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Abstract: Glaucoma is a progressive neurodegenerative disease that represents the major cause
of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and
glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly
used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex,
including several pathways and gene expression, such as neurotransmitter and receptors, circadian
modulation, ion transport, and signal transduction processes. Recent studies have shown that the
benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity
or brain damages are other actions of lithium. Moreover, recent findings have investigated the role
of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been
the main common choice for the treatment of bipolar disorder. Due to the possible side effects
gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs
in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in
glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway
is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium
is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β
activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic
strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their
possible benefit properties through the WNT/β-catenin pathway.

Keywords: WNT/β-catenin pathway; lithium; atypical antipsychotics; inflammation; oxidative
stress; glutamatergic pathway; glaucoma

1. Introduction

Glaucoma is a progressive neurodegenerative disease and one of the major cause
of irreversible blindness. The number of worldwide glaucoma patients will increase
from 76.5 million in 2020 to 111.8 million by 2040, mainly due to aging population [1,2].
Glaucoma presents the loss of retinal ganglion cells (RGCs), thinning of the retinal nerve
fiber layer, and cupping of the optic disc [3]. Glaucoma is formed by heterogeneous
diseases showing varying clinical presentations. Aging, high intraocular pressure (IOP),
and a genetic causes are the major risk factors for glaucoma [3]. Primary open-angle
glaucoma (POAG) is the major presentation in countries. However, 30% of patients have
normal tension glaucoma (NTG) [4]. The etiology of POAG is well-known with mechanical
and/or vascular mechanisms. The mechanical process implicates compression of the axons
due to increased IOP, while the vascular mechanism shows events in which blood flow
and ocular perfusion pressure are decreased to the posterior pole leading to damage [5,6].
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Vascular or perfusion dysregulations in NTG show different clinical features, including
migraine headaches, Raynaud’s phenomenon, or sleep apnea [7]. In high IOP glaucoma,
both the anterior and posterior segments are affected, as extensive affection is detectable in
the trabecular meshwork (TM) and along the inner retina-central visual pathway [8].

Lithium, introduced in 1949, is the most used drug for chronic mental illness, in-
cluding bipolar disorder with depressive and manic cycles. Lithium remains a first-line
treatment for bipolar disorder, manic-depressive illness, [9], traumatic brain injury [10], and
numerous neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s
diseases [11]. In acute treatment of mania, the efficacy of lithium is well established [12].
Numerous studies have presented that lithium can diminish manic relapses, even if its
efficacy was lower in reduced depressive relapses [13]. In parallel, some studies have
shown that lithium may diminish suicides and suicide attempts in patients suffering from
mood disorders [14]. Lithium therapeutic mechanisms remain complex, including sev-
eral pathways and gene expression, such as neurotransmitter and receptors, circadian
modulation, ion transport, and signal transduction processes [15]. Recent studies show
that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection
against excitotoxicity or brain damage are other action of lithium [16]. Moreover, recent
findings have investigated the role of lithium in glaucoma [17,18] but its actions remain
unclear. Nevertheless, recent studies have highlight possible mechanisms of lithium ac-
tion through the WNT/beta-catenin pathway in glaucoma [19,20]. The combination of
lithium and atypical antipsychotics (AAPs) has been the main common choice for the
treatment of bipolar disorder [21]. Due to the possible side effects of the first-generation
antipsychotics, the second-generation antipsychotics (also called AAPs) were gradually
introduced in therapy [22]. Currently, no studies have focused on the possible actions of
AAPs in glaucoma.

Thus, this review focuses on the possible actions of lithium and AAPs as possible
therapeutic strategies for glaucoma and some of the presumed mechanisms by which these
drugs provide their possible benefit properties through the WNT/β-catenin pathway.

