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Abstract 

Objective: Perimenopause is associated with an increased risk of developing a major depressive (MD) episode. A significant 
number of women develop their first MD episode during perimenopause, suggesting a unique pathophysiology of 
perimenopausal (PM) depression. Previous research has shown that depression is associated with decreased gamma-
aminobutyric acid (GABA) levels in the medial prefrontal cortex (MPFC) of MD patients. The objective of this study was to 
compare MPFC GABA+ levels in healthy reproductive-aged (RD) and PM women.
Methods: A total of 18 healthy PM and 20 RD women were included in the study. MPFC GABA+ levels, which include 
homocarnosine and macromolecules, were measured via magnetic resonance spectroscopy using a 3 Tesla magnet. MPFC 
GABA+ levels were referenced to creatine + phosphocreatine (Cr+PCr). Absence of current or past psychiatric diagnosis was 
confirmed via a structured interview. RD participants were scanned during the early follicular phase of the menstrual cycle. 
PM women were scanned outside of ovulatory cycles.
Results: Mean MPFC GABA+ concentrations (relative to Cr+PCr) were decreased in the PM group compared with the RD 
group (PM mean = 0.08 ± 0.02, RD mean = 0.09 ± 0.02, t = −2.03, df = 36, P = .05) even after correcting for in percentage in gray 
matter (GM). Because PM women were inherently older than RD women (aged 48.8 ± 3.55 and 31.5 ± 9.66 years, respectively), 
the age difference between the 2 groups was statistically significant (P < .001). When age was treated as an independent 
covariate and included in the model, the difference in GABA+ between PM and RD women was no longer significant 
(P = .092).
Conclusion: Perimenopause is associated with decreased MPFC GABA+/Cr+PCr levels, which may contribute to the increased 
risk of experiencing a MD episode during PM.
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Introduction
Perimenopause is a phase within the normal female reproductive 
life cycle characterized by menstrual cycle (MC) irregularities. 
The average age of onset is 46 years, with a duration of approxi-
mately 5 years before the transition into menopause (Speroff, 
2002). Women with a history of major depression (MD) or a his-
tory of mood sensitivity to female hormone fluctuations, that is, 
postpartum depression or premenstrual dysphoric disorder are 
at greater risk of developing perimenopausal (PM) depression 
(Parry, 2008; Freeman, 2015). Some women with no history of MD 
or mood sensitivity to female hormone fluctuations present with 
their first episode of MD during perimenopause (Freeman et al., 
2004). This suggests a unique pathophysiology of PM depression.

During perimenopause, before the total cessation of produc-
tion by the ovaries, estrogen concentrations decrease erratically, 
with successive increases and decreases, while its counterpart, 
progesterone, declines in a gradual manner (Gordon et al., 2015).

Gamma-aminobutyric acid (GABA), the main inhibitory 
neurotransmitter of the central nervous system, is widespread 
throughout the brain, and it is estimated that 60%–75% of all 
synapses are GABAergic (Schwartz, 1988). Several studies have 
highlighted the importance of GABA in the pathophysiology of 
MD (Sanacora et al., 1999, 2004; Hasler et al., 2007; Gabbay et 
al., 2012; Godfrey et al., 2018). Allopregnanolone (ALLO) is a me-
tabolite of progesterone and a potent positive allosteric modu-
lator of the GABAA receptor (Edinoff et al., 2021). Brexanolone 
and Zuranolone are exogenous formulations of ALLO and have 
been shown to be effective in treating postpartum depression 
and MD, respectively (Edinoff et al., 2021; Walkery et al., 2021).

The medial prefrontal cortex (MPFC) is known to play a role 
in modulating emotional responses due to its reciprocal connec-
tions to the amygdala and hippocampus (Wood and Grafman, 
2003). It plays a pivotal role in the negative affective and cog-
nitive symptoms experienced by MD patients (Xu et al., 2019). 
Furthermore, the MPFC is affected by physiological and pharma-
cologically induced hormone fluctuations (Joffe et al., 2006).

Magnetic resonance spectroscopy (MRS) is the sole 
noninvasive neuroimaging technique that enables in vivo 
detection and measurement of brain metabolite concentra-
tions, such as GABA, in localized brain regions (Ramadan et 
al., 2013). Homocarnosine (Hcar) and macromolecules (MM) 
are neurometabolites that share similar chemical shifts as 
GABA in the human brain. MEscher-GArwood Point RESolved 
Spectroscopy (MEGA-PRESS) is the spectral difference method 
used to isolate GABA resonance. However, it is difficult to purely 
obtain GABA resonance without contamination from MM and 
Hcar; therefore, GABA levels will be referred to as GABA+ levels 
(Deelchand et al., 2021). MRS studies have shown that GABA+ 
levels are decreased in the ventromedial prefrontal cortex and 
anterior cingulate cortex (ACC) of MD patients (Wang et al., 2016; 
Kantrowitz et al., 2021).

