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Our objective was to determine whether melatonin increases retinal ganglion cell 
(RGC) survival in ischemic mouse retina. Transient retinal ischemia was induced by 
an acute elevation of intraocular pressure in C57BL/6 mice. To evaluate the effect of 
melatonin on retinal ischemia, an equal amount of either melatonin or vehicle was in-
traperitoneally injected into the mice 1 hour before ischemia, at the time of ischemia, 
and 1 hour after ischemia. Hypoxia inducible factor 1α (HIF-1α) and glial fibrillary 
acidic protein (GFAP) expression were assessed 6, 12, and 24 hours after ischemia-re-
perfusion by Western blot. RGC survival was measured 2 weeks after ischemia- 
reperfusion. The expression of HIF-1α and GFAP peaked 24 hours after ischemia-re-
perfusion in ischemic retina. The treatment of ischemic retina with melatonin resulted 
in the inhibition of increased expression of HIF-1α and GFAP. RGC survival was great-
er in retinas treated with melatonin than in retinas treated with vehicle 2 weeks after 
ischemia-reperfusion. On the basis of our results, we suggest that melatonin treatment 
increased RGC survival in ischemic mouse retina. The neuroprotective effect of melato-
nin is mediated by the inhibition of HIF-1α stabilization and reduced activity of glial 
cells in ischemic mouse retina.  
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INTRODUCTION

　Glaucoma is one of the leading causes of irreversible 
blindness.1 Glaucoma is an optic neuropathy characterized 
by retinal ganglion cell (RGC) death, axon loss, and an ex-
cavated appearance to the optic nerve (ON) head.2 In glau-
coma, elevated intraocular pressure (IOP) and other fac-
tors, such as oxidative stress and interruption of ax-
oplasmic transport, have been implicated in RGC death.3-8 
　Although elevated IOP is the most significant risk factor 
for glaucomatous ON damage and RGC loss, several stud-
ies have shown a relation between oxidative stress and 
RGC loss in glaucoma.8,9-11 In addition, there is much evi-
dence of a dysregulated blood supply to the ON head and 
abnormal retinal blood flow in glaucoma patients and in a 
chronic ocular hypertensive animal model.12-16 
　Histopathologically, the loss of RGCs in glaucoma is ac-
companied by morphologic and functional changes in 
Müller cells the main type of glial cell in the retina.17 Müller 

cells are activated in the retina under stressful conditions, 
such as elevated IOP or ischemia.17-19 A key feature of acti-
vation of Müller cells is the upregulation of the inter-
mediate filament glial fibrillary acidic protein (GFAP).20-23

　Under normal conditions, Müller cells are responsible 
for the protection of RGCs by releasing neurotrophic fac-
tors and the secretion of glutathione, which has an anti-
oxidant effect.24-26 However, activated Müller cells neg-
atively affect RGC survival in ischemic retina.26-28

　Melatonin was recently found to be an antioxidant and 
a free radical scavenger.29,30 It is a highly effective direct 
scavenger of reactive radicals and their intermediates, 
such as hydrogen peroxide, nitric oxide, and peroxynitrite. 
Because of its lipophilic characteristic, which allows it to 
cross the blood-brain barrier, melatonin has been proposed 
to endogenously protect against oxidative damage to the 
brain.31,32 
　In this study, we investigated the expression of hypoxia 
inducible factor 1α (HIF-1α) and GFAP in ischemic mouse 
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FIG. 1. Expression of HIF-1α and GFAP protein on ischemic mouse retina according to time interval. HIF-1α and GFAP expression
was increased within 24 hours in ischemic mouse retina (A-C). Relative intensity of chemiluminescence for HIF-1α and GFAP protein
bands was normalized using actin as a calibrator. *Significant at p＜0.05 compared with control mouse retina. †Significant at p＜0.05
compared with ischemic mouse retina-6 h, Error bars, SD. HIF-1α: hypoxia inducible factor 1α, GFAP: glial fibrillay acidic protein.

retina. In addition, to determine the neuroprotective effect 
of melatonin, RCG counting by retrograde FluoroGold la-
beling was performed in ischemic retina treated with ei-
ther vehicle or melatonin.