2. Pathophysiology of Glaucoma

In primary open-angle glaucoma (POAG), responsible for IOP elevation, the IOP up-
regulation implicates the TM occlusion inducing by the iris tissue [8]. The chronic contact
between the TM and iris leads to permanent affection of the TM. TM dysregulation and
its diminished cellularity are the first stage to high tension glaucoma (HTG). Numerous
factors, including oxidative stress (OS) and aging, as well as environmental factors, are im-
plicated as the promotors of TM damage [23]. OS could be enhanced in the morphological
alterations of the TM of glaucomatous eyes, due to it stimulating inflammatory response.
Chronic inflammation and OS modulate each other, creating a vicious circle influencing
the cellular responses. The cultures of TM presented a NF-κB pathway activation after
exogenous stimulation such as IL-1 or H2O2. The NF-κB pathway stimulation leads to a sig-
nificant expression of the endothelial leukocyte adhesion molecule-1 (ELAM-1), IL-1β and
IL-6 [24]. ELAM-1 belongs to selectin families, which are cell adhesion molecules. ELAM-1
presence in POAG is a main factor for the onset of TM endothelial dysregulation [25]. In
glaucoma, a progressive loss of TM cells was observed, due to the combination of both
aging and stress conditions [26]. In HTG, the TM dysregulation involves both inflammation
and reprogramming mechanisms with OS damage and endothelial dysregulation [27]. IL-6,
IL-1, and TNF-alpha induce ECM reprogramming and alter cytoskeletal interactions in the
glaucomatous TM [25].

Elevation of the IOP, at the lamina cribrosa or the optic nerve head (ONH) step, in-
volves hypoperfusion and damages in reperfusion [28]. Increase in IOP is considered as a
major factor of retinal ganglion cells (RGCs) dysfunction, leading to a retrograde transport
blockade and the accumulation of neurotrophic factors at the lamina cribrosa instead of
reaching the RGC soma [29]. The etiology of POAG remains unclear but numerous risk
factors have been shown as causes of its onset, including increased IOP, aging, gender,
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family history, OS, systemic and ocular vascular factors, and inflammation [30]. The dys-
functions in the protein patterns shown in the aqueous humor (AH) of POAG patients is the
consequence of the progressive loss of TM integrity [31]. TM-derived proteins can damage
both the retina and optic nerve head (ONG) behavior in the posterior segment of the eye,
leading to apoptotic signaling for RGCs and their axons in the ONH. The TM is the most
sensitive tissue of the anterior segment of the eye to oxidative stress [32]. Glaucomatous TM
cells presented POAG-typical molecular modifications, including ECM accumulation, cell
death, dysfunction of the cytoskeleton, advanced senescence, NF-κB pathay activation and
inflammatory markers release [24,33]. These results could suggest that the IOP elevation
is associated to OS and degenerative processes affecting the human TM endothelial cells
(hTMEs). The chronic exposure of TM cells to OS leads to numerous changes in the lysoso-
mal pathway responsible for autophagia [34], as well as cell senescence with an increase
in senescence-associated-galactosidase [35]. OS leads to lysosomal dysfunctions and the
defective proteolytic activation of lysosomal enzymes with a subsequent diminution in
autophagic flux and the activation of cell senescence [8].

3. Oxidative Stress, Inflammation and Glutamate in Glaucoma

Pathogenic processes of the neurodegenerative mechanism lead to the mechanical and
vascular stress enhancing mitochondrial dysregulation, chronic oxidative stress (OS) and
metabolic stress [36,37], excitotoxicity [38], and neuro-inflammation [39,40]. OS and cell
senescence are increased in the aging retina [41,42] and are considered as the main glaucoma
risk factors. In the aging retina, OS leads to the stimulation of a para-inflammation [43].
Para-inflammation, in glaucoma, is characterized by a tissue adaptive response to noxious
stress [43]. However, a physiological stage of para-inflammation is needed to maintain
homeostasis but when tissue is exposed to a chronic stress, inflammation may have a
negative role and could be involved in both initiation and progression of the disease [44].
The deregulation of para-inflammation in the retina is a response to stress stimuli especially
chronic OS. However, excessive and uncontrolled para-inflammation could implicated
inflammatory responses with a release of cytokines/chemokines leading to neuroretina
damages [45]. Para-inflammatory dysregulation could be associated to TM dysfunction
and increased resistance to aqueous outflow, the main cause of increased IOP in POAG [8].

