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Heart rate fragmentation gives novel
insights into non-autonomic mechanisms
governing beat-to-beat control of the
heart’s rhythm
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Abstract

Objectives: To demonstrate how heart rate fragmentation gives novel insights into non-autonomic mechanisms of

beat-to-beat variability in cycle length, and predicts survival of cardiology clinic patients, over and above traditional

clinical risk factors and measures of heart rate variability.

Approach: We studied 2893 patients seen by cardiologists with clinical data including 24-hour Holter monitoring.

Novel measures of heart rate fragmentation alongside canonical time and frequency domain measures of heart rate

variability, as well as an existing local dynamics score were calculated. A proportional hazards model was utilized to

relate the results to survival.

Main results: The novel heart rate fragmentation measures were validated and characterized with respect to the

effects of age, ectopy and atrial fibrillation. Correlations between parameters were determined. Critically, heart rate

fragmentation results could not be accounted for by undersampling respiratory sinus arrhythmia. Increased heart rate

fragmentation was associated with poorer survival (p � 0.01 in the univariate model). In multivariable analyses,

increased heart rate fragmentation and more abnormal local dynamics (p 0.045), along with increased clinical risk

factors (age (p � 0.01), tobacco use (p � 0.01) and history of heart failure (p 0.019)) and lower low- to high-

frequency ratio (p 0.022) were all independent predictors of 2-year mortality.

Significance: Analysis of continuous ECG data with heart rate fragmentation indices yields information regarding non-

autonomic control of beat-to-beat variability in cycle length that is independent of and additive to established param-

eters for investigating heart rate variability, and predicts mortality in concert with measures of local dynamics, frequency

content of heart rate, and clinical risk factors.
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Introduction

Precisely adaptive control of the heart’s beating rate

and the resulting variability in beat-to-beat intervals

is a hallmark of health. This variability is the integrated

product of many factors, including extrinsic autonomic

neurological control, factors intrinsic to cardiac tissue,

and even variability in beating that occurs on a single

sinus node cardiomyocyte level.1 Changes in physical

or emotional states, whether slow or abrupt, physiolog-

ical or pathological, mandate a range of incessant small

and large adjustments in the time of arrival of the next
heartbeat, to optimize cardiac output to the body’s
requirements at that exact point in time. Certain
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mechanisms underlying heart rate variability (HRV)
are relatively easily detected, for example autonomic
driven respiratory sinus arrhythmia can be revealed in
the frequency spectrum of the heart rates or the times
between beats, the RR intervals. Accordingly, quanti-
fication of HRV has traditionally been performed in
the frequency domain, where the premise is that the
amount of variance localized in discrete frequency
bands can be ascribed to the action of the parasympa-
thetic (high-frequency, HF, >0.4Hz or 24/minute) and
sympathetic (low-frequency, LF, 0.15 or 9/minute to
0.4Hz) arms of the autonomic nervous system.2

The heart rate frequency spectrum, though, reveals a
great deal of variance outside of the respiratory fre-
quency. While some of this represents changes in sym-
pathetic nervous system activity, and some represents
respiratory sinus arrhythmia (RSA) not well-localized
because the respiratory rate is constantly changing, it is
now reasonable to suppose that some of this variance is
due to intrinsic variability at the level of sinoatrial node
(SAN) tissue or indeed the individual SAN myocytes
that comprise this remarkable structure. Contemporary
evidence suggests substantial beat-to-beat variation in
the functioning of the ensemble of sarcolemmal ion
channels making up the membrane clock along with
variation in the behavior of the ion channels, Ca2þ

release channels and Ca2þ pumps comprising the
Ca2þ clock, together comprising the coupled clock
system that drives robust and flexible automaticity in
SAN cells.1,3–5Beat-to-beat variation in the number of
available channels and interaction with other regulato-
ry molecules (e.g., in the case of SERCA, with phos-
pholamban) is likely to underlie HRV in these
denervated cardiac preparations. Since ion channel
gating is stochastic, we might expect aperiodic charac-
teristics of this very finely adaptive control, without a
characteristic peak in the frequency spectrum.

