
Citation: Luo, M.; Zhou, L.; Huang,

Z.; Li, B.; Nice, E.C.; Xu, J.; Huang, C.

Antioxidant Therapy in Cancer:

Rationale and Progress. Antioxidants

2022, 11, 1128. https://doi.org/

10.3390/antiox11061128

Academic Editors: Jiankang Liu,

Maria Cristina Albertini,

Yoko Ozawa, Dov Lichtenberg,

Serkos A. Haroutounian and

Stanley Omaye

Received: 8 May 2022

Accepted: 6 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Antioxidant Therapy in Cancer: Rationale and Progress
Maochao Luo 1,2,†, Li Zhou 2,†, Zhao Huang 2, Bowen Li 2 , Edouard C. Nice 3 , Jia Xu 1,* and Canhua Huang 2,*

1 School of Medicine, Ningbo University, Ningbo 315211, China; 2020324060045@stu.scu.edu.cn
2 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University,

and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China;
2015224060079@stu.scu.edu.cn (L.Z.); huangzhao@scu.edu.cn (Z.H.); libowen@stu.scu.edu.cn (B.L.)

3 Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
ed.nice@monash.edu

* Correspondence: xujia@nbu.edu.cn (J.X.); hcanhua@scu.edu.cn (C.H.)
† These authors contributed equally to this work.

Abstract: Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen
species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances
and signaling aberrations, can promote carcinogenesis and malignant progression by inducing
gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting
oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic
potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and
recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including
targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine
and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD
mimics. In addition, we will offer insights into prospective therapeutic options for improving the
effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.

Keywords: reactive oxygen species; oxidative stress; antioxidants; cancer therapy

1. Introduction

Redox homeostasis is essential for biological function and its disturbance leads to pro-
found pathophysiological consequences in cells, which emphasize the balance between the
relative abundance of reactive oxygen species (ROS) and antioxidants [1–3]. However, cells
may generate excessive ROS as an unavoidable result of alterations in metabolic signaling
pathways [4,5]. Oxidative stress arises when ROS are excessively produced, while antioxi-
dants are relatively insufficient. The ROS levels are tightly regulated by antioxidant systems,
including enzymatic antioxidant and nonenzymatic antioxidant systems. To accommodate
oxidative stress, cells modify metabolic and genetic reprogramming, thereby leading to
increased production of NADPH, glutathione (GSH, L-γ-glutamyl-L-cysteinyl-glycine),
superoxide dismutases (SODs) and thioredoxins (TRXs), returning ROS to homeostatic
levels [6–8].

When the high ROS level exceeds non-toxic doses, ROS may cause oxidative damage
to macromolecules, such as nucleic acids, proteins, lipids and glucose, resulting in frag-
mentation of enzymes and structural proteins, membrane damage, gene mutations and
even pro-oncogenic signaling activation [9,10]. Increased oxidative stress can initiate tumor
development and contribute to tumor progression by directly oxidizing macromolecules or
oxidative stress-caused aberrant redox signaling [11], demonstrating that high ROS levels
may increase the risk of cancer when antioxidant systems are insufficient to protect cells
from oxidative stress. Since oxidative stress plays an important role in carcinogenesis and
cancer progression [2,12,13], it is an attractive idea to use antioxidants for the treatment
of cancer. Numerous antioxidants were developed in the past few decades. They can be
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classified as nonenzymatic antioxidants, such as NF-E2 p45-related factor 2 (NRF2) acti-
vators [14], vitamins [15], N-acetylcysteine (NAC) and GSH esters [16,17], and enzymatic
antioxidants, such as NADPH oxidase (NOX) inhibitors [18] and SOD mimics [19]. Some of
them have shown potential to act as anticancer drugs and multiple antioxidant therapeutic
strategies were explored in pre-clinical and clinical research [20].

In this review, we will summarize redox homeostasis mechanisms and the relationship
between oxidative stress and cancer, providing a detailed description of the rationale for,
and recent advances in, antioxidant therapy in cancer. In addition, we also highlight several
kinds of antioxidant drugs in pre-clinical and clinical trials, discussing the promise and
limitations of antioxidant therapeutic strategies in cancer.

2. Redox Homeostasis: The Biological Basis for Antioxidant Therapy

ROS are a class of highly reactive free radicals, such as hydroxyl radical (•OH), the su-
peroxide radical (O2

•−) and hydrogen peroxide (H2O2) [21,22]. The high intracellular ROS
level-induced oxidative stress leads to the upregulation of antioxidant capacity to main-
tain redox homeostasis by metabolic rerouting or activation of genetic programs [23,24].
Disruption of redox homeostasis contributes to multiple human diseases, including can-
cer, and resetting redox homeostasis with antioxidants is a promising strategy to prevent
tumorigenesis or inhibit cancer progression. It is well known that redox homeostasis is
balanced by the equilibrium of ROS generation and ROS elimination. Therefore, we first
describe the underlying mechanisms that regulate the cellular redox homeostasis (Figure 1).
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Figure 1. Generation and elimination of ROS in mammalian cells. ROS are generated extracellularly
by NADPH oxidase (NOX) or intracellularly in different subcellular compartments, including endo-
plasmic reticulum (ER), peroxisome, nucleus as well as the mitochondrial electron transport chain
(ETC). Antioxidant systems include the peroxiredoxin (PRDX), the glutathione peroxidase (GPX) and
catalase (CAT) in the cytosol or mitochondria, which hydrolyze H2O2 to H2O.