The mechanisms of reactive oxygen species (ROS) production are activated in several
pathological conditions of the retina, such as glaucoma, occlusion of the central artery
of the retina and the age-macular degeneration. They are enzymes, including the nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase, the cytochrome P450, the
mitochondrial cytochrome oxidase, the xanthine oxidoreductase, and the eNOS decoupled,
catalyzing the stimulation of ROS production in the vascular system tissues [46,47]. OS
diminishes BH4 bioavailability, but increases BH2, which possessing cofactor activity to
compete with BH4 for enhancing eNOS [48].

The TM was the main pathological region of PAOG [49]. IOP can be control by
the balance between the production and out flow of the aqueous humor. The TM is
composed by layers of trabecular beams and surrounded by elastic fibers, fibronectin and
laminin. Abnormalities of the ECM are involved in high IOP [50]. Recently, the WNT/β-
catenin pathway have been found to be associated with the development of glaucoma in
the TM [51].

To date, the visual loss processes are not entirely elucidated in glaucoma, the ROS
production plays an important role in its development [52]. ROS production rates are
increased in patients with glaucoma in the acute mood but also in the blood serum [53]. In
retinal arteries, a moderately increased IOP leads to ROS production, activation of NOX2
expression, and endothelial dysfunction, leading to the idea of IOP stimulation can damage
the vascular function of the retina [54]. Nevertheless, some pathogenic mechanisms are
linked to glaucoma, including glutamate excitotoxicity [55], which are not necessarily
associated with the elevated levels of IOP [52]. It seems that the death of RGCs during
a glaucoma lesion stimulates ROS production in vitro [56]. It has been shown that the
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ROS production controls the immune response by stimulating the action of antigen glial
cells [56]. ROS production affects the retina, and increase the IOP to induce a dysfunction of
the support glia, which facilitates the secondary degeneration of the RGCs in glaucoma [57].
The glial cells produced by ROS that affect the retina, and the PIO elevated to induce a
dysfunction of the support glide, which facilitates the secondary degeneration of the CGR
in the glaucoma [57].

The immune system is controlled by numerous inflammatory factors, including tu-
mor necrosis factor α (TNF-α), interleukin-6 (IL-6), vascular endothelial growth factor
(VEGF) and tumor growth factor-β (TGF-β) [58]. Inflammation leads to the stimulation
of cyclooxygenase 2 (COX-2) [59]. Several cytokines (TNF-α, IL-1) stimulate COX-2 [60].
COX-2 activates ROS production [59,61]. The nuclear factor-κB (NF-κB) pathway can
activate numerous factors leading to COX-2 and inducible nitric oxide synthase (iNOS)
over-expressions [62]. Numerous findings have presented that NF-κB pathway can activate
the expression of both TNF-α, IL-6, IL-8, STAT3, COX-2, BCL-2 (B-cell lymphoma 2), metal-
loproteinases (MMPs), VEGF [62], and then the overstimulation of the ROS production [63].
Moreover, iNOS is stimulated during chronic inflammation [64].

Numerous studies have presented the mechanism by which OS can activate chronic
inflammation [65]. The imbalance caused by OS involves damages of signaling in cells [66].
ROS have a main role both upstream and downstream of NF-κB and TNF-α pathways.
The hydroxyl radical is the main harmful of all the ROS. A vicious circle has been observed
between ROS and these pathways. ROS are controlled by the NOX system. Furthermore,
the modified proteins by ROS may involve the enhancement of the auto-immune response
to activate TNF-α and NOX [67]. Nuclear factor erythroid-2 related factor 2 (Nrf2) is
mainly associated to OS and inflammation [65]. Nrf2 is a transcription factor binding to
the antioxidant response element (ARE) [68]. Numerous studies have shown that Nrf2
could have an anti-inflammatory role through the regulation of MAPK, NF-κB, and PI3K
pathways [69]. Then, Nrf2 could have a main action against OS damages [70]. Moreover,
evidence also have shown that mitochondrial dysfunction could have a significant action
in cancer processes [65].

