the knock-
out mice that mask the role of these genes. In contrast,
mice lacking Fos show an attenuated phase response curve
to light [5], suggesting that this gene is involved in the sig-
nal transduction mechanism for conveying photic infor-
mation to the molecular clock mechanism. The critical
factor in the response of the circadian clock to light is the
increase in expression of period genes, through a mecha-
nism that does not appear to require Fos. One possibility
is that mechanisms within the cell that are activated by
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Table 2: Conservation of CRE and TATA elements in light-induced genes

Ensembl gene ID Gene name

Number of conserved CRE

Genomic positions of CRE = Genomic positions of TATA

elements* elements** boxes
ENSMUSG00000020423 Btg2 2 -277 to -257 No TATA
3
-259 (to) -239
ENSMUSG00000024190c Duspl 2 -349 to -329 -180 to
-301 to -281 - | 75%
“
ENSMUSG000000384 18 Egrl 3 -925 to -905 -363 to -360
-424 to -404 -686 to -682
-355 to -335
ENSMUSG00000037868 Egr2 | -414 to -394 -302 to -298
ENSMUSG00000033730 Egr3 2 -645 to -625 -599 to -596
2
-592 (to) -572
ENSMUSG00000021250 Fos 3 -500 to -480 -183 to -178
-452 to -432
2
-225 to -205
2
ENSMUSG00000015312 Gadd45b | -925 to -905 No TATA
ENSMUSG00000052684 Jun 2 -1261 to -505 to-
-1241 5Q2kwekk
-1002 to -982
ENSMUSG00000003032 KIf4 2 -1023 to - -778 to -774
1003
-986 to -966
ENSMUSG00000023034 Nr4al N/ARE N/A No TATA
ENSMUSG00000020893 Perl | -355 to -335 -500 to -497
2
ENSMUSG00000055866 Per2 N/A N/A No TATA
ENSMUSG00000035828 Pim3 | -686 to -666 No TATA
2
ENSMUSG0000003 1880c Rrad | -522 to -502 No TATA
ENSMUSG00000034640 Tiparp | -1863 to - -1615to -1610
1843

* We defined CRE element as being evolutionary conserved if it was present in at least 3 out of 5 mammalian genomes (Mouse, Rat, Human, Cow
and Dog). ** Number in parenthesis indicates how many overlapping CRE elements were identified in the promoter sequence, however,
coordinates of only the first of the overlapping elements are given here. * Mouse and rat promoters have non-canonical CATAAAA variants
instead of canonical TATAA in human, cow and dog. However, this non-canonical variant is known to function in a TATA box-like fashion [56,57].
¥ N/A = not applicable, because in Nr4al and Per2, no conserved CREs were detected within 2 kb of the promoter sequence. ¥ |n human
sequence TATA box was identified within 300 bp downstream of conserved CRE; however, it was not present in other genomes. See additional file

| for additional notes for this table.

Fos protein are important for the communication of infor-
mation from retinorecipient cells to other parts of the
SCN. Another piece of evidence implicating both Fos and
Jun in entrainment is that microinjection of antisense oli-
gonucleotides for these transcripts into the brain inhibits
the phase shifting effects of light [37]. In addition, the
behavioral phase shifts are highly correlated with changes
in Fos expression, but not with Egrl or Nr4al expression
[38]. There have been no functional studies regarding the
role of Egr3 in the circadian clock.

We found that nearly all of the light-induced genes iden-
tified in this study had evolutionary conserved CRE ele-
ments in their promoter regions, with the strongest light

inducible responses coming from the combination of CRE
elements and associated TATA boxes. On the other hand,
core clock components that are not induced by light lack
this combination of promoter elements, with one excep-
tion (casein kinase 1 delta). The slower, longer-lasting
increase in Per2 relative to the other induced genes has
been described elsewhere [39]. The loss of a conserved
CRE element from the Per2 promoter may be a compo-
nent of its functional divergence from Per1. It is likely that
while the CRE element helps drive transcription of light-
induced genes, there are other important regulatory ele-
ments responsible for controlling the time course of
expression in response to activation by p-CREB. However,
these data strongly suggest that the presence of the CRE
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Table 3: CRE and TATA elements in selected clock genes
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Ensembl gene ID

ENSMUSG00000020038
ENSMUSG00000068742
ENSMUSG00000029238
ENSMUSG000000551 16
ENSMUSG00000020889
ENSMUSG00000032238
ENSMUSG00000022433

ENSMUSG00000025162

Gene name

Cryl

Cry2

Clock

Bmall

Rev-erb-alpha (Nrldl)
Ror-alpha (Rora)
Casein kinase | epsilon
(Csnkle)

Casein kinase | delta
(Csnkld)