Neuronal networks within the adult vertebrates mainly con-
sist of excitatory (glutamate) and inhibitory (GABA) neurons, 
and it is thought that these 2 neurotransmitters are in equal flux 
with one another (E/I balance) to maintain homeostasis. This E/I 
balance is thought to play a critical role in maintaining neuronal 
network functions, and dysregulations to this ratio has been as-
sociated with MD (Selten et al., 2018).

Previous work from our laboratory has shown that MPFC 
glutamate (Glu) concentrations referenced to creatine and 
phosphocreatine (Cr+PCr) are decreased in healthy PM women 
compared with healthy reproductive-aged (RD) women (Yap 
et al., 2021). Because GABA’s inhibitory activity counteracts 
glutamatergic excitatory activity, it is therefore critical to assess 
MPFC GABA+ levels in PM women.

The objective of the MRS study presented here was to com-
pare MPFC GABA+/Cr+PCr in healthy PM and healthy RD women. 
Our hypothesis was that MPFC GABA+ levels referenced to 
Cr+PCr would be decreased in PM women.

Methods

Participants

A total of 18 PM and 20 RD physically and mentally healthy 
women were recruited for the study. All participants were at 
least 18 years of age. The study protocol was approved by the 
Health Research Ethics Board of the University of Alberta and 
conducted in accordance with the Declaration of Helsinki. 
A pre-screening telephone interview was first conducted. 
Written informed consent was collected from all eligible par-
ticipants. Following collection of informed consent, partici-
pants took part in 2 sessions: a screening interview and a 
scanning visit. An unavoidable methodological difficulty for 
our comparison study is that PM women are inherently older 
than RD women.
Inclusion Criteria—Inclusion criteria for both age groups were 
physically and mentally healthy women who were 18 years of 
age and older and used a birth control method that did not de-
liver female hormones. For the RD group, regular occurrence 
of MC was required for inclusion. For the PM group, inclusion 
criteria were the following: undergoing perimenopause, with 
menopausal status being defined as either early PM (menstrual 
bleeding had occurred in the past 3 months with changes in 
frequency over the last 12 months) or late PM (no menstrual 
bleeding within the past 3 months but some menstruation 
within the last 12 months). This classification is recom-
mended by the World Health Organization and the Stages of 
Reproductive Aging Workshop (Soules et al., 2001; Bromberger 
et al., 2010).
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experiencing depression. Because GABA’s inhibitory activity counterbalances glutamatergic excitatory activity, it was critical to 
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Exclusion Criteria—Exclusion criteria for all participants in-
cluded the following: (1) current or lifetime history of any 
psychiatric illness (confirmed using the Mini-International 
Neuropsychiatric Interview based on Diagnostic and Statistical 
Manual of Mental Disorders-5 criteria) (Pettersson et al., 2018); 
(2) any contraindications to MRI; (3) pregnancy; (4) use of birth 
control methods that deliver female hormone; (5) any medical 
condition that would interfere with the study, for example, an 
endocrine, chronic, or neurological condition (Riederer et al., 
2006); and (6) intake of medications that may impact brain 
GABA function at any time while participating in the study, that 
is, benzodiazepines and valerian root (Lane and Phillips-Bute, 
1998). Of note, no participants were taking medications for the 
duration of the study.

Study Protocol

After completing the phone interview, participants who ap-
peared to be eligible for the study, that is, no history of other 
mental illnesses or use of hormonal contraceptives, were sched-
uled for a screening interview. During this interview, complete 
medical and psychiatric history were completed. The Mini-
International Neuropsychiatric Interview was used to screen for 
psychiatric illnesses (Pettersson et al., 2018). Participants who 
met the inclusion and exclusion criteria were then booked for 
a scanning visit. The scanning visit was completed between 
day 2 and 6 of the follicular phase (FP) of the MC for RD women 
and early PM women (but during an anovulatory MC). Late PM 
women were scanned after 3 months of anovulatory cycles. 
Early and late PM women were contacted later to ensure that 
they did not have any menses during the following month.