Glutamate is an amino-acid responsible for the brain’s primary excitatory neurotrans-
mission. Glutamate is considered as the main neurotransmitter within the cortico-striatal-
thalamic circuit involved in OCD [71]. Glutamatergic neurons are embedded in every brain
circuit in comparison to dopamine and serotonin which are used by a small minority of
neural cells in the brain. Glutamate is the main excitatory neurotransmitter in brain and
is present in more than 50% of synapses. This signaling plays a major role for neuronal
plasticity, memory, and learning [72]. Rapid neurotoxicity enhanced by neuronal excito-
toxin has been observed with abnormal glutamate levels [73]. In neurons, glutamate is
stored in synaptic vesicles from which it is released. Glutamate release increases glutamate
concentration in the synaptic cleft to bind ionotropic glutamate receptors. SLC1A1 encodes
for the neuronal excitatory Na+-dependent amino acid transporter 3 (EAAT3). EAAT1
and EAAT2 are the main astrocyte glutamate transporters whereas EAAT3 is the major
neuronal glutamate transporter. Glutamate is converted into glutamine in astrocytes and
released. Then, glutamine is take up by neurons to be re-converted into glutamate [74]. The
role of the EAAT3 is to control glutamate spillover which affects pre-synaptic N-methyl-D-
asparate (NMDA) and metabotropic glutamate receptors activity [75,76]. EAAT3 activity is
dysregulated by the overexpression of GSK-3β [77].

In glaucoma, the glutamate pathway dysregulation may enhance RGC death and has
been shown to be controlled by the NMDA receptor that, due to its higher Ca2+ permeabil-
ity, could have a great affinity for glutamate and a slower inactivation [78,79]. In retinal
neurodegeneration, the glutamate excitotoxicity is involved in the mtDNA damage or DNA
oxidation–related mitochondrial dysfunction [80]. Glutamate excitotoxicity activation in
the excitatory signaling leading to neuronal cell death by high levels of glutamate and the
over-stimulation of NMDA receptors. The excitotoxic damages to RGCs may be enhanced
by the augmentation of glutamate synthesis or the diminution of glutamate clearance [81].
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4. WNT/β-Catenin Pathway

The WNT name is derived from Wingless drosophila melanogaster and its mouse
homolog Int. WNT/β-catenin pathway is implicated in several mechanisms and controlling
signaling, including embryogenesis, cell proliferation, migration and polarity, apoptosis,
and organogenesis [82]. Nevertheless, during several pathological diseases, the WNT/β-
catenin pathway can be altered, including inflammation, metabolic, neurological and
psychiatric disorders, fibrosis and cancer processes [83].

The WNT pathway belongs to the family of secreted lipid-modified glycoproteins [84].
WNT ligands are produced by neurons and immune cells localized in the CNS [85]. WNT
pathway dysfunction could affect numerous neurodegenerative pathologies [86–90]. The
WNT pathway has a main stage called as the β-catenin/T-cell factor/lymphoid enhancer
factor (TCF/LEF). The cytoplasmic accumulation of β-catenin is modulated by the destruc-
tion complex AXIN, tumor suppressor adenomatous polyposis coli (APC), and glycogen
synthase kinase-3 (GSK-3β). With absence of WNT ligands, the destruction complex has a
role in the hyper-phosphorylation of the cytoplasmic β-catenin and leads to its proteasomal
destruction. Nevertheless, in their presence, the WNT ligands bind to Frizzled (FZL) and
LDL receptor-related protein 5/6 (LRP 5/6) to interrupt the destruction complex and
prevents β-catenin degradation into the proteasome. β-catenin translocates to the nucleus
to interact with the TCF/LEF. This stimulates WNT target genes [91–93] (Figure 1).
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Figure 1. Activated and Inactivated WNT pathway. APC: adenomatous polyposis coli; CK-1: casein
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Glycogen synthase kinase-3β (GSK-3β) is one of the major inhibitors of the WNT/β-
catenin pathway [94–99]. As an intracellular serine-threonine kinase, GSK-3β is a major
negative controller of the WNT signaling [100]. GSK-3β is implicated in the control of
numerous kinds of pathophysiological pathways, including cell membrane signaling, cell
polarity, and inflammation [101–103]. GSK-3β interacts by downregulating the cytoplasmic
β-catenin and stabilizing it to enhance its nuclear migration. Inflammation is an age-related
mechanism correlated with the activation of GSK-3β pathway and the diminution of the
WNT/β-catenin pathway [104].