MATERIALS AND METHODS

1. Animals
　All experiments were conducted in accordance with the 
Association for Research in Vision and Ophthalmology 
Statement for the Use of Animals in Ophthalmic and Vision 
Research. The protocol was approved by the Institutional 
Animal Care and Use Committee of Chonnam National 
University Hospital. C57BL/6 mice (3 months of age, 20-25 
g in weight) were housed in individual cages under con-
trolled lighting conditions (12 hours light/12 hours dark) 
and given tap water and food ad libitum. 

2. Transient retinal ischemia
　For transient retinal ischemia, C57BL/6 mice were anes-
thetized with a mixture of tiletamine/zolazepam (4 mg/kg; 
Zoletil 50, Virbac, France) and xylazine hydrochloride (1 
mg/kg, Rompun; Bayer Korea, Seoul, Korea) by intra-
muscular injection. A cannula was inserted into the ante-
rior chamber, which was connected by flexible tubing to the 
saline reservoir. IOP was elevated above systolic blood 
pressure (100-120 mmHg) for 60 minutes by raising the 
reservoir. Retinal ischemia was confirmed by the whiten-
ing of the anterior segment of the eye, blanching of the iris 
vessels, and loss of retinal red reflex. Previous studies have 

shown that neuronal degeneration occurs mainly in the 
thinner retinal layer, especially in the ganglion cell layer, 
after 60 minutes of transient retinal ischemia.18,33 

3. Melatonin treatment
　Two groups of mice were studied following unilateral 
transient retinal ischemia: one group was treated with ve-
hicle (saline, n=10) and the other group was treated with 
melatonin (40 mg/kg, n=10) 1 hour before ischemia, at the 
time of ischemia, and 1 hour after ischemia. The dose and 
delivery route of melatonin were based on previous reports 
for melatonin treatment.34 

4. Tissue preparations
　The retinas were dissected from the choroid and fixed in 
4% paraformaldehyde in phosphate buffered saline (pH 
7.4) for 2 hours at 4oC for retinal flat mounting. For Western 
blot analyses, whole retinas were immediately used or fro-
zen in liquid nitrogen and stored at −70oC until used.

5. Western blot analysis
　Retinal tissues were homogenized in a glass-polytetra-
fluoroethylene Potter homogenizer in lysis buffer (PRO- 
PREPTM; iNtRoN Biotechnology, Kyungki-Do, Korea). 
Each sample (10 μg) was separated in a 10% polyacryla-
mide mini-gel at 150 V for 1 hour. The transferred mem-
branes were incubated for 1 hour at room temperature in 
TBS-T solution [10 mM Tris-HCl (pH 7.6), 150 mM NaCl, 
and 0.1% Tween-20] containing 5% non-fat dry milk. 
Blocking membranes were incubated overnight at 4oC with 
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FIG. 2. The effect of melatonin on HIF-1α expression in ischemic
mouse retina. Melatonin treatment significantly decreased HIF-1
α protein expression in ischemic retina at 24 hours (A, B). Relative
intensity of chemiluminescence for HIF-1α protein band was nor-
malized using actin as a calibrator. *Significant at p＜0.05 com-
pared with control mouse retina. †Significant at p＜0.05 com-
pared with ischemic mouse retina-24 h. Error bars, SD. HIF-1α:
hypoxia inducible factor 1α.

FIG. 3. The effect of melatonin on GFAP expression in ischemic 
mouse retina. Melatonin treatment significantly decreased 
GFAP protein expression in ischemic retina at 24 hours (A, B). 
Relative intensity of chemiluminescence for GFAP protein band 
was normalized using actin as a calibrator. Error bars, SD. 
*Significant at p＜0.05 compared with control mouse retina. 
†Significant at p＜0.05 compared with ischemic mouse retina-24
h. Error bars, SD. GFAP: glial fibrillay acidic protein.

mouse monoclonal anti-HIF-1α (1：2000; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), mouse monoclonal 
anti-GFAP antibody (1：3000; Cell Signaling Technolo-
gy), or mouse polyclonal anti-actin antibody (1：4000; 
Santa Cruz Biotechnology) in TBS-T solution containing 
5% non-fat dry milk. After being washed three times with 
TBS-T, the membranes were incubated for 1 hour at room 
temperature with peroxidase-conjugated goat anti-mouse 
IgG (1：2000; Santa Cruz Biotechnology) in TBS-T con-
taining 5% non-fat dry milk. Blots were developed with en-
hanced chemiluminescence and quantified by using an 
LAS-3000 image-analyzer (Fujifilm, Tokyo, Japan).