2.1. Mechanisms in ROS Generation

ROS are prominently generated by transmembrane NOXs and other various oxi-
dases from the mitochondrial electron transport chain (ETC) [25], endoplasmic reticulum
(ER) [26] and peroxisomes [27], in response to intracellular signaling and extracellular
stimuli. The mitochondrion functions as a highly dynamic organelle and an essential en-
dogenous enzymatic source of ROS, which generates ROS through ETC, a series of electron
transfer complexes located on the mitochondrial inner membrane [28,29]. The production
of mitochondrial ROS is associated with the metabolism of glucose, fatty acids and amino
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acids (via glycolysis, β-oxidation and oxidative deamination, respectively), which provide
precursors for tricarboxylic acid (TCA) cycle to produce metabolic substrates that enter
the ETC [30,31]. In the mitochondrial ETC, ROS generation is probably due to the leak of
electrons from complex I, II and III. During this process, oxygen is reduced with a single
electron and thus generating O2

•−, which can be dismutated to H2O2 [32,33]. The rate of
ROS generation from the mitochondrial ETC is predominantly dependent on the concentra-
tion of the one-electron donor and the reaction rate between the donor and oxygen. The
primary function of NOXs is to produce ROS, which is triggered by a variety of factors
and reported to be associated with tumor development [34]. The NOX family consists of
seven members, namely NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 [35].
They catalyze the conversion of oxygen to O2

•− by transferring electrons to molecular
oxygen in various subcellular compartments, such as the nucleus [36]. NOXs-derived
ROS might activate the downstream secondary oxidase systems, such as xanthine oxidase
and uncoupled endothelial nitric oxide synthase, further aggravating oxidative stress and
accelerating the development of cancer [37]. ER is a protein-folding factory, which plays an
important role in normal physiology [38,39]. The oxidizing site in ER supports the proper
conformation and post-translational modifications of nascent proteins [40]. In response to
the aggregation of unfolded or misfolded proteins within ER, glucose-regulated protein
78 (GRP78) dissociates from ER stress receptors, such as activating transcription factor 6
(ATF6), pancreatic ER kinase (PKR)-like ER kinase (PERK) and inositol-requiring enzyme
1 (IRE1), leading to ER stress and eventually resulting in ROS accumulation [41–43]. In
addition, the release of calcium from the ER and depolarization of the mitochondrial inner
membrane can stimulate the production of mitochondrial ROS and mediate excessive ox-
idative stress [44,45]. As multifunctional dynamic organelles, peroxisomes exist in almost
all eukaryotic cells and play essential roles in redox homeostasis [46,47]. The name of
peroxisomes derives from their function in the metabolism of H2O2 [27]. Peroxisomal
respiration accounts for approximately 20% of total oxygen consumption and produces up
to 35% of total H2O2 by peroxisomal oxidases in certain mammalian cells [48]. For instance,
peroxisomal oxidase acyl-CoA oxidase 1 (ACOX1), the rate-limiting enzyme in fatty acid
β-oxidation, can oxidize very long-chain fatty acid (VLCFA) and lead to H2O2 production
in peroxisomes. In addition, a gain-of-function mutation in ACOX1 may further enhance
the ROS levels [49]. Besides, the ACOX1-induction of ROS production was demonstrated
to be involved in oxidative DNA damage and the progression of hepatocellular carcinoma
(HCC) [50]. Ultraviolet (UV) radiation is also an important factor that contributes to ROS
generation and subsequent carcinogenesis [51]. Cells exhibit an increased production of
ROS when exposed to UV radiation. UV-induced transition-type mutations at dipyrimidine
sites frequently occur in the RAS oncogene and p53 tumor suppressor gene [52]. In addition,
a wide range of biological phenomena, such as inflammatory and oxidative modifications
of macromolecules, were reported to participate in UV-induced skin carcinogenesis and the
progression of glioblastoma [53,54].

2.2. ROS Elimination with Enzymatic or Nonenzymatic Antioxidant System

Increased accumulation of ROS can be eliminated by various enzymatic antioxidant
systems including SODs [55], GSH peroxidases (GPXs) [56], peroxiredoxins (PRDXs) [57],
paraoxonase (PONs) and catalase (CAT) [58]. Additionally, ROS can also be eliminated
by nonenzymatic antioxidant systems, such as GSH [59] and TRXs [60]. The antioxidant
systems counteract ROS-mediated damage to maintain ROS homeostasis, enabling tumor
cell survival [20].