All participants underwent an MRS scan and completed 
Beck’s Depression Inventory (BDI). PM women were additionally 

administered the Greene Climacteric Scale (GCS) and Menopause 
Rating Scale (MeRS) to evaluate their PM-related symptomology. 
A blood sample measuring plasma estradiol and progesterone 
was collected from all participants. Third-generation Elecsys 
immunoassay (Roche Diagnostics) was used to measure plasma 
estradiol, and Access Progesterone assay (Beckman Coulter) was 
used to measure plasma progesterone. It is important to note 
that luteinizing hormone and follicle stimulating hormone are 
useful for the determination of menopause but are not useful 
for the determination of perimenopause, which is solely a clin-
ical determination. As a result, neither of these hormones was 
assessed in this study.

MRS and Imaging

Magnetic resonance data were collected at the Peter S. Allen 
MR Research Centre, University of Alberta, Edmonton, Canada, 
using a Siemens Prisma 3 Tesla (T) scanner (Erlangen, Germany) 
equipped with a 64-channel head-neck coil for signal reception. 
Anatomical images were acquired using sagittal 3D T1-weighted 
magnetization-prepared rapid gradient-echo sequence in 3 min-
utes and 39 seconds (TR: 1800 milliseconds, TE: 2.37 milliseconds, 
TI: 900 milliseconds, flip angle: 8, field of view: 250 × 250  mm, 
image matrix: 288 × 288, slice thickness: 0.85  mm, number of 
slices: 208, resolution: 0.87 × 0.87 × 0.85 mm, parallel acceleration 
factor: 3). Voxel position and orientation were prescribed so that 
the voxel was perpendicular to and centered on the midline in 
transverse and coronal views and parallel to and aligned with 
the corpus callosum line in a sagittal view (Figure 1A).

These images were used for planning the position of spec-
troscopy voxels as well as for volumetric and segmentation ana-
lysis. MEGA-PRESS, implemented as Siemens “work in progress” 
WIP859F, was used to measure the spectrum for GABA and 
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Figure 1. (A) T1 weighted images for a sample participant (55 years old) with overlaid medial prefrontal cortex (MPFC) magnetic resonance spectroscopy (MRS) voxel. 

Voxel position and orientation were prescribed so that the voxel is perpendicular to and centered on midline in transverse and coronal views and parallel to and 

aligned with corpus callosum line in sagittal view. (B) Sample gamma-aminobutyric acid including homocarnosine and macromolecules (GABA+) and Glutamix (Glx) 

spectra (not analyzed in this paper) with fit from Gannet, from the same participant. (C) Sample creatine and phosphocreatine spectrum with fit from Gannet.
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Cr+PCr analysis (Harris et al., 2017; Saleh et al., 2019). A sample 
MEGA-PRESS spectrum is shown in Figure 1B–C.

Adequate signal-to-noise ratio (SNR) was obtained 
by acquiring data from the voxel positioned in the MPFC 
(25 × 20 × 30 mm3), summing 320 averages composed of 160 pairs 
where the editing pulses were either on or off, in 10 minutes 
and 56 seconds (MEGA-PRESS: TR: 2000 ms, TE: 68 milliseconds, 
BW: 2000 Hz, editing pulse frequency: 1.9 ppm, delta frequency: 
1.7  ppm, 2048 spectral data points). Images in DICOM format 
and saved raw files (.DAT) for MR spectra were exported from 
scanner console to Linux Ubuntu 16.04 work station for analysis. 
Automated metabolite quantification of the proton MR spectra 
was performed using Gannet software (version 3.0, http://www.
gabamrs.com; running in Matlab R2016b), providing relative 
concentrations of GABA+ to Cr+PCr. No unsuppressed water 
spectra were acquired.

Manual inspection was conducted on each spectrum fitted 
by Gannet to assure quality with respect to line shape, line 
width, and SNR. Data were accepted if SNR > 80 and full width 
at half maximum (FWHM) < 18 Hz. MRS quality is particularly 
sensitive to participant motion; the Gannet pipeline automat-
ically excludes samples for which the frequency offset deviates 
sufficiently to affect the spectrum quality (i.e., it excludes un-
usable metabolite data because of brief movements during the 
scanning period). The number of average pairs automatically ex-
cluded was similar between the 2 groups (number of excluded 
samples PM mean = 2.25% ± 2.94%, RD mean = 2.06%  ±  2.38%, 
with maximum excluded samples for 1 participant = 20 out of 
320 samples acquired). MRS data for 1 RD and 2 PM participants 
were severely affected by motion and these research partici-
pants were scanned again.

Statistical Parametric Mapping (SPM12) (Penny et al., 2011) 
were used for T1 image volumetric and segmentation ana-
lysis. Included in Gannet package pipeline were steps to gen-
erate a mask of the MRS voxel in T1-image space and to utilize 
the SPM12 “Segmentation” function to calculate relative Grey 
Matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 
fractions within MPFC voxel (later referred to as %GM, %WM, 
and %CSF).