In keeping with the idea that innate sinus node
dynamics might be important, Costa and Goldberger
recently introduced new analytics of short-term HRV
that they call heart rate fragmentation,6,7 to quantify
the previously described phenomenon of erratic sinus
rhythm.8 These measures quantify the phenomenon of
small, aperiodic fluctuations in heart rate that are not
easily explained by our understanding of extrinsic reg-
ulation of the SAN by the autonomic nervous system.
Semi-quantitative analyses of erratic sinus rhythm have
pointed to an adverse clinical effect of these fluctua-
tions, and the metrics of Costa and Goldberger
indeed are associated with worse prognosis in the
MESA study.9 The new measures number four: the
percentage of inflection points (PIP), or points at
which the first difference changes sign, the percentage
of short segments (PSS), the inverse of the average seg-
ment length (IALS) and the percentage of alternating

segments (PAS). For each, a larger value denotes a

more fragmented heart rate structure.
The aims of our study were as follows. Firstly, to

validate and characterize the novel heart rate fragmen-
tation measures in a large, clinically replete dataset of
24-hour Holter recordings. Thus, we examined their

relationship to age from 0 to 100 years, and correlated
the fragmentation indices with both traditional and

novel HRV measures. To examine mechanisms of frag-
mentation, we measured the effect of ectopy and atrial
fibrillation, and tested the idea that fragmentation rep-

resents only undersampling of RSA by the heartbeat.
Secondly, we tested how heart rate fragmentation and

local dynamics score added independent information
about survival in this cohort of cardiology patients.

Methods

Study population

2893 Holter recordings collected at the University of
Virginia from patients of all ages were studied. In par-

ticular, we manually over read 1571 recordings of
patients aged 40 and over because of the higher inci-

dence of chronic heart disease and atrial fibrillation.10–

12 Some patients had multiple Holter studies done, in
which case only the first Holter was included in this

study. Additionally, labels for AF, premature atrial
contraction (PAC) or premature ventricular contrac-

tion (PVC) were acquired either from the Philips
Holter software or our own manual corrections.10

Patients were placed into one of three categories as
follows: atrial fibrillation (when the arrhythmia occu-

pied more than 5% of the record), sinus rhythm with
ectopy (when ectopic beats occupied more than 10% of
the record) or normal sinus rhythm.

In addition to the Holter recordings, other demo-
graphic data were collected for the subset of patients

over 40, such as age, gender, and the presence of
comorbidities including hypertension, hyperlipidemia,

CHF, diabetes mellitus, history of tobacco use and the
presence of cardiac pacemaker as recorded during visits
to University of Virginia cardiologists. These demo-

graphics were described in detail for this group in pre-
vious work from our group – see Table 1 in Moss

et al.11 The (younger) group of patients were less
exhaustively clinically characterized, but did have an
average age of 23.0 years, and 546 (44.9%) were male.

Heart rate variability metrics

Descriptive statistics. We computed the mean and stan-

dard deviation (SD) for 30 s RR interval time series,
averaged results for each 10min segment and then

averaged over the entire 24 hours. The coefficient of
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variation (CV) was calculated every 10minutes and

then averaged over the 24 hours.

Heart rate fragmentation metrics. For every 24-hour RR

interval time series, the differences between consecutive

RR intervals, increments, were derived as follows:

DRRi¼RRi-RRi-1. When DRR is zero, the heart rate

is constant and the DRR value remains 0. However,

when DRR is smaller than zero, the increment is

counted as an acceleration and the DRR value is

replaced by �1. When DRR is larger than zero, the

increment is counted as a deceleration and the DRR

value is replaced by 1. From this ternary time series

of values �1, 0 and 1, the four HR fragmentation met-

rics were calculated for the 24-hour record.
We excluded DRR values of >1 second or if they

exceeded 4 SD of the DRR for the individual record.

We excluded segments of <10 consecutive delta RR

intervals. These steps resulted in excluding 1.8% of the

overall data from all patients. We used the entire RR

interval time series, not just the NN intervals, as this

does not affect the impact of the fragmentation metrics.6

Percentage of inflection points (PIP). PIP is the frac-

tion of RR intervals representing inflection points out

of all RR intervals. An inflection is counted when there

is any change in number in the ternary time series, for

example from �1 to 0, �1 to 1 or 0 to 1.