The enzymatic antioxidant system mainly consists of SODs, PRDXs, CAT, PONs and
GPXs. Under oxidative stress, these antioxidant enzymes are upregulated or activated to
prevent oxidative damage. SODs catalyze the conversion of O2

•− into molecular oxygen
and H2O2, thus controlling the levels of ROS and limiting their potential toxicity [61]. Since
SOD1 was firstly discovered in 1969, all of the three members in the SOD family were
biochemically and molecularly characterized in mammalian cells, including Cu/Zn-SOD
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(SOD1), Mn-SOD (SOD2) and EC-SOD (SOD3) [62]. SOD1 and SOD2 localize in cytosol,
the mitochondrial inter membrane space, the nucleus and the mitochondrial matrix, while
SOD3 is secreted into the extracellular space [63–65]. The SOD family constitutes the
first line of defense against ROS. The O2

•− is dismutated by SODs to form H2O2, which
can be decomposed into O2 and H2O by CAT or GPXs [66]. Several enzymes, such as
glutathione reductase and glucose-6-phosphate dehydrogenase, function as secondary
antioxidant enzymes that enable GPX to function with cofactors (NADPH, GSH and
glucose 6-phosphate) but not to act on ROS directly [67,68]. PON2 is one member of the
PON family that consists of three members, namely PON1, PON2 and PON3. PON2 is
a membrane-associated protein that is located in the plasma membrane, mitochondria
and ER [69]. It was reported that PON2 protects against oxidative stress, both in vivo
and in vitro [70,71]. For instance, PON2 binds with high affinity to coenzyme Q10 and
protects against mitochondrial dysfunction when localized to the mitochondria, while
PON2 deficiency results in mitochondrial oxidative stress [72].

Nonenzymatic antioxidants are non-catalytic small molecules that can quench ROS
and reduce oxidative stress [73]. The most abundant nonenzymatic antioxidant is GSH,
a tripeptide composed of glutamate, cysteine and glycine. Its synthesis is regulated by
glutaminases (GLS1 and GLS2), the cystine-glutamate antiporter xCT (SLC7A11), the GSH
biosynthetic rate-limiting enzyme glutamate-cysteine ligase (GCL) and the GSH synthetase
(GSS) [74,75]. GCL is a heterodimeric holoenzyme that is composed of catalytic (GCLC)
and modifier (GCLM) subunits; the expression levels of GCLC and GCLM are highly
associated with the drug sensitivity of cancer cells and patient survival [76]. Moreover,
the silencing of SLC7A11, GCLC and GSS represses the proliferation of clear cell renal cell
carcinoma by decreasing the cellular GSH levels. However, reduced levels of GSH were
also observed in patients with breast or colon cancers, especially in the advanced stages of
these diseases, indicating the essential role of GSH in cancer cell survival [77,78]. Another
nonenzymatic antioxidant is the TRX system, which is composed of TRXs and NADPH-
dependent thioredoxin reductase (TrxR), which participate in the removal of harmful and
excessive H2O2 [79]. There are two kinds of TRXs in mammalian cells, known as cytosolic
TRX1 and mitochondrial TRX2 [80]. TRXs directly donate electrons to thiol-dependent
PRDXs to remove H2O2. Oxidized TRXs are then reduced by TrxR, with NADPH as a
cofactor [81]. Moreover, the oxidized PRDXs can also be reduced by TRXs [57]. Given the
important role of the TRX system in cellular redox homeostasis, disturbance in the TRXs’
metabolism is highly associated with the progression and chemoresistance of multiple
tumors [82], thus making TRXs essential targets for anticancer therapy.

3. ROS Promote Carcinogenesis and Cancer Progression

It was demonstrated that oxidative stress is involved in a wide range of pathologies
including cancer, and increased production of ROS are common features of cancer cells.
Although high ROS levels are cytotoxic and may exert anti-tumorigenic effects via oxidative
damage and ROS-dependent death signaling, ROS play critical roles during tumorigenesis
and cancer development. Here, we focus on the pro-tumorigenic role of ROS in malignant
progression, which may be addressed with antioxidant therapy. The elevated levels of
ROS from altered redox homeostasis contribute to the transformation of healthy cells into
cancerous cells and enable their survival through two major mechanisms. The first is that
ROS directly oxidize macromolecules, such as nucleic acids, proteins, lipids and glucose,
resulting in gene mutation and aberrant inflammation [83]. The second mechanism involves
oxidative stress-caused aberrant redox signaling. ROS, particularly H2O2 and O2

•−, might
function as signaling molecules to cause various signaling pathways to go awry and drive
cancer progression [84,85] (Figure 2).
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Figure 2. ROS promote carcinogenesis and malignant progression. In the process of carcinogenesis,
ROS can contribute to DNA damage, which results in aberrant inflammation and metabolism, leading
to oncogenic mutations and cell hyperproliferation. ROS can also act as signaling molecules to enable
cancer cells’ survival and cancer progression via epithelial-to-mesenchymal transition (EMT). In
addition, ROS might affect stromal cells, such as cancer-associated fibroblasts (CAFs), regulatory
T (Treg) cells, effector T (Teff) cells and NK cells in the tumor microenvironment (TME) to promote
cancer progression.