Statistical Analysis

For all statistical tests, the level of significance was defined 
as P ≤ .05. Statistical analysis was performed using the IBM 
Statistical Package for Social Sciences software for Windows 
Version 26.0 (SPSS 26.0) (IBM Corp., Armonk, NY, USA). The 
data in this study were normally distributed. A 2-tailed t test 
was used for independent sample analysis of variables (MPFC 
GABA+/Cr+PCr, %GM, %WM, %CSF, SNR, FitError, and FWHM) 
between PM and RD women. Additionally, covariate analysis 
was performed where absolute GM content was treated as a 
covariate. Metabolite data were analyzed using Cr+PCr as a ref-
erence molecule (Figure 1C).

To analyze the impact age had on MPFC GABA+/Cr+PCr 
levels, simple linear regression was utilized. Multiple regres-
sion analysis controlling for age and %GM was conducted to 
test whether these factors significantly affected MPFC GABA+/
Cr+PCr levels. Cross tabulation analysis of Eta coefficient was 
used to determine the strength of association between partici-
pant group and age. A 1-way ANOVA test was used to compare 
mean MPFC GABA+/Cr+PCr between groups. A 1-way ANCOVA 
was conducted to determine a statistically significant difference 
between PM and RD women on MPFC GABA+/Cr+PCr levels, con-
trolling for age, MPFC %GM, and %WM.

The Pearson correlation coefficient was used to analyze 
the relationship between MPFC GABA+/Cr+PCr levels and age, 
MPFC GABA+/Cr+PCr levels and female hormone concentra-
tions, and BDI scores and group. Pearson correlation coefficient 
was also used to analyze the relationship between BDI, GCS, 
and MeRS scores and mean MPFC GABA+/Cr+PCr levels in the 
PM group.

Results

PM women (aged 48.8 ± 3.55 years, range = 41–53 years) were sig-
nificantly older than RD participants (31.5 ± 9.66 years, range = 
18–47 years) (P < .001). Correlational analysis revealed that MPFC 
GABA+/Cr+PCr levels (Table 3) were significantly related to age 
with a moderate negative relationship (r = −0.38, P = .02) (Figure 
3). Simple linear regression was performed to analyze the im-
pact age had on MPFC GABA+/Cr+PCr levels. Age explained 
approximately 14% of the observed variance in MPFC GABA+/
Cr+PCr [R2 = 0.141, F(1,36) = 5.89, P = .02]. This analysis also showed 
that age significantly predicted a decrease in MPFC GABA+/
Cr+PCr levels (β1 = −0.001, P = .02).

MPFC GABA+/Cr+PCr levels were significantly lower in 
PM participants (0.08 ± 0.02) compared with RD participants 
(0.09 ± 0.02) (P = .05) (Figure 2). There was a significant differ-
ence in %GM, but not %WM, between PM and RD women (%GM: 
54.98 ± 3.51, 58.35 ± 4.62, P = .02; %WM: 27.96 ± 4.33, 27.60 ± 4.89, 
P = .81), respectively (see Table 1). There was a significant rela-
tionship between age and %GM (r = −0.56, P < .001). In addition, 
there was a significant difference in %CSF between PM and RD 
women (%CSF: 17.06 ± 3.04, 14.04 ± 2.56, P = .002), respectively (see 
Table 1).

There was a trend level effect of the combination of age dif-
ference and %GM on the observed decrease in MPFC GABA+/
Cr+PCr levels [R2 = 0.149, F(1,36) = 3.06, P = .06]. This was shown to 
be driven by age (β = −0.437, P = .03) and not %GM (β = −0.110, 
P = .56). Furthermore, when isolating the effects of %GM on MPFC 
GABA+/Cr+PCr levels, we found that %GM did not significantly 
explain the decrease in MPFC GABA+/Cr+PCr observed [R2 = 0.018, 
F(1,36) = 0.669, P = .42]. In addition, %GM on its own did not signifi-
cantly predict a decrease in MPFC GABA+/Cr+PCr levels (β = .135, 
P = .42). A multiple regression was conducted to predict MPFC 
GABA+/Cr+PCr from age and MPFC %GM. These variables did not 
significantly predict MPFC GABA+/Cr+PCr: F(2,35) = 3.063, P = .059, 
R2 = .149.