Inverse of average segment length (IALS). An acceler-

ation/deceleration segment is a sequence of the same

consecutive number; an acceleration segment is a

sequence of �1’s and a deceleration segment is a

sequence of 1’s. The length of a segment is the

number of increments in that segment. IALS is the

inverse of the average segment length.

Percentage of short segments (PSS). PSS is the com-

plement of the percentage of long segments. A long

segment is an acceleration/deceleration segment with

a length of at least three increments. The percentage

of long segments is the number of increments in long

segments divided by the length of the RR time series.

Percentage of alternation segments (PAS). An alterna-

tion segment is a sequence of at least four increments

where the ternary time series changes every step from

�1 to 1 or vice versa, i.e. a sequence with the pattern

“�1 1 –1 1”. The percentage of alternation segments

(PAS) is the number of increments in these sequences

divided by the length of the RR time series.

Coefficient of sample entropy (COSEn). COSEn is a mea-

sure derived from the sample entropy (SampEn13) opti-

mized to detect AF in very short RR interval time

series.10 SampEn is the negative logarithm of the con-

ditional probability that two sequences that match

Table 1. Univariate and multivariate predictors of mortality in Cox proportional hazards models of the 1321 patients of age 40 or
greater who were in normal sinus rhythm during the Holter recording.

Univariate model Multivariate model

Hazard ratio X2 p value Hazard ratio X2 p value

Age 1.074 104.33 1.71E-24 1.059 51.596 <0.001

Hypertension 3.137 23.70 1.12E-06

Diabetes mellitus 1.900 15.13 0.000101

History of tobacco use 2.478 31.60 1.90E-08 1.783 10.810 0.0010

Hyperlipidemia 1.728 9.01 0.00269

History of CHF 2.868 42.35 7.65E-11 1.533 5.549 0.0185

Pacemaker 2.109 12.41 0.000426

Mean RR 1.000 0.19 0.659

SD 1.002 2.42 0.120

CV 1.018 1.865 0.172

LDs 3.595 47.37 5.89E-12 2.307 12.389 <0.001

COSEn 0.899 0.11 0.740

DFA 0.149 54.54 1.52E-13

LF/HF 0.433 59.37 1.30e-14 0.764569 5.270414 0.0217

PIP 1.091 67.92 1.71E-16 1.030325 4.013639 0.0451

IALS 3.223 76.90 1.80E-18

PSS 1.084 65.71 5.24E-16

PAS 1.032 45.01 1.96E-11

The multivariate model included top clinical and time series predictors. Percentage of inflection points is correlated with the other heart rate

fragmentation metrics, and was a surrogate for them. In the univariate model PIP demonstrated a highly significant ability to predict mortality (p 1.71E-

16). In this multivariate model age, history of tobacco use, history of CHF, LDs and LF/HF remained significant.

Lensen et al. 3



within tolerance r for m points will also match within r

at the next point, where self matches are excluded in the

calculation of the probability. Lake provided the qua-

dratic entropy rate to correct for the value of the tol-

erance r,14 and Lake and Moorman provided the

coefficient of sample entropy for use in optimal estima-

tion of entropy of human heartbeat time series.10

Local dynamics score (LDS). This measure of the dynamics

of short RR time series is a function of the number of

beats that are either very similar or very dissimilar to

the surrounding beats. It is derived from a proportional

hazards model relating these values to survival in this

data set.11 We calculated LDS every 10minutes, and

then averaged over 24 hours.

Detrended fluctuation analysis. DFA exponent alpha

quantifies the correlation properties of a time series.15

Our group has shown that DFA is an efficient detector

of ectopy, and was useful as part of a strategy for atrial

fibrillation detection.12 The DFA slope was calculated

every 10minutes over box sizes 4 to 12 (consistent with

Costa and Goldberger6,7,9) and averaged over the 24-

hour period.

Frequency domain analysis. We implemented the Lomb

periodogram within the Physionet Cardiovascular

Signal Toolbox, and report HRV quantified in the

low-frequency (LF, 0.04 to 0.15Hz), and high-

frequency (HF, 0.15 to 0.4Hz) domains of the power

spectrum.