3.1. ROS-Mediated Oncogenic Mutations Promote Carcinogenesis

The elevated ROS level functions as a contributor to the malignant transformation
of normal cells by inducing mutations in nuclear DNA (nDNA) or mitochondrial DNA
(mtDNA), as well as by causing oxidative damage to biomolecules [86–88]. Excessive ROS
are highly associated with both nDNA and mtDNA mutations, which were reported to
result in aberrant inflammation and metabolism, thus promoting malignant transforma-
tion [89]. Overproduction of ROS causes nDNA mutation and genetic instability, which
further activate multiple oncogenes and lead to abnormal metabolic activity and decreased
antioxidant capacity. These events eventually promote the production of ROS in a positive
feedback manner [90,91]. Increased ROS was demonstrated to promote chronic inflam-
mation, one of the major causes of cancer, through inducing chemokines such as IL-8 and
CXCR4, as well as inflammatory cytokines including IL-1, IL-6 and TNF-α [92,93]. In the
context of cancer initiation, mtDNA is also an essential target of ROS, as mtDNA mutation
was linked to carcinogenesis [94,95]. Each mitochondrion carries a few dozen mtDNA
copies. Increased ROS-induced somatic mutations in mtDNA affect the function of ETC and
the ATP synthase, which might promote a Warburg-like phenotype shift towards glycolysis.
The metabolic shift can shape cell behavior and participate in oncogenic transformation in
multiple types of cancer, such as colorectal cancer, lung cancer, gastric cancer, liver cancer
and head and neck cancer [96].

3.2. ROS Function as Signaling Molecules to Drive Cancer Progression

In addition to supporting carcinogenesis, ROS were also demonstrated to sustain
and accelerate cancer progression via epithelial-to-mesenchymal transition (EMT), which
is involved in reprogramming the tumor microenvironment (TME) [97,98]. The TME is
affected by ROS through regulating the function of T cells, tumor-associated macrophages
(TAMs) and cancer-associated fibroblasts (CAFs) in TME [99]. The TAMs and CAFs promote
cell proliferation, angiogenesis, immunosuppression and invasion, thus enabling cancer
progression via the reciprocal crosstalk between cancer cells and the TME [100]. Moreover,
regulatory T (Treg) cells and cytotoxic CD8+ T cells in TME can suppress effective tumor
immunity and contribute to cancer progression, which is associated with poor response
to immunotherapy [101,102]. In terms of the role of ROS in TME, H2O2 is thought to
function as signaling molecules, which might cause metabolic changes in CAFs, such
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as altered glucose uptake and mitochondrial activity [103,104]. ROS also contribute to
cancer progression by triggering the immunosuppressive properties of TAMs. For instance,
mitochondrial ROS activate MAPK/ERK activity, which contributes to the secretion of TNF-
α and subsequently promotes cancer invasion [105]. Furthermore, it was also demonstrated
that O2

•− can suppress T cell-mediated inflammation, thus promoting TAM-mediated
immunosuppression and leading to tumor development [106].

4. Antioxidant Therapeutic Strategies in Cancer

Given the important role of ROS in cancer, it follows that modulating ROS levels is a
promising anticancer strategy. This may suppress ROS-induced carcinogenesis and cancer
progression by inducing oxidative damage and ROS-dependent cell death [1,89]. Therefore,
multiple antioxidants and weak pro-oxidants were explored in pre-clinical research and
clinical evaluations. Cancer cells can produce excessive ROS through the above-mentioned
mechanisms and increased formation of ROS are common features of cancer cells, which
makes them more susceptible to a further increase in ROS than normal cells. Therefore, pro-
oxidants may function as anticancer agents. For example, it was reported that exogeneous
H2O2 can dramatically reduce the survival of MCF-7 cells with PRDX1 knockout, showing
the potential of pro-oxidants to promote ROS-mediated cell death [107]. In addition,
weak pro-oxidants may also function as important contributors to antioxidant therapy
by boosting internal antioxidant capacity. However, treatment with weak pro-oxidants
in cancer therapy still needs further investigation. Here, we focus on the antioxidant
therapeutic strategies using antioxidants. Overall, antioxidant therapeutic strategies in
cancer can be classified as targeting ROS with nonenzymatic antioxidants, including NRF2
activators [108], vitamins [109,110] (Figure 3) or targeting ROS with enzymatic antioxidants,
including NOX inhibitors [18,111], SOD mimics [112], NAC and GSH esters (Figure 4)
(Table 1) [113,114].
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Figure 3. Targeting ROS with nonenzymatic antioxidants. Dehydroascorbic acid (DHA), the oxidized
form of vitamin C, is taken up by cells through glucose transporter 1 (GLUT1) and then reduced to
vitamin C. Vitamin E is located in cell membranes and defends against lipid hydroperoxides. NRF2
activators may disrupt the KEAP1-NRF2 interaction, leading to the activation of NRF2 downstream
antioxidant genes. Glutathione (GSH) is synthesized from cysteine, glutamate and glycine. Exogenous
N-Acetyl cysteine (NAC) and GSH esters (GSH-E) supplementation promote GSH production and
defense against excessive ROS.
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mimics might dismutate O2