6. Retrograde labeling and counting of RGCs
　FluoroGold (1 μL/injection of 4%; Fluorochrome, Inc., 
Denver, CO, USA) diluted in saline was microinjected bi-
laterally into the superior colliculi of anesthetized mice in 
a stereotactic apparatus 1 week before enucleation. To 
evaluate the loss of RGCs, each retinal quadrant was div-
ided into three zones: center, middle, and peripheral retina 
(one-sixth, three-sixths, and five-sixths of the retinal radi-
us). The numbers of RGCs were counted in 32 distinct areas 
of 0.48 mm2 (two areas at the center and three areas at the 
middle and periphery per retinal quadrant) by two inves-
tigators in a masked fashion, and the scores were averaged. 
The images were analyzed by confocal microscopy with a 
20× objective with a laser scanning microscope (LSM 510; 

Carl Zeiss, Jena, Germany). 

7. Statistical analysis
　The experiments were repeated at least three times. The 
data are presented as means±SDs. An unpaired Student’s 
t-test was used for the comparison between two ex-
perimental conditions. A p value ＜0.05 was considered to 
be statistically significant.

RESULTS

1. Expression of HIF-1α and GFAP on ischemic mouse reti-
na according to time interval 

　Western blot showed increased expression of HIF-1α 
and GFAP in ischemic mouse retina within 24 hours after 
ischemia-reperfusion. Expression of HIF-1α and GFAP 
peaked 24 hours after ischemia-reperfusion (p＜0.05; Fig. 1). 

2. Effect of melatonin on HIF-1α and GFAP expression 
　Increased expression of HIF-1α induced by ischemia-re-
perfusion, after acute IOP elevation, decreased signifi-
cantly after treatment with melatonin (p＜0.05; Fig. 2). In 
addition, melatonin treatment significantly inhibited the 
increased expression of GFAP in ischemic mouse retina (p
＜0.05; Fig. 3). 

3. Effect of melatonin on RGC loss 
　Compared with the control retina, acute IOP elevation 
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FIG. 4. The effect of melatonin on RGC survival in ischemic 
mouse retina. The retinal flat mounts of control (A), vehicle- 
treated ischemic retina (B) and melatonin-treated ischemic reti-
na (C). The quantitative analysis of RGC survival (D). *Signifi-
cant at p＜0.05 compared with control mouse retina. †Signifi-
cant at p＜0.05 compared with ischemic mouse retina treated 
with saline. Error bars, SD. Scale bars, 100 μm.

TABLE 1. The effect of melatonin on retinal ganglion cell (RGC) survival in ischemic mouse retina   

Cell density (cell/mm2±SD)

Control Ischemia-Saline Ischemia-Melatonin

Center
Middle
Peripheral

419.71±95.00
 332.85±131.31
 252.24±104.01

189.89±19.82*
141.61±27.59*
133.10±54.13*

  267.99±79.28†

  261.68±76.93†

234.90±39.43

Data are expressed as the mean±SD. *p＜0.05, comparison between control vs. ischemia-saline. †p＜0.05, comparison between ische-
mia-saline vs. ischemia-melatonin. RGC: retinal ganglion cell.

induced RGC loss by approximately 45% in the central, 58% 
in the middle, and 48% in the peripheral areas of ve-
hicle-treated ischemic retina 2 weeks after ischemia-re-
perfusion (Fig. 4, A, B, and D; Table 1). In contrast, melato-
nin treatment increased RGC survival in ischemic mouse 
retina, especially in the central and middle areas compared 
with vehicle-treated ischemic retina (p＜0.05; Fig. 4, C and 
D; Table 1). 