Statistical analysis

We calculated Pearson’s correlation coefficients of the

heart rate fragmentation metrics among themselves as

well as with the other nonlinear short-term dynamical

metrics.
To test the statistical significance of age- and time-

of-day-related changes in heart rate fragmentation met-

rics, we performed polynomial regression, a form of

multiple linear regression where the terms are the

zeroth to fourth powers of the dependent variable.

We examined the confidence intervals of each coeffi-

cient to see if they included 0. If they did not, we inter-

preted that the trend was statistically significant.
In the survival analyses, only patients with age

greater than 40 and sinus rhythm were included

(n¼ 1321). To test association of various predictors

with survival, univariate and multivariate Cox propor-

tional hazards models were applied by using the coxph-

fit function in MATLAB R2018a, censoring patients

not reaching an outcome at the last documented

follow-up date.

To determine the features that resulted in a patient

death within two years, a random forest model was

implemented using the Random Forest Classifier

module within Python’s scikit-learn library. In the

analysis, 34 patients were excluded due to missing

data in one or more feature variables. As a result

1284 patients were included in the random forest. The

random forest model was trained on 70% of the data

(n¼ 898) and constructed with 100 decision trees. Each

tree was created by drawing a random bootstrap

sample from the training set with replacement, and

grown by selecting a random number of features at

each node without replacement. Gini Impurity, defined

as the total decrease in node impurity, was then used to

calculate the feature importance of the random forest.

Gini impurity is calculated for each feature by counting

the number of times that feature is used to split a node

across all trees, proportionally weighted by the total

number of samples it splits.

Results

HR fragmentation decreases in early life, before

increasing after the second decade of life

Figure 1 shows the four novel HR fragmentation met-

rics plotted as a function of patient age, with each dot

representing a patient, with red dots for those patients

who died within 2 years, and blue dots for those who

survived the same time course. All fragmentation met-

rics followed the same trend with patient age, that is a

decrease from birth continuing in early life before

increasing once the patient reaches their 20’s, a trend

that then continued throughout life. In all cases, 2 or

more of the coefficients of a 4th order polynomial

regression were significantly different from zero, indi-

cating that the association of the fragmentation metrics

with age is significant.

Clinical ectopy burden does not markedly contribute

to HR fragmentation metrics

Figure 2 shows HR fragmentation metrics plotted as a

function of percentage of ectopic beats (regardless of

whether the ectopy was ventricular or supraventricular)

contained within the 24 hour recording. The metrics

were calculated on 10-minute windows. In the typical

clinical range of 0 to 20% ectopy, PIP, IALS and PSS

increased only by 3.5, 0.040, and 1.9%, respectively.

PAS increased more, by 14.1%. These relative changes

in PIP, IALS and PSS are small, leading us to conclude

that the effect of clinical levels of ectopy on these meas-

ures of heart rate fragmentation is negligible.
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Figure 2. Ectopy increases heart rate fragmentation metrics. Results are plotted in bins of width 2%; lines are means, and ribbons are
95% CI. The effects are modest over the clinically observed burdens up to 20%.

Figure 1. Heart rate fragmentation metrics plotted as a function of age for 2983 patients who had 24-hour ambulatory Holter EKG
monitoring. Blue lines are fourth order polynomials fitted to the data. Red dots mark patients who died within 2 years of the Holter
recording. PIP¼ percentage of inflection points, IALS¼ inverse of average segment length, PSS¼ percentage of short segments,
PAS¼ percentage of alternating segments. Coefficients of polynomial fit were significantly different from 0 (p< 0.05), signifying a
statistically significant association of the metrics with age.

Lensen et al. 5



HR fragmentation metrics are fixed for atrial
fibrillation

We note that metrics measured in patients with AF
were closely grouped between patients – each AF
record had a PIP around 66%, IALS around 0.67,
PSS around 80% and PAS around 50%. Gaussian
random numbers had similar results (not shown).