Number of conserved
CRE elements within the
promoter sequence *

|

|

No CRE #*#*
No CRE
No CRE
No CRE
No CRE

Genomic positions of
upstream CRE
elements in mouse
promoter relative to
start codon (ATG
starts at position +1)

-600 to -580
-262 to -242
N/A
N/A
N/A
N/A
N/A

-330 to -310 (4)
sk

Genomic positions of
TATA boxes if any

No TATA
No TATA
-472 to -469
No TATA
No TATA
No TATA
No TATA

-570 to -567

* We defined CRE element as being evolutionary conserved if it was present in at least 3 out of 5 mammalian genomes (Mouse, Rat, Human, Cow
and Dog). ** Number in parenthesis indicates how many overlapping CRE elements were identified in the promoter sequence, however,
coordinates of only the first of the overlapping elements are given here. ** Only mouse and human promoters had predicted CREs; however, these
CREs were located in different positions and therefore we did not consider them as being evolutionary conserved. ¥ Multiple TATA boxes were
identified in each species; however, not all of them were evolutionary conserved in all sequences. TATA box shown was shared between four out of
five species because dog genomic sequence was not available in that region.

element drives transcription of a coordinated array of
immediate-early genes in the SCN in response to photic
stimulation. Further evidence of this is the finding that
CREB specifically binds to the CRE sequences in the Dusp1
promoter [28]. Observed evolutionary conservation of
CRE elements among mammalian genomes that diverged
at least 90 million years ago (MYA), such as primate-cattle
divergence at about 90-98 MYA [40], and primate-rodent
divergence at about 90 MYA [41], indicates that the func-
tional role of these elements in regulation of clock genes
has likely remained the same in different mammals.
Although this kind of in silico analysis requires further
experimental evidence, and while the role of many light-
induced genes in the SCN remains unknown, these data
support the idea that the response of the SCN to photic
input is not limited to pathways involved directly in
entrainment.

Conclusion

The results from this study demonstrate the existence of
previously unknown light-induced immediate-early genes
in the SCN. Several of these genes have been previously
shown to be involved in a reduction of cellular activity
and/or the prevention of apoptosis. These data suggest
that in addition to the responding to light by shifting the
timing of the circadian clock, mechanisms exist to reduce
the long-term sensitivity of the SCN to light during noc-
turnal light exposure. Most light-induced genes have evo-
lutionary conserved CRE elements in their promoter
regions, supporting a common mechanism for a coordi-
nated transcriptional response to photic input. Further
investigation into the functional role of light-induced

genes may yield new insight into the mechanisms of circa-
dian clock function.

Methods

Animals

Adult male C57BL/6 mice were individually housed in a
14:10 light/dark cycle in their experimental room and
cage for at least two weeks prior to the experiment. They
were then exposed to a 30 minute light pulse (2400lux) or
a dark pulse (sham) starting one hour after lights off. Pre-
vious research has shown that this duration and intensity
of light is well below the threshold for induction of retinal
apoptisis [42]. Immediately after treatment, mice were
euthanized via cervical dislocation. Dark pulse mice were
euthanized under dim red light, and both light and dark
pulse animals' eyes were dissected out immediately to
avoid excess exposure to light. The mice were then decap-
itated and the brains were quickly removed and frozen in
isopentane cooled in dry ice. Brains were stored at -70°C
until ready for further processing. Animals were handled
in accordance with the guidelines of the PHS Guide to the
Care and Use of Laboratory Animals and all NIH regula-
tions.

Laser Capture Microscopy/RNA purification

Brains were cut into 12 pm thick sections on a cryostat
and directly mounted onto glass slides. Sections were
stained using a quick protocol to allow for visual identifi-
cation of the suprachiasmatic nucleus. First the sections
were fixed in a 75% EtOH solution for 30 seconds, rinsed
in water to remove excess EtOH from the slide, and then
immersed in Hemotoxylin for 90 seconds. Slides were

Page 7 of 10

(page number not for citation purposes)



BMC Neuroscience 2007, 8:98

then washed in molecular biology grade water. The slides
then were taken through an alcohol dehydration series of
75%, 95% and 100% EtOH for 30 seconds each, followed
by immersion in xylenes for 5 minutes. The slides were
removed from the xylene, and once the remaining xylenes
had evaporated the slides were placed into a laser capture
microscope (Arcturus) and the SCN was identified and
captured into CapSure® HS LCM Caps (Molecular
Devices).