DISCUSSION

　This study showed that melatonin treatment inhibited 
the increased expression of HIF-1α and GFAP and pre-
vented RGC death in ischemic mouse retina. When ad-
equate oxygen is supplied to the cell, HIF-1α is usually de-
graded in the cytoplasm. However, under hypoxic con-
ditions, stabilized HIF-1α forms heterodimer with HIF-1β 
in the nucleus.35,36 This heterodimer transcribes several 

genes associated with cellular adaptation to hypoxia, such 
as erythropoietin, vascular endothelial growth factor, and 
nitric oxide.37 
　Therefore, modulation of HIF-1α is tightly regulated by 
the level of tissue hypoxia. However, excessive expression 
of HIF-1α can lead to neuronal cell death.38,39

　Our result showed that melatonin inhibits increased ex-
pression of HIF-1α in ischemic retina compared with ische-
mic retina treated with vehicle. We suggested that the pos-
sible mechanism of this inhibition might be mediated by 
the antioxidant effect of melatonin and that blockage of 
subsequent hypoxic responses via inhibition of HIF-1α ex-
pression results in increased RGC survival in ischemic 
retina. In addition, we investigated the effect of melatonin 
on GFAP expression in ischemic retina. Melatonin effec-
tively reduced GFAP expression and increased RGC sur-
vival in ischemic retina. Müller cells, the principal glial 
cells of the retina, support neurons with blood-derived nu-
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trients, by removing metabolic waste, and by maintaining 
the homeostasis of the retinal extracellular milieu (ions, 
water, neurotransmitter molecules, and pH).40 Müller cells 
become activated or reactive in response to pathological al-
teration of the retina, including ischemia-reperfusion or 
elevated IOP. Furthermore, activated Müller cells may 
participate in damaging neurons41,42 and are characterized 
by upregulation of the intermediate filament protein 
GFAP.43

　However, the exact mechanism responsible for activa-
tion of Müller cells is still unknown. Activated Müller cells 
increase the expression of the inducible form of nitric oxide 
synthase and decrease glutamate uptake in ischemic 
retina.44,45 Tezel and Wax46 reported that increased pro-
duction of tumor necrosis factor-α and nitric oxide by reti-
nal glial cells exposed to elevated hydrostatic pressure and 
simulated ischemia induced apoptosis in cocultured RGCs.
　Melatonin is an indoleamine produced in the pineal 
gland and the retina. Melatonin is known to be involved in 
diverse functions in the human body, such as temperature 
regulation, blood pressure regulation, and sleep-cycle 
control.47 In the retina, melatonin receptors are clustered 
on the photoreceptors, inner segments, and ganglion 
cells.46 Melatonin is known to inhibit the nitridergic path-
way, which has a protective effect on the photoreceptor’s 
outer membranes and reverses the effect of ocular hyper-
tension on retinal function. In addition, in an experimental 
animal model, the concentration of melatonin in the retina 
of glaucomatous rats with high IOP was significantly 
reduced.48 Melatonin has diverse direct and indirect anti-
oxidant effects and also acts as a free radical scavenger. 
Several reports have indicated the potent antioxidant and 
neuroprotective effects of melatonin. Treatment with mel-
atonin after neonatal hypoxia-ischemia was shown to re-
duce neuronal cell death and white-matter demyelination 
in rats.49 In addition, injection of melatonin after induction 
of hypoxic-ischemic injury reduced oxidative stress and in-
flammatory cell recruitment in the cerebral cortex of rats.50 
Moreover, melatonin counteracted ischemia-induced apo-
ptosis in cultured human retinal pigment cells.51 The anti-
oxidant functions of melatonin include direct free radical 
scavenging, stimulation of antioxidative enzymes, in-
creased efficiency of mitochondrial oxidative phosphor-
ylation, reduction in electron leakage, and augmentation 
of the efficiency of other antioxidants.52-56 Therefore, as 
a potent antioxidant, melatonin can induce functional 
changes in Müller cells during ischemia-reperfusion 
injury. We believe that the decreased activation of Müller 
cells resulting from melatonin treatment can reduce RGC 
death during ischemia-reperfusion injury. Thus, the use of 
melatonin may be an effective therapeutic strategy for pre-
venting glaucomatous RGC death. In combination with the 
effects of traditional anti-glaucoma medication, the anti-
oxidative effect of melatonin may benefit patients with 
glaucoma by protecting against RGC death resulting from 
ischemic injury. In conclusion, our findings provide evi-
dence that the functional state of retinal glial cells may be 

important in determining the ultimate fate of RGCs and 
that melatonin has a neuroprotective effect on RGC in is-
chemic retina, and this effect is mainly mediated by a re-
duction in the stabilization of HIF-1α and activation of 
Müller cells. The specific molecular events that occur in 
Müller cells after melatonin treatment need to be deter-
mined. 
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