HR fragmentation metrics are correlated among
themselves and with other HRV metrics

Figure 3 shows a color-coded matrix of the correlations
between the novel HR fragmentation parameters (first
4 rows and first 4 columns) and the other established
HRV metrics included in this study, for 3 patient
groups: those in atrial fibrillation (left column), those
in normal sinus rhythm (middle), and those in normal
sinus rhythm with more than 10% ectopy (right). The
dark colors in the upper left corner represent very
strong correlations among the heart rate fragmentation
metrics themselves, r> 0.9, with the exception of PAS,
which is only moderately strongly correlated
(0.6<r< 0.8). HR fragmentation metrics are strongly
positively correlated with LDs, moderately negatively
correlated with LF/HF and DFA, and weakly nega-
tively correlated with COSEn.

Generally, COSEn was least correlated with the

other measures – it was not correlated at all with LF/

HF, DFA and PAS, and only weakly negatively corre-

lated with LDs, PIP, PSS and IALS. LF/HF was

weakly correlated with LDs but strongly correlated

with DFA.

HR fragmentation metrics have circadian rhythm in

sinus rhythm but not atrial fibrillation

Figure 4 shows 24 hour plots of the HR fragmentation

metrics measured every 10minutes for one example

patient in sinus rhythm, and a further example patient

with persistent atrial fibrillation. In SR, there is more

variability across the 24 hours, especially in nocturnal

hours. There is virtually no circadian variation in HR

fragmentation metrics in the patient with AF. Further,

note that the HR fragmentation metrics of the AF

patient are very close to the mean of the AF group,

indicated by the red line, suggesting that the presence

of AF renders HR fragmentation parameters void and

nondiscriminatory with respect to time of day in the

same patient, or indeed between patients.
Figure 5 shows plots of the mean and SD of the HR

fragmentation metrics, measured every 10minutes over

24 hours, of all patients who had either NSR over 90%

Figure 3. Correlation among the HRV metrics in this study. Top row shows the absolute values, and the bottom row gives the signed
values; the gray scale and color scale are shown to the right of each table. Left, records with more than 5% atrial fibrillation; middle,
normal sinus rhythm; right, normal sinus rhythm with more than 10% ectopy.
LDs local dynamics score, COSEn coefficient of sample entropy, LF/HF ratio of low to high frequency content of the Lomb
periodogram of the heart beat interval time series, DFA detrended fluctuation analysis.
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of the time (blue lines) or AF over 90% of the time (red

lines). In NSR, 2 or more of the coefficients of polyno-

mial regression were significantly different from zero,

meaning that there was circadian rhythmicity in

parameters of heart rate fragmentation. In AF, there

was no discernible circadian rhythmicity. Accordingly,

for AF patients, the variances were much less than for

SR patients.

Is heart rate fragmentation a result of

under-sampling respiratory sinus arrhythmia?

Figure 6 shows results of numerical experiments on a

sine wave of frequency 12 per minute, mimicking res-

piration. The sampling rate is shown on the x-axis, and

is analogous to the heart rate. Because the breathing

rate/sine wave has a frequency of 12/min, the Nyquist

frequency is 24 beats per minute. The plot shows that

the HR fragmentation metrics have a range of values

that depend on the sampling rate (i.e. on the heart

rate), and are much higher at lower heart rates (often

peaking at sampling/heart rates of 30–40). However, at

usual human resting heart rates of near 70 beats per

minute the predicted fragmentation metrics are mark-

edly lower than observed in the Holter data, suggesting

that the observed human heart rate fragmentation rep-

resents more than just undersampling of periodic RSA,

and must instead represent some other physiological

phenomena influencing the heart’s rhythm on a beat-

to-beat basis.

HR fragmentation metrics are associated

with survival

Figure 7 shows patient survival based on quintiles of

HR fragmentation metrics. More fragmentation

(higher quintile number) was associated with progres-

sively poorer survival.
Table 1 shows the univariate and multivariate pre-

dictors in a Cox proportional hazards model. In the

univariate models (2nd thru 4th columns), heart rate,

standard deviation of heart rate, and COSEn all failed

to reach statistical significance affirming our previous

assertion that COSEn has its main value in atrial fibril-

lation detection from short segments10,16 rather than as

a predictor of mortality. In the univariate model, PIP

Figure 4. Circadian rhythm of heart rate fragmentation metrics in a patient with normal sinus rhythm (left) and a patient with
persistent atrial fibrillation (right). Holter recordings are affixed during the day, and the middle section of the plot represents the night.
The red line is the group mean for patients with atrial fibrillation. While fragmentation of normal sinus rhythm varies, in atrial
fibrillation it does not.