Recent studies have observed that glaucoma patients presented an activation of the
GSK-3β pathway and its downregulation may be an interesting therapy target [105,106].
Dysregulation of GSK-3β is implicated in the pathogenesis of numerous pathologies, such
as neuropsychiatric disorders [107]. GSK-3β is a regulator of numerous signaling including
inflammation, neuronal polarity, or either cell membrane signaling [102]. GSK3β is known
to be the major inhibitor of the canonical WNT/β-catenin pathway [98,108–112].
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WNT/β-Catenin Pathway in Glaucoma

Recent findings have presented that the WNT/β-catenin pathway is involved in
the pathophysiology of TM cells and that this pathway could serves as a regulator of
IOP [113]. Secreted frizzled-related protein 1 (sFRP1), a WNT inhibitor, is stimulated
in the glaucomatous TM, and the exogenous sFRP1 implicates high IOP [114,115]. In
sFRP1-perfused eyes, the level of β-catenin was downregulated [51]. sFRP1 activity is
correlated with cell stiffness [115]. TM cells possess several responses to the stimulus
of different concentrations of sFRP1 [115]. It has been shown that sFRP1 is activated in
normal TM cells grown on substrates activating the stiffness of the glaucomatous TM. The
augmentation of stiffness of the TM implicates the aqueous humor out flow resistance
and lead to IOP elevation [115]. Furthermore, the GSK3β, can diminish the activity of the
WNT/β-catenin pathway and lead to ocular hypertension in association with sFRP1 [114].
It has been shown that there may be two effects of WNT in glaucoma [113]. The glaucoma
gene myocilin (MYOC) has been shown to be a regulator of WNT/β-catenin pathway [116].
Nevertheless, the damaging effects of MYOC mutation on the WNT pathway remain
unclear in the TM. The aqueous humor out flow resistance is affected by the change in
adhesion junctions and cell contact [113]. The WNT/β-catenin pathway could be a novel
target for the therapy of glaucoma [117]. Numerous WNT target genes are expressed in
the TM, and the WNT ligand WNT3a is disrupted [113,114]. The over-activation of both
sFRP1 or Dkk1 can lead to the augmentation of IOP in perfusion-cultured eyes [113,114].
Furthermore, the co-therapy with a small-molecule WNT pathway stimulator can diminish
sFRP1-induced OHT in eyes. The stimulation of WNT/β-catenin pathway in the TM using
lithium chloride decreases the production of some ECM and matricellular proteins [19,118].
WNT/β-catenin pathway and K-cadherin are main regulator of the IOP, and the decrease
of these pathways can elevate the IOP in glaucoma [119]. Recent findings have presented
that activation of the WNT/β-catenin pathway increases the fibrosis-associated proteins in
the TM and that the POAG-associated WNT antagonist sFRP1 activates ECM deposition,
TM cell stiffness [115] and IOP [113,114]. Furthermore, recent studies have presented that
the WNT/β-catenin may control TM homeostasis and IOP by a cross-inhibit circle with
TGF-β signaling [118].