•− to hydrogen peroxide (H2O2).

Table 1. Anticancer antioxidants in clinical trials.

Antioxidants Cancer Types Trial Status Trial ID

NRF2 activators

Sulforaphane

Lung cancer Phase 2 NCT03232138
Breast cancer Phase 2 NCT00982319

Prostate cancer Phase 2 NCT01228084
Colon cancer NA NCT01344330

HNSCC Early Phase 1 NCT03182959

Resveratrol

Colon cancer Phase 1 NCT00256334
Colorectal cancer Phase 1 NCT00920803

Neuroendocrine tumor NA NCT01476592
Breast cancer NA NCT03482401

Multiple myeloma Phase 2 NCT00920556

Quercetin
Prostate cancer Phase 1 NCT01912820

Colorectal cancer NA NCT00003365
Pancreatic cancer/NSCLC Phase 2/3 NCT02195232

Curcumin

Breast cancer Phase 2 NCT01042938
Colorectal cancer Phase 2 NCT02439385
Prostate cancer NA NCT03211104

Head and neck cancer Early Phase 1 NCT01160302
Pancreatic cancer Phase 2 NCT00192842

Bardoxolone-methyl
(CDDO-Me, RTA402)

Solid tumors/Lymphoid
malignancies Phase 1 NCT00529438

Pancreatic cancer Phase 1 NCT00529113
Solid tumors/ Lymphoid

malignancies Phase 1 NCT00508807
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Table 1. Cont.

Antioxidants Cancer Types Trial Status Trial ID

RTA-408
(omaveloxolone)

NSCLC Phase 1 NCT02029729
Breast cancer Phase 2 NCT02142959

Melanoma Phase 1/2 NCT02259231

Dimethyl fumarate
Multiple sclerosis Phase 3 NCT02430532

Lymphocytic leukemia Phase 1 NCT02784834
Glioblastoma Phase 1 NCT02337426

Oltipraz Lung cancer Phase 1 NCT00006457
SOD mimics

GC4419

Head and neck cancer Phase 2 NCT04529850
Pancreatic cancer Phase 1/2 NCT03340974

Squamous cell carcinoma Phase 1 NCT01921426
Head and neck cancer Phase 2 NCT02508389

Metalloporphyrins Lung cancer Phase 3 NCT00054795
NOX inhibitors

Ebselen (SPI-1005)
Cancer Phase 1 NCT01452607

Lung cancer, Head and neck cancer Phase 2 NCT01451853
GSH-related antioxidants

NAC

Breast cancer Phase 1 NCT01878695
Gastric cancer NA NCT03238404
Ovarian cancer NA NCT03491033

Head and neck cancer Phase 2 NCT02123511
Gastrointestinal neoplasms Phase 2 NCT00196885

Bladder cancer NA NCT02756637
Lung cancer Phase 2 NCT00691132

Colorectal cancer NA NCT01325909

NOV-002

Breast cancer Phase 2 NCT00499122
Ovarian cancer Phase 2 NCT00345540

NSCLC Phase 3 NCT00347412
Leukemia Phase 2 NCT00960726

Reduced GSH Breast cancer Phase 2 NCT00266331
Vitamins

Vitamin C

Ovarian cancer Phase 2 NCT00284427
Pancreatic cancer Phase 1 NCT00954525

Prostatic neoplasms Phase 2 NCT01080352
Ovarian cancer Phase 2 NCT00284427

Advanced cancer Phase 1/2 NCT01050621
Solid cancers Phase 1 NCT00441207

NSCLC Phase 1/2 NCT02655913
Head and Neck Cancer NA NCT03531190

Skin cancer NA NCT01032031
Liver cancer Phase 1/2 NCT01754987

Vitamin E

Prostate cancer Phase 3 NCT00006392
Colorectal cancer Phase 1 NCT00905918

Head and neck neoplasms Phase 2 NCT02397486
Skin neoplasms NA NCT02248584

Pancreatic neoplasms Phase 1 NCT00985777
Breast cancer Phase 2 NCT00022204

NA: Not Applicable; HNSCC, head and neck squamous cell carcinoma; NSCLC, Non-small cell lung cancer.