Lensen et al. 7



(chosen to represent all other heart rate fragmentation

measures) demonstrated a highly significant ability to

predict mortality (p¼ 1.71E-16).
We selected the 3 most significant clinical predictors

of death within 2 years – age, tobacco usage and con-

gestive heart failure – and the 3 most significant time

series analytics – local dynamics score, ratio of low to

high frequency content of the heart rate time series, and

HR fragmentation, represented in this instance by PIP.

All were statistically significant in the multivariable

model (Table 1).
To test the robustness of these results, we used a

random forest modelling approach, and Figure 8 shows

the relative importance of the predictor variables. This

analytical approach shows near-equal importance of the

HR fragmentation parameters with the established time

series metrics, each of which exceeds the importance of all

the clinical risk factors, except age.

Discussion

We have studied novel parameters of heart rate frag-

mentation in a real world scenario, utilizing a large

clinically well characterized set of patients seen by car-

diologists in the out-patient setting with 24-hour ambu-

latory ECG monitoring. We have confirmed the prior

finding of Costa et al.6,7,9 that heart rate fragmentation

increases with age in patients 40 years and older.

However, using our population that included young

people we have added the novel finding that parameters

of heart rate fragmentation actually decrease initially in

early life, before beginning to increase in the third

decade of life, a trend that continues throughout the

rest of life, with an ultimate plateauing in old age. We

have also confirmed their previous finding that heart

rate fragmentation is a strong predictor of future mor-

tality, with low levels of heart rate fragmentation con-

ferring high survival rates, and the heart rate

fragmentation parameters adding independent infor-

mation to the more traditional clinical factors and fre-

quency domain HRV measures.
Ectopic beats, whether coming from the atria, ven-

tricles or the AV junction, have a profound effect on

the analysis and interpretation of traditional HRV

parameters, and yet are a fact of life, being almost

ubiquitous in continuous 24 hour recordings from

Figure 5. Means and standard deviations of heart rate fragmentation metrics. In atrial fibrillation (red), the heart rate fragmentation
index values were not greatly different from normal sinus rhythm, but they showed no circadian rhythm, and had much lower variability.

8 JRSM Cardiovascular Disease



Figure 6. Heart rate fragmentation is not solely due to undersampling of RSA. Numerical experiments on a sine wave of frequency
12 per minute with varying heart rate. There is increased fragmentation for percentage of inflection points and inverse of average
segment length at heart rates even exceeding 100 bpm. No increased fragmentation is present in percentage of short segments at
rates above 75 bpm, nor in percentage of alternating segments at rates about 40 bpm.

Figure 7. Survival as a function of quintile of heart rate fragmentation metrics. More fragmentation was associated with poorer
survival.

Lensen et al. 9



both young and old individuals. We have shown in this
new work that ectopy up to a clinically relevant burden
of 20% had only small effects on measures of heart rate

fragmentation. This has important connotations for
the usability and fidelity of heart rate fragmentation
in real world clinical situations which will almost cer-

tainly contain ectopy.
Traditional HRV parameters are of little use in the

context of atrial fibrillation. We investigated whether
heart rate fragmentation parameters would be

any more useful when the heart’s predominant
rhythm was AF. We have shown however that heart
rate fragmentation in atrial fibrillation is fixed and

unvarying – it is extremely similar across individuals,
and does not show any evident circadian rhythmicity
within individuals, unlike in sinus rhythm where

we have uniquely shown that all heart rate fragmenta-
tion parameters demonstrate significant circadian

rhythmicity.
We found that HR fragmentation parameters are

very strongly correlated with each other, and so it
may be sufficient to only select a single heart rate frag-
mentation parameter to represent all the others, rather

than calculating all the 4, simplifying workflow.
Importantly, we have shown that the observed levels

of HR fragmentation observed in our recordings is
more than could be expected if the observed fragmen-
tation were related solely or in large part to the under-

sampling of RSA, suggesting that some as yet
uncharacterized physiological phenomenon/phenome-
na is responsible for heart rate fragmentation. This

mandates further study.