Figure 2. Comparison of medial prefrontal cortex (MPFC) creatine and 

phosphocreatine-referenced (Cr+PCr) gamma-aminobutyric acid including 

homocarnosine and macromolecules (GABA+) levels in healthy perimenopausal 

(PM) and reproductive-aged (RD) women. MPFC, medial prefrontal cortex.

http://www.gabamrs.com
http://www.gabamrs.com
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Cross-tabulation analysis of eta coefficient was used to de-
termine the strength of association between participant group 
and age. This analysis revealed that the participant group was 
strongly associated with age (η = .77). Knowing that participant 
group and age were strongly associated, ANOVA analysis without 
age correction was used to confirm that mean MPFC GABA+/
Cr+PCr levels were significantly lower in PM women compared 
with RD women [F(1,36) = 4.11, P = .05]. In summary, there was a de-
crease in MPFC GABA+/Cr+PCr levels in PM women compared 
with RD women, and age differences accounted for approxi-
mately 14% for the variances observed.

Based on the ANCOVA analysis, there was no significant ef-
fect of reproductive status on MPFC GABA+/Cr+PCr levels after 
controlling for age (MPFC %GM and %WM, F(1,35) = 3.011, P = .092). 

On the other hand, a medium effect size was observed (η2 = 0.079) 
(Table 4).

There were no significant differences in SNR values be-
tween PM (122.22 ± 18.51) and RD women (130.94 ± 23.96) (P = .22). 
Similarly, there were no significant differences in FWHM (P = .74) 
and FitError (P = .42) values for both groups (see Table 2).

Baseline estradiol (PM: 237.89  ±  280.33; RD: 146.15  ±  53.98; 
P = .19) and progesterone (PM: 1.74 ± 0.84; RD: 1.79 ± 1.15; P = .89) 
concentrations did not significantly differ between groups. 
Correlational analysis revealed that MPFC GABA+/Cr+PCr levels 
were not significantly correlated to either baseline estradiol 
(r = −0.12, P = .47) or progesterone (r = −0.01, P = .97) concentrations.

It is important to note that there were instances where 
hormonal levels were below the detectable range of the 

R² = 0.141
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Figure 3. Plot showing negative association between medial prefrontal cortex (MPFC) gamma-aminobutyric acid including homocarnosine and macromolecules 

(GABA+) levels referenced to creatine+phosphocreatine (Cr+PCr) and age. Both RD and PM groups are shown, with linear regression between MPFC GABA+/Cr+PCr and 

age shown for all participants.

Table 1. Creatine and Phosphocreatine-Referenced GABA+ Concentrations and Brain Tissue Composition Within the MPFC of Healthy PM and 
RD Women

  

PM participants (n = 18) RD participants (n = 20) Group

Mean SD Mean SD P 
t

(d.f. = 36) 

Metabolite
GABA+/Cr+PCr 0.077 0.02 0.092 0.02 .050* −2.026

%GM 54.98 3.51 58.35 4.62 .017* −2.510

%WM 27.96 4.33 27.60 4.89 .814 −0.418

%CSF 17.06 3.04 14.04 2.56 .002* 3.318

Abbreviations: %CSF, percentage cerebrospinal fluid; GABA+, GABA including homocarnosine and macromolecules; %GM, percentage gray matter; MPFC, medial pre-

frontal cortex; PM, perimenopausal; RD, reproductive-aged; %WM, percentage white matter.

Brain metabolite measured in institutional units. Metabolite concentration referenced to creatine and phosphocreatine.
*A significant difference between groups.
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assays used. One PM woman (PM group n = 17) had estradiol 
levels below detectable, and 4 PM (PM group n = 13) and 8 RD 
women (RD group n = 12) had progesterone levels that were 
below detectable. Excluding these participants from analysis, 
we found that estradiol (PM: 250.12 ± 283.97; RD: 146.15 ± 53.98; 
P = .16) and progesterone (PM: 1.95 ± 0.84; RD: 2.31 ± 1.34; 
P = .39) concentrations did not significantly differ between 
groups. Correlational analysis revealed that MPFC GABA+/
Cr+PCr levels were not significantly correlated to either base-
line estradiol (r = −0.13, P = .44) or progesterone (r = 0.11, P = .58) 
concentrations.

Although PM women had higher mean BDI scores 
(3.67 ± 2.89) than RD women (1.45 ± 1.79) (P = .009), scores for 
both groups were within the range corresponding to scores 
considered normal mood fluctuations of life. This suggests that 
participants were not experiencing any clinically significant 
depressive symptomology. In addition, mean GCS (5.17 ± 4.55) 
and MeRS (5.22 ± 4.31) scores indicated that PM participants 
were experiencing little or no PM-related symptomology (RD 
women were not administered these questionnaires).