4.1. Targeting ROS with Nonenzymatic Antioxidants

The transcription factor NRF2 was considered as a master regulator of various home-
ostatic genes that defend against cellular stress, including oxidative stress [115]. Upon
exposure to oxidative stress, the transcription factor NRF2 is released from its principal
negative regulator Kelch-like ECH-associated protein 1 (KEAP1) and translocates to the
nucleus, where NRF2 binds to antioxidant response element (ARE) and promotes the
expression of antioxidant genes [116]. High expression of NRF2 was observed in various
oxidative stress-related diseases including cancer, especially in NRF2-activated malignant
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tumors. NRF2 activators were considered as potential agents to prevent carcinogenesis
or reverse cancer progression [117]. Five categories of NRF2 activator were developed,
the underlying action mechanisms of which include: (1) modification on sensor cysteines
of KEAP1, leading to the dissociation between NRF2 and KEAP1 [118,119]; (2) direct dis-
ruption of the KEAP1-NRF2 interaction [120]; (3) disruption of the interaction between
NRF2 and β-transducin repeat-containing protein (βTrCP), which targets NRF2 for pro-
teasome degradation [121]; (4) sequestration of KEAP1 into autophagosomes by p62 [122];
(5) upregulation of NRF2 protein levels by de novo synthesis that cannot be degraded by
KEAP1 [123]; (6) inhibition of the NRF2 transcriptional repressor BTB domain and CNC
homolog 1 (BACH1) [124].

The current development of NRF2 activators is mainly based on modifying sensor
cysteines of KEAP1 and disrupting the KEAP1-NRF2 interaction. For instance, fumaric acid
esters are oral analogs of fumarate that represent a group of NRF2 activators that work by
modifying sensor cysteines of KEAP1, among which dimethyl fumarate (DMF) is the most
successful example [125]. It was reported that DMF can alkylate Cys151 of KEAP1, leading
to the dissociation of NRF2 and KEAP1 [126]. DMF metabolite monomethyl fumarate
(MMF) was also demonstrated to react with KEAP1 through Cys151, thereby stabilizing
and activating NRF2 [127]. DMF and its major metabolite MMF can reduce inflammatory
responses and exhibit a favorable tolerability profile in clinical trials, showing promise for
cancer treatment [128]. In addition, compounds that show improved bioavailability com-
pared with MMF, through improving the release rate, were synthesized, such as TFM735,
which is reported to activate NRF2 via the Cys151 in KEAP1, leading to the inhibition of
IL-6 and IL-17 from peripheral blood mononuclear cells [129]. In addition, nitro fatty acids
(NO2-FAs), such as nitro linoleic acid and nitro-oleic acid, are endogenous signaling medi-
ators that react with Cys273 and Cys288 in KEAP1 through nitro alkylation, resulting in
the activation of NRF2 and being implicated in anti-inflammatory activities [130]. Recently,
the non-covalent NRF2 activators were developed, which directly disrupt the KEAP1–
NRF2 protein–protein interaction via a cysteine-independent binding mechanism [131].
For instance, the bis-carboxylic acid compound CPUY192018 is a high-affinity KEAP1
ligand, which promotes the release of NRF2 from KEAP1 and enhances the expression
of NRF2-target genes [132]. The sulfonamide-containing compounds were reported to
inhibit the KEAP1–NRF2 interaction and enhance the expression of NAD(P)H: quinone
oxidoreductase (NQO1), which reduces lung inflammation in animal models [133]. The
naphthalene bis-sulfonamide was also reported to promote the expression of NRF2-target
NQO1 and protect against dextran sulfate sodium (DSS)-induced colitis [134]. In addi-
tion to the above-mentioned compounds, (SRS)-5 and benzene-disulfonamides were also
demonstrated to function as potent non-covalent NRF2 activators that disrupt the interac-
tion between KEAP1 and NRF2 [135,136]. Altogether, these compounds are high-affinity
ligands for KEAP1 and can directly block the KEAP1–NRF2 interface, thereby activating
NRF2 downstream antioxidant genes and protecting cells from oxidative stress. Although
current drugs mainly target KEAP1, it is noted that NRF2 might bind to ARE sequences in a
KEAP1-independent manner, possibly involving the regulation of transcriptional repressor
BACH1 [137]. Therefore, compounds that inhibit the binding of BACH1 to ARE-driven
genes, such as HMOX1, were also developed [124]. Presently, more NRF2 activators elicit-
ing beneficial effects are arising. However, treatment with NRF2 activators may inactivate
drug-induced oxidative stress that normally would result in cell death. Therefore, it is
necessary to monitor their clinical efficacy, given that the activation of NRF2 may con-
tribute to the development of chemoresistance [138,139]. Taken together, NRF2 activators
have shown potential for cancer therapy, but further investigations are also needed to
demonstrate their clinical efficacy, especially in combination with chemotherapeutic drugs.