External validation of HR fragmentation metrics

Costa and Goldberger developed HR fragmentation
metrics to capture the phenotype of frequent small var-
iations in heartbeat intervals, faster than the familiar
RSA, originally described by Stein et al. as erratic sinus
rhythm. In three seminal papers, Costa and Goldberger
showed that increased fragmentation had clinical asso-
ciation with death in the CAST trial (Stein), with age
and coronary disease in the THEW data set, and with
cardiovascular death in the MESA study (Costa,
Goldberger). Here, we add a new data set, and
extend the findings to compare heart rate fragmenta-
tion to other non-linear measures as well as traditional
time- and frequency-domain ones.

We tested the idea that heart rate fragmentation
might arise from undersampling of RSA – it does
not. In fact, a clinically unfeasible heart rate of over
200 beats per minute is required given a respiration rate
of 12 per minute to reduce fragmentation to less than
10% (see Figure 6), but clinically usual heart rates of 70
to 90 beats per minute would be expected to yield heart
rate fragmentation metrics much less than observed if
the fragmentation were due solely to RSA. For exam-
ple, the PIP would be 25–30% if heart rate fragmenta-
tion arose only from the RSA mechanism at such
clinically normal resting heart rates. Instead, the aver-
age observed PIP exceeds 60%. From this analysis, we
conclude that heart rate fragmentation does not
uniquely arise from undersampling of the respiratory
rate by the sinus node, and instead arises from some as
yet incompletely characterized physiological process.

Heart rate fragmentation in atrial fibrillation

Heart beat interval time series in atrial fibrillation have
numerical properties of nearly-Gaussian random num-
bers. We found fixed and unvarying values of heart rate
fragmentation in the clinical records of patients with
atrial fibrillation. Thus, as a prognostic indicator, heart
rate fragmentation has no value in these patients.
Moreover, the average fragmentation values in atrial
fibrillation are not greatly different than in sinus
rhythm, and they do not seem promising as targeted
atrial fibrillation detectors, except perhaps that their
very low variance with time might be diagnostic.

Impact of HR fragmentation and local dynamics on
survival

The prognostic value of HRV measures in the time and
frequency domains was established in the 1980s by
Kleiger, Bigger and others in landmark studies of
patients after myocardial infarction, and a large litera-
ture has followed.17 We found that these new heart
rate fragmentation measures add information

Figure 8. Variable importance in the Random Forest model.
With the exception of age, time series metrics including
heart rate fragmentation were more important than clinical
variables.
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independently to established time and frequency

domain measures with respect to their ability to predict

future mortality (Figure 8), suggesting that aperiodic

dynamics operating across a range of heart rates and

variances can inform on the future clinical status of

patient.
What mechanisms underlie heart rate fragmentation

parameters if they are not due to autonomic signaling

to the heart?
The mechanisms underlying fragmentation in the

heart rate time series reflect a smoothly adaptive

system that changes heart rate on a beat-to-beat basis

in the young and healthy, but that becomes dysfunc-

tional and fragmented with age. The time-scale of such

fragmentation is faster than that which could be

accounted for by the functioning of the autonomic ner-

vous system. The mechanisms underlying the develop-

ment of this fragmentation are not known, but the

aperiodic nature of the time series, and the unvarying

PQRST waveform suggests that they arise from altered

microregulation of the SA node. The question remains,

what mechanism or mechanisms might be predomi-

nantly responsible for this microregulation (see

Figure 9)? Detailed consideration of potential contrib-

utors are beyond the scope of this paper, but would

include extracellular, sarcolemmal and intracellular

mechanisms.

Extracellular mechanisms impacting beta-to-beat

variation in SAN functioning include the renin-

angiotensin-aldosterone system,18 nitric oxide signal-

ing19 and reactive oxygen species,20 the latter also rep-

resenting an intracellular mechanism of beat-to-beat

SAN regulation.
Sarcolemmal mechanisms that impact beat-to-beat

fluctuation in SAN beating rate include variation in

behavior/availability/number of autonomic receptors

on the cell surface leading to beat to beat variability,21

along with variation in the so-called membrane

clock.1,22 This latter group would include variation in

number/availability/gating/conductance through ion

channels on a beat to beat basis.23,24 SAN cells are

known to exhibit marked heterogeneity in their electro-

physiological characteristics;25 the cells of the SAN

that lead pacemaking vary on a beat-to-beat basis;22

and there is a putative loss of SAN cells with age.26

Thus, there are multiple ways in which heart rate frag-

mentation may arise from the cellular electrophysiolo-

gy and biology of the SAN cell membrane.
Finally, intracellular mechanisms exhibit variable