Further correlational analyses were conducted between 
BDI, GCS, and MeRS scores and mean MPFC GABA+/Cr+PCr 
levels in the PM group. These analyses revealed no significant 
correlation between BDI (r = 0.41, P = .09) or GCS (r = 0.32, P = .20) 
scores and mean MPFC GABA+/Cr+PCr levels in the PM group. 
However, there was a significant correlation between MeRS 
scores (r = 0.49, P = .04) and mean MPFC GABA+/Cr+PCr levels in 
PM women.

Discussion

This is the first study, to our knowledge, comparing MPFC 
GABA+/Cr+PCr levels in healthy PM women and RD women. We 
showed significantly lower MPFC GABA+ concentrations refer-
enced to Cr+PCr in healthy PM women. This suggests that MPFC 
GABA+/Cr+PCr levels decrease during the PM period.

Only 1 prior MRS investigation measured GABA levels in the 
prefrontal cortex of PM women (Wang et al., 2019). Wang et al. 
(2019) showed that GABA levels in the ACC were decreased in 
healthy menopausal women compared with healthy PM women. 
Of note, there was no RD control group in this study.

PM women are inherently older than RD women. The im-
pact of age is therefore difficult to disentangle from PM status. 
GABA+ is mainly found in GM (Jensen et al., 2005), and full-brain 
fractional GM declines with age (Ge et al., 2002). Even though 
we found significant differences in %GM between PM and RD 
women, multiple regression analysis controlling for age and 
%GM revealed that these 2 factors did not significantly explain 
the decrease in MPFC GABA+/Cr+PCr levels observed. It is im-
portant to note that when we controlled for age, MPFC %GM, 
and %WM as covariates, our ANCOVA results suggested that 
reproductive status no longer had a significant effect on MPFC 
GABA+/Cr+PCr levels. However, a medium effect size was ob-
served. Despite the loss of statistical significance, our study is 
still of value because the medium effect size suggests the possi-
bility of finding statistical significance of this comparison with 
a larger sample size; as some researchers have pointed out, the 

Table 4. Analysis of Covariance for MPFC GABA+/Cr+PCr by Group With Brain Tissue Composition as a function of Age (Age, MPFC %GM, and 
MPFC %WM) as Covariatesa

Source SS df MS F P η2 

Brain size (covariate) 6.17E-06 1 6.17E-06 0.013 0.912 0.00
Group 0.001 1 0.001 3.011 0.092 0.079

Error 0.017 35 0.00

Abbreviations: Cr+PCr, creatine + phosphocreatine; GABA, gamma-aminobutyric acid; GM, gray matter; MPFC, medial prefrontal cortex; WM, white matter.
aR squared = .103 (adjusted R squared = .051).

Table 2. MRS Data Quality Evaluation Between PM and RD Women

Parameter  

PM participants (n = 18) RD participants (n = 20) Group

Mean SD Mean SD P 
t

(d.f. = 36) 

SNR 122.22 18.51 130.94 5.36 0.221 −1.245
FWHM, 

Hz
9.96 2.03 9.77 1.56 0.739 0.336

FitError, % 11.35 2.66 10.45 3.92 0.416 0.824

Abbreviations: FWHM, full width at half maximum; MRS, magnetic resonance spectroscopy; PM, perimenopausal; RD, reproductive-aged; SNR, signal to noise ratio.

Table 3. Unadjusted and Covariate Adjusted Descriptive Statistics for MPFC GABA+/Cr+PCr

Group 

Unadjusted Adjusted

N Mean SE Mean Mean SE Mean 

Perimenopause 18 0.077 0.004 0.078 0.006
Reproductive 20 0.092 0.005 0.092 0.005

Abbreviations: Cr+PCr, creatine + phosphocreatine; GABA+, gamma-aminobutyric acid including homocarnosine and macromolecules; MPFC, medial prefrontal cortex.
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computation of statistical significance is based on the sample 
size involved in the analysis (Daniel, 1998; McLean and Ernest, 
1998; Cohen, 2013).

As expected from neuroimaging normative studies on the ef-
fects of aging on the human brain, the age-associated decrease 
in GM was associated with an age-associated increase in CSF 
(Podórski et al., 2021).