For microarrays and validation of microarrays by quanti-
tative real-time PCR (qPCR), 6 consecutive SCN sections
were captured from each mouse. The specificity of each
capture for SCN tissue was confirmed after capture by
examination of both pre and post-capture images of the
tissue. While it is possible that a few cells were technically
extra-SCN from any given sample, we estimate that this
would comprise less than 1% of the total captured mate-
rial. Samples from three mice were then pooled together
within the same treatment, so in total there were 18 SCN
sections pooled together. For the Perl and Per2 time
course experiment, 6 consecutive SCN sections from each
mouse were used but multiple mice were not pooled for
analysis. The pooled samples were purified using an RNA
purification kit (Picopure from Molecular Devices)
including a DNase treatment. A 1 pl aliquot of each sam-
ple was removed and processed on an Agilent Bioanalyzer
2100 using the Agilent Lab-on-a-Chip Picochip RNA Kkit.
Only samples with RNA integrity numbers about 6.8 were
processed further. RNA was stored at -70°C until ready to
proceed.

Microarrays

For experiments involving microarrays, 1 ng of total RNA
was processed through two rounds of linear amplification
using RiboAmp HS kits (Molecular Devices). Amplified
samples were labeled, fragmented, and hybridized to
Aftfymetrix Mouse 430A 2.0 Genechips using the standard
Affymetrix protocols according to the 2004 edition of the
Aftymetrix technical manual. Signal intensities for each
gene were generated using the Microarray Suite 5.0 algo-
rithm by Affymetrix GCOS software. In addition to the
signal intensity, each gene was determined to be present,
marginal, or absent using default software settings. Signal
intensity and present/absent data were imported into
Excel and filtered such that only genes that received a
present call in at least 3 of the 6 arrays were included in
the analysis. This reduced the total number of probe sets
to be analyzed from 22,626 to 10,340. Signal intensities
for the three light pulse and three dark pulse arrays were
analyzed using Cyber-T software [43] using the default
settings. This software generates p-values for each gene as
a test of differences between light and dark pulse groups
using a Bayesian t-test [44]. Two sets of candidate genes
were selected based on the results of this test. The first set

http://www.biomedcentral.com/1471-2202/8/98

was characterized by Bayesian t-test p-values that were
below the critical value for a Bonferroni multiple-compar-
ison correction (p < 4.8E-06). The second set met a lesser
criterion of p < 0.001. The false discovery rate was exam-
ined empirically by qPCR confirmation.

The data discussed in this publication have been depos-
ited in NCBI's Gene Expression Omnibus (GEO, [45])
and are accessible through GEO Series accession number
GSE6904.

Real Time PCR

For experiments involving qPCR validation, Tagman 20x
gene expression probes were ordered from Applied Bio-
systems for the genes shown to be significantly upregu-
lated from the microarray results. qPCR was performed on
an Applied Biosystems Prism 7000 sequence detection
system. Purified Total RNA from above was reversed tran-
scribed using Tagman Reverse Transcription reagents Kit,
using standard protocol with random hexamers. qPCR
was conducted using Tagman Universal Master Mix on
the experimental samples, with all samples being assayed
in triplicate. Each plate run included a subset of primers
for mouse gapdh as a control gene. Analysis of relative
gene expression in real-time PCR experiments were per-
formed using the 2-24ACT method[46].

Analysis of evolutionary conservation of CRE and TATA
elements in the promoter sequences

Genomic sequences of promoter sequences for five mam-
malian species were downloaded from Ensembl Genome
Browser [47], release 42. The following genomes were
used: NCBI build m36 assembly of mouse (Mus musculus)
genome, NCBI 36 assembly of human (Homo sapiens)
genome, whole genome shotgun (WGS) assembly
CanFam?2.0 of dog (Canis familiaris) genome, WGS pre-
liminary assembly Btau_2.0 of cow (Bos taurus) genome,
and RGSC 3.4 assembly of rat (Rattus norvegicus) genome.
Promoters were defined as 2 kb upstream of the annotated
translational start sites (ATG) of respective immediate-
early and clock genes.

Putative CRE (cAMP-response) elements were identified
using MatInspector [48,49] using vertebrate matrices of
the Matrix Family Library Version 6.2 (October 2006)
[50]. If multiple overlapping CREs were detected within
10 bp of each other, they were considered to form a single
CRE. After CRE elements were identified in each sequence,
a search for downstream TATA boxes was performed.

Multiple sequence alignments of the promoter sequences
were constructed with the program BlastZ that is specifi-
cally fine-tuned to capture sequence similarity of large
non-coding sequences such as those found in the pro-
moter regions [51] using MultiPipMaker [52,53]. Putative
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CRE elements and TATA boxes from mouse promoters
were mapped onto the alignments. If the same elements
were detected in the homologous position in at least two
out of four other mammalian genomes, such CREs and
TATA boxes were considered evolutionary conserved and
likely to be functional [52,54,55].
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