behavior on a beat-to-beat basis including variation

in the calcium clock i.e. variation in number/availabil-

ity/probability of opening of L- and T-type Ca2þ chan-

nels, RyRs, and SERCA.3,5,27,28 There will also be

beat-to-beat variation in modulators of both

Figure 9. schematic figure of the factors influencing beat to beat variation in behavior of the SAN. The figure depicts important
modifiers of SAN function at the level of the whole heart, the level of the intact SAN, and at the level of individual SAN myocytes. See
text for details.
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membrane and calcium clocks - protein kinase A
(PKA), Ca2þ-calmodulin kinase II (CAMKII) and pro-
tein kinase C (PKC), along with beat-to-beat variation
in dephosphorylation mechanisms (protein phospha-
tases and phosphodiesterases29) There will also be var-
iation in the behavior of other regulatory molecules
such as phospholamban24,30 and variation within the
energy state of the cell, including variation in mito-
chondrial content and behavior.31

We have shown in previous work32 that the variabil-
ity of increasingly reductionist components of the SAN
behave with increasing degrees of variability, for exam-
ple SAN cells demonstrate markedly more variability
in beating than does the whole isolated spontaneously
beating SAN in vitro. This may be a manifestation
uncoupling of the cells, not only from the autonomic
nervous system, but also from each other. Could then
HR fragmentation be reflective of progressive uncou-
pling of the cells of the SAN with age, or even uncou-
pling of individual components of the coupled clock
system from each other, leading to random threshold
crossings, and thus fragmented interbeat intervals?

Is all the information contained in the heart rate?

A recent Journal of Physiology CrossTalk series pitted
two extreme points of view about HRV analysis. Malik
et al. hold that the order of heart beat intervals – and,
in particular, the periodic nature of their order, as mea-
sured in the frequency domain – has important infor-
mation about the autonomic nervous system.33 Boyett
et al., on the other hand, hold that HRV is merely an
innocent bystander to heart rate, which holds all the
information.34

We have another point of view – fine control of the
heart rate results from clinically important sinus node
physiology and pathophysiology that may or may not
be controlled by the autonomic nervous system, but is
most certainly not well-quantified by the mean or the
frequency spectrum. We justify this point of view in
part by the fact that the only clinical application of
HRV analysis that improves outcomes is heart rate
characteristic monitoring for early detection of sepsis
in premature infants. There, the abnormal finding is
reduced variability and transient decelerations, which
alters neither the mean35 nor the frequency spectrum.36

Limitations

We studied Holter recordings of patients who visited
cardiologists, and thus the landscape of heart disease
and cardiac drugs will not match that of the general
population. We used only the basic metrics of heart
rate fragmentation – percentage of inflection points,
inverse of average segment length, percentage of short

segments, and percentage of alternating segments – but

have not tested the refinements - symbolic dynamics,

and “hard” VS “soft” inflection points – that followed

(Costa 2017 b).

Conclusion

Heart rate fragmentation is a useful addition to the

battery of techniques currently available for the char-

acterization of complexities in the heart’s rhythm that

are not visible to the naked eye, and that reveal impor-

tant information concerning mechanisms of heart rate

control on a beat to beat basis. The mechanisms giving

rise to heart rate fragmentation cannot be easily

accounted for by autonomic signaling to the heart,

and are likely reflective of fine tuning of the heart’s

rhythm by the many non-autonomic mechanisms illus-

trated in Figure 9. Many of these are intrinsic to the

SAN and its individual cells, though the magnitude to

which these factors contribute to HR fragmentation

requires further study. Other critical characteristics of

HR fragmentation, including its relationship to age,

time of day and morbidity/mortality are described.

Heart rate fragmentation parameters are robust com-

pared to many other HRV parameters, which are

markedly affected by the presence of ectopy and pre-

vailing heart rate.
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