Mixed results have also been reported regarding the influ-
ence of age on GABA+ levels. For instance, Marenco et al. (2018) 
found that age was significantly associated with declining levels 
of GABA+ (referenced to Cr) in the dorsal ACC (mean age = 30 ± 9.2 
years). Gao and colleagues (2013) observed a significant negative 
correlation between age and GABA+ (referenced to Cr) in the 
frontal region, and women seemed to experience a much faster 
decline in their GABA+ levels compared with men (men: mean 
age = 46.1 ± 14.5 years; women: mean age = 45.0 ± 14.7 years). The 
authors’ voxel of interest was a bit dorsal and caudal compared 
with ours (Gao et al., 2013). In an older population, Porges and 
colleagues (2017a) also reported lower GABA concentrations ref-
erenced to water, with increased age for both frontal and pos-
terior voxels (a bit dorsal and caudal compared with ours; mean 
age = 73.12 ± 9.9 years). Aufhaus and colleagues (2013), on the 
other hand, observed no changes in GABA concentrations (ref-
erenced to water) with age in the ACC, using an MM-suppressed 
MEGA-PRESS sequence (mean age = 34.8 ± 10 years). However, a 
small age dependency for GABA was observed when MMs were 
included in the analysis (Aufhaus et al., 2013). Similarly, Porges 
and colleagues (2017b) observed no significant relationship be-
tween age and GABA+ levels (referenced to water) in a frontal 
voxel when correcting for GM (mean age = 73.2 ± 9.9 years). 
Interestingly, Pitchaimuthu and co-workers (2017) observed 
an increase in GABA+ levels (referenced to water) in the visual 
cortex of older adults (mean = 71; 63–78 years) in contrast to 
younger adults (mean 28; 20–34 years). This suggests that the re-
lationship between age and GABA+ levels is unclear and might 
be region specific. In addition, our MPFC voxel partially over-
lapped with the ACC voxel used in Marenco et al. (2018) and 
Aufhaus et al. (2013), which makes both studies’ findings rele-
vant to our investigation. The fact that these 2 studies reported 
different results (one reported a decrease in GABA as a func-
tion of age whereas the other reported no change) suggest that 
age might not have a substantial impact on MPFC GABA+ levels. 
Additionally, linear regression analysis showed that age con-
tributed to 14% of the variance in MPFC GABA+/Cr+PCr levels, 
suggesting that other factors, such as PM reproductive status, 
explain the observed decrease in MPFC GABA+/Cr+PCr levels.

As expected we did not find a significant difference in es-
trogen and progesterone concentrations between PM and RD 
women. Indeed, these hormone levels are of little help in clin-
ically determining perimenopause status. This is because fe-
male hormones undergo unpredictable variations, especially 
during perimenopause (Harlow et al., 2012). Accordingly, we 
saw a greater SD in estradiol levels in PM women compared 
with RD women. We did not find a significant correlation be-
tween concentrations of estradiol and progesterone and MPFC 
GABA+/Cr+PCr levels in the current study. Female hormones and 
their metabolites also have a delayed impact on transcription 
(Bjornstrom and Sjoberg, 2005), which would not be captured by 
female hormone measurements concomitant to the scanning.

Perimenopause is defined by the physical/physiological con-
sequences of hormonal changes of this unique period of women’s 
reproductive life (Santoro and Randolph, 2011; Hale et al., 2014). 
We therefore speculate that brain biological changes such 
as a decrease in MPFC GABA+/Cr+PCr observed in PM women 

would be a central physiological consequence of the hormonal 
changes that indirectly define perimenopause. Epperson and 
colleagues (2002) observed that healthy menstruating women 
experienced a significant decrease in occipital GABA levels from 
the FP to the late luteal phase. This illustrates that fluctuations 
in female hormonal environments can affect brain GABA levels. 
Previous research has shown that estrogen has an inhibitory im-
pact on GABA neurotransmission (Murphy et al., 1998), whereas 
progesterone’s neurometabolite, ALLO, is a positive allosteric 
modulator of the GABAA receptor (Van Wingen et al., 2008; 
Deligiannidis et al., 2013). ALLO serum concentrations can fluc-
tuate during perimenopause, with decreased levels being ob-
served (Barbaccia et al., 2000; Bernardi et al., 2003). It is therefore 
possible that PM women are at an increased risk of developing 
an MD episode due to their fluctuating ALLO levels. Gordon et 
al. (2015) posited that as ALLO concentrations fluctuate during 
perimenopause, GABAA receptors are not able to react as rap-
idly and adequately compared with their PM stage, which then 
disrupts the overall GABAergic tone and consequently causes 
dysfunctions to the hypothalamic-pituitary-adrenal axis, 
increasing women’s susceptibility to stress and depression. Of 
note, the exogenous formulation of ALLO, Zuranolone, has been 
shown to be effective in treating MD (Walkery et al., 2021). The 
details pertaining to how fluctuations in female hormone levels 
are associated with GABA+/Cr+PCr levels in perimenopause re-
main to be elucidated.