NAC is currently one of the most studied antioxidant agents that can be quickly
absorbed via the anion exchange membrane and deacetylate to produce cysteine, thus
replenishing GSH [140]. NAC can reduce cysteine conjugates and is used therapeutically
for many human diseases, including cancers [141]. However, NAC was also reported to
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increase melanoma cell metastasis in NOD-SCID-Il2rg−/− (NSG) mice [142]. GSH esters,
the derivatives of GSH, were developed for GSH supplementation, since GSH cannot be
effectively transported into cells and exogenously administered GSH is rapidly cleared
in plasma. Ester derivatives of GSH, such as monoethyl (GSH-MEE), diethyl (GSH-DEE),
monomethyl (GSH-OMe) and isopropyl esters have shown high efficiency in increasing
cellular GSH level [143]. In addition, compared with oral administration, subcutaneous or
intraperitoneal injection of GSH esters is more effective in elevating GSH levels in various
tissues [144]. However, although the efficacy of GSH esters to alleviate oxidative stress in
cells and animal models was demonstrated, clinical trials with GSH ester are still needed.

As the most widely used dietary antioxidants, L-ascorbic acid (vitamin C) and α-
tocopherol (vitamin E) are of great interest in cancer therapy [145]. Vitamin C is a type of
water-soluble vitamin that cannot be synthesized endogenously in the human body, but can
only be provided by dietary supplement, making it an essential nutritional component [146].
Dehydroascorbic acid (DHA), the oxidized form of vitamin C, is absorbed from the renal
tubules by renal epithelial cells and functions as a reductant and an enzyme cofactor [147]. It
was described that high dose vitamin C shows promising antitumor efficacy in patients with
advanced cancer [15,148–150]. However, the role of vitamin C in cancer treatment is still
controversial, as half of the studies indicate that vitamin C has no significant effect on the
incidence and mortality of cancer [151–153]. Vitamin E is lipid soluble and mainly localizes
to the plasma membrane, where it functions as a ROS scavenger through reacting with free
radicals, thus defending against oxidative stress [154]. It was reported that vitamin E only
has low toxicity and causes no obvious side effects at high dose intake [155]. However,
several animal studies showed that vitamin E supplements might promote carcinogenesis
and cancer progression [156]. Overall, the controversial effect of antioxidants on cancer
raises significant concerns regarding antioxidant supplements. Therefore, novel strategies
are warranted to resolve the double-edged effect of supplemental antioxidants, including
vitamin C and vitamin E.

4.2. Targeting ROS with Enzymatic Antioxidants

As mentioned above, the NOX family is a major source of ROS and excessive activation
of NOXs can contribute to oxidative stress. Thus, agents that would efficaciously target
NOXs to scavenge ROS might hold significant promise for cancer therapy [157]. There are
two types of NOXs inhibitors, including peptidic inhibitors and small-molecule inhibitors,
both of which are based on the mechanism of inhibiting NOX enzyme activity or suppress-
ing the assembly of the NOX2 enzyme [158]. Small peptide inhibitors of NOX complexes
have shown therapeutic potential. The first peptidic inhibitor is Nox2ds-tat ([H]-R-K-K-R-
R-Q-R-R-R-C-S-T-R-I-R-R-Q-L-[NH2], also known as gp91ds-tat). Nox2ds-tat was reported
to inhibit the assembly of NOX2, a complex that consists of six subunits: the Nox2 subunit
(also known as gp91phox); p22phox, and four cytosolic components; p47phox (organizer
subunit); p67phox (activator subunit); p40phox, and the small Rho-family GTP binding
protein Rac1 or Rac2 [159,160]. Nox2ds-tat selectively blocks NOX2 activity through in-
terrupting the Nox2–p47phox interaction [161]. The inhibitory effects of Nox2ds-tat were
demonstrated both in vitro and in vivo. For instance, Nox2ds-tat was reported to inhibit
the production of angiotensin II-induced O2

•− [162]. Moreover, administration of Nox2ds-
tat by subcutaneous infusion significantly attenuated the production of vascular O2

•−

and subsequent vascular inflammation in angiotensin II-infused rat model [34,163]. In
summary, the viability of Nox2ds peptide as a NOX2 inhibitor was demonstrated, which is
important for suppressing NOX2 activity and preventing excessive ROS production.