It is possible that the design of our study impacted our re-
sults. We scanned RD participants during early FP to minimize 
differences in hormone concentrations, because they are rela-
tively stable at this time compared with other phases of the 
MC. Different results might have been obtained if scanning 
had occurred during a different phase of the MC. For instance, 
Epperson et al. (2002) have shown fluctuations of GABA levels 
during the MC in healthy reproductive controls.

A limitation of this study was that sample sizes were rela-
tively small for both PM (n = 18) and RD (n = 20) groups. Of the 18 
PM participants in total, 12 were identified to be in early peri-
menopause and the remaining 6 were in late perimenopause. 
There is a greater risk of experiencing MD in late perimeno-
pause compared with early perimenopause (Colvin et al., 2017). 
However, due to the small sample size of PM women, we were 
unable to perform meaningful comparisons of MPFC GABA+/
Cr+PCr levels between early PM and late PM women. Future 
studies with greater numbers of women in late perimenopause 
should be conducted. Although there is no cutoff for estradiol 
levels that allows to distinguish early perimenopause from late 
perimenopause (Su and Freeman, 2009), it has been shown that 
the greatest decrease in estradiol levels occurs during late peri-
menopause. A larger number of late PM women in our sample 
of PM women may have increased the likelihood of finding dif-
ference in estradiol levels between PM women and RD women.

Although this study has been conducted on a 3T magnet, al-
lowing for resolving target metabolites, there are also potential 
limitations to using MRS. First, although MEGA-PRESS is a robust 
spectral difference method, it is difficult to obtain only GABA 
resonance without contamination from MM and Hcar, because 
the latter metabolites share similar chemical shifts as GABA 
(Deelchand et al., 2021). Thus, our MPFC GABA+/Cr+PCr results 
could have been confounded by variations in these metabol-
ites. Although Cr+PCr has been used extensively as a reference 
molecule in previous MRS MD research (Moriguchi et al., 2019), 
our reported differences in MPFC GABA+/Cr+PCr levels may in-
stead reflect changes in the concentration of Cr+PCr. However, 
our group recently demonstrated that Cr+PCr was unaffected 
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by the acute female hormone changes experienced during preg-
nancy and postpartum (McEwen et al., 2021; Ghuman et al., 
2022Ghuman et al., 2022). Age has been shown to affect Cr+PCr 
in certain brain regions. Because we had an age difference be-
tween groups, an age effect on Cr+PCr would be a potential con-
founding factor in our study. Lind et al. (2020) found that age did 
not impact Cr+PCr in the ACC when comparing the younger age 
group (aged 18–26 years) with the middle-age group (aged 39–50 
years). Because the younger and middle-age groups were similar 
in age to our RD and PM groups, respectively, this indicates that 
age differences were unlikely to have affected the Cr+PCr levels 
in our study. Together, these findings indicate that Cr+PCr is a 
viable reference lecule for MRS research in PM women.

Although we postulate that MPFC GABA+/Cr+PCr levels are 
decreased in PM women due to their reproductive status (and 
the concomitant hormonal fluctuations), it is still important to 
acknowledge the possibility of other age-mediated processes re-
sponsible for this observation. To elucidate the effect of age on 
MPFC GABA+/Cr+PCr in PM women, our team will expand the 
current study moving forward by including a group of meno-
pausal women as controls. These women will be of similar or 
greater age than the PM women.

We observed a significant correlation between MeRS scores 
and mean MPFC GABA+/Cr+PCr levels in PM women. However, 
the mean MeRS scores for PM women (5.22 ± 4.31) correspond 
to mild symptoms (Heinemann et al., 2004), suggesting a lack 
of clinical relevance. In addition, there was no significant cor-
relation between GCS scores and mean MPFC GABA+/Cr+PCr 
levels in PM women (P = .20), which is another tool for assessing 
PM-related symptomology. Thus, we are very reluctant to dis-
cuss this interaction further.

We assume that the decrease of MPFC GABA+/Cr+PCr levels 
is related to GABAergic neurotransmission. However, Carbon-13 
MRS is the only in vivo noninvasive method that allows for de-
termination of both GABAergic neurotransmission and cell-
specific energetics with signaling and nonsignaling purposes 
(Hyder and Rothman, 2017). As a result, it is difficult to determine 
the source of our GABA+/Cr+PCr measurements in the MPFC be-
cause it can be either neurotransmission related, neuronal me-
tabolism related, or both. For the same reasons, Carbon-13 MRS 
concomitant measurements of both GABA and Glu would also 
be necessary to assess the balance of GABA and Glu neurotrans-
mission in PM women.
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