Currently, multiple small-molecule global inhibitors that inhibit NOXs or flavopro-
teins in general, were synthesized, including diphenyleneiodonium (DPI), ebselen and
diapocynin [164]. Among them, DPI is the first identified and commonly used potential
inhibitor of NOXs, which inhibits the production of ROS by forming adducts with FAD,
potentially contributing to the reduction of ROS and showing anticancer properties in
colon cancer cells [165]. However, as a nonselective inhibitor, DPI might target other
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flavin-dependent enzymes, such as xanthine oxidase and nitric oxide synthase. Ebselen
and diapocynin are described as NOX inhibitors but were also previously found to dis-
play unrelated effects [166]. Unlike DPI, apocynin specifically prevents the activation of
NOX2 by inhibiting the translocation of p47phox, thereby repressing the production of O2

−

in vitro and exhibiting anti-inflammatory activity in vivo [167]. In addition, other specific
NOX inhibitors, were also identified via cellular and membrane assays [168]. For instance,
fulvene-5, one of the fulvene derivatives that have a chemical similarity to DPI, could
inhibit NOX2 and NOX4 in vitro, as well as block the growth of endothelial cell-derived
neoplasia in mice [169]. However, despite the great efforts made by researchers, few NOXS
inhibitors have yet reached clinical trials. It remains challenging to identify compounds that
target NOX specifically and show a profound impact in alleviating cancer. Much more work
is still needed to develop NOX inhibitors for the treatment of oxidative-stress-associated
disorders, including cancer.

SOD is a metalloprotein that can efficiently eliminate O2
•− with a dismutation mecha-

nism. SOD was developed as a drug known as orgotein, to defend against oxidative stress
in mammalian cells [170]. The anti-inflammatory property of orgotein was demonstrated
through preclinical and clinical studies [171]. It was also reported that orgotein can effec-
tively prevent or reduce the side effects of radiation therapy in bladder cancer patients [172].
In addition, several types of SOD mimics were synthesized, such as metalloporphyrins,
Mn (II) polyamines, Mn (III) salens, Mn (III) corroles and Mn (IV) biliverdins [173–175].
Although the rate constants are much lower than the enzymes, SOD mimics appear to be
effective in extracellular fluids where the antioxidant enzymes are absent or at deficient
concentrations [176]. Moreover, some SOD mimics may act as pro-oxidants rather than
antioxidants, thereby activating rather than mimicking SOD [177].

Metalloporphyrins have emerged as the most studied SOD mimics, such as Mn por-
phyrins. Various Mn porphyrin compounds, including MnTM-2-pYp5+, MnTE-2-pYp5+

and MnTDE-2-ImP5+, have shown high SOD activity that dismutates O2
•− to H2O2 [178].

The protective and therapeutic potential of Mn porphyrins were demonstrated in ani-
mal models of diseases, including cancers. To date, more porphyrins or porphyrin-based
SOD mimics were synthesized with the establishment of the structure–activity relation-
ships between SOD and metal-site redox ability [19]. The Mn (II)-containing penta-aza
macrocyclic manganese compound GC4419 (known as avasopasem manganese, AVA) was
reported to enhance tumor-killing activity when synergized with radiation in head and
neck cancer [179]. In addition, GC4419 can enhance the toxicity of high-dose vitamin C in a
H2O2-dependent manner, promoting radiation-induced cancer cell killing [180]. Further-
more, GC4419 also exhibits therapeutic potential in the inflammation animal model [181].
Unlike GC4419, the Mn (III)- containing salen complexes, such as EUK-8, EUK-134 and
EUK-189, are not specific and have dismutation activity on both O2

•− and H2O2, showing
protective effects for various types of cancer [182].

In summary, multiple antioxidant therapeutic strategies were developed for cancer
treatment, which can be classified into two different categories of groups according to their
targets: enzymatic antioxidants and nonenzymatic antioxidants, both of which have shown
potential to act as antioxidant drugs in pre-clinical and clinical research.

5. Perspectives and Conclusions

Because oxidative stress is a well-documented phenomenon in cancer, it is rational that
antioxidants can significantly reduce cancer incidence and progression. Although multiple
antioxidant therapeutic strategies were explored and some of them are undergoing clinical
trial, their efficacy remains unsatisfied. The factors that impede the anticancer activity of
antioxidants include: (1) most studies use pharmacological but not dietary doses based
on in vitro studies, however, antioxidants may be affected by complex, in vivo conditions;
(2) antioxidants might be distributed unevenly in different tissues, and probably cannot
function due to the low bioavailability and bio-accessibility in some specific organ; (3) some
antioxidants exhibit antioxidant or pro-oxidant properties depending on their concentration
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and the pressure of oxygen. These factors determine the distinct consequences of the
supplementary antioxidants. Moreover, most chemotherapeutic drugs generate high levels
of ROS and result in oxidative stress. Treatment with antioxidants in cancer patients might,
therefore, lead to an antagonistic effect on chemotherapeutic drug-induced cell death.

As discussed above, multiple antioxidants failed to demonstrate efficacy in clinical
practice. Given that most antioxidant capacity is attributed to endogenously antioxidant
enzymes or antioxidants, we propose that treatment with weak pro-oxidants to boost
antioxidant activity might be a promising way for cancer patients, although the underlying
biological rationale warrants further investigation and long-term follow-up of interventions
are needed. An improved understanding of these mechanisms will facilitate the develop-
ment of novel therapeutic agents, which might be effective in the prevention and treatment
of cancer.
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