5. Lithium and AAPs in Glaucoma
5.1. Lithium in Glaucoma

Very few studies have investigated the actions of lithium in glaucoma. Lithium can
act through several intracellular signaling including GSK-3β [120,121]. Its therapeutic
effects are observed after a long-term of administration. Lithium can protect cells against
several pathways including glutamate and deprivation of serum and nerve growth fac-
tors [120]. Lithium acts on RGCs to enhance neuronal survival and axonal regeneration at
the treatment concentrations (0.5–1.2 mM) [17]. Lithium may be used a treatment drug to
act on retinal and optic nerve neurodegeneration, such as glaucoma and RGC loss [17,122].
Numerous findings have shown that high doses of lithium may lead to irreversible neuro-
toxicity damages [123]. Excessive intake or impaired excretion may be the consequence of
lithium accumulation. Lithium is mainly susceptible to be accumulated in bone, muscle,
liver, thyroid, and kidney [124]. Dehydration, febrile illness, or gastrointestinal loss may be
involved by increased lithium levels in serum [125]. Renal toxicity is mainly common in
people with chronic lithium therapy with nephrogenic diabetes insipidus [126]. Neurologic
effects are hyperreflexia, nystagmus, or ataxia and remains mostly reversible [125]. Other
troubles are reversible cardiovascular effects (QT prolongation, intraventricular conduction
defects) [127], gastrointestinal effects [128], and endocrine effects [129]. But, low doses of
lithium are correlated with lower side-effects [130].

Lithium induces Bcl-2 transcription in retinas. Bcl-2 is a main controller for the reg-
ulation of both neural survival and axonal regeneration [131]. Moreover, the mechanism
of Bcl-2 control of apoptosis [132]. Lithium can stimulate the PI3K/Akt pathway to up-
regulate the expression of Bcl-2 [90]. Recent findings have shown that neuroprotection
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by lithium can occur through inhibition of the NMDA receptor and glutamate-induced
AKT activity [133]. Lithium downregulates DRP1 through GSK3-β inhibition, to reduce
mitochondrial fission [105]. Excessive mitochondrial fission can lead to the dysregulation
of the electron transport chain and oxidative phosphorylation, leading to apoptosis [134].
Moreover, lithium promotes RGCs survival and axon regeneration [17,135]. Several me-
diators, including N-methyl-D-aspartate receptors, PI3K/Akt pathway, cytoprotective
Bcl-2, and GSK-3β are implicated in the process underlying lithium-induced neuroprotec-
tion [136]. Nevertheless, the underlying mechanisms have not been fully elucidated and
remain unknown.

5.2. AAPs in Glaucoma

Second generation antipsychotic drugs (also called AAPs) are known for their cardio-
vascular side effects including hypotension by the alpha 1 adrenoceptor blockage [137].
The alpha 1 adrenoceptor, responsible for vasoconstriction, have been found to have
several subtypes such as alpha 1A, 1B, and 1D [138]. Alpha 1A receptor can produce a
positive inotropic effect leading to blood vessel constriction. Alpha 1A receptor is also
implicated in central hypotensive responses [138]. The AAPs, including clozapine [139],
quetiapine [140], and risperidone [141], were shown to lead to hypotension by inhibiting
alpha 1 receptors. Iloperidone, a AAP drug, presents binding affinity to serotoninergic
(5-HT2A, 5-HT6 and 5-HT7), dopaminergic (D2, D3 and D4) and adrenergic (α1 and α2C)
receptors in the CNS) [142]. Iloperidone can inhibit serotonergic 5HT2A receptor (J-13)
and adrenergic alpha 1A receptor [143,144] and is responsible for hypotension [145]. In
dose 0.03 mg/Kg i.p., Iloperidone present reduced blood pressure within the 10 min of
administration for animals [146]. Only drug-induced angle-closure glaucoma is of direct
relevance for AAPs administration.

As previously described, ROS production has a main role in glaucoma physiopathol-
ogy. Risperidone, which possesses a canonical antipsychotic pharmacological process,
can control the pro-inflammatory response [147,148] by decreasing OS in schizophrenic
patients [149]. This antipsychotic can diminish the OS and rescue synaptic plasticity in
PFC pyramidal cells from schizophrenia-like animal model [150]. Risperidone, can de-
crease iNOS expression and can stimulate SOD activity in brain areas [151]. This suggests
that risperidone and other AAPs can decrease OS in glaucoma [148,152]. Among AAPs,
clozapine and olanzapine can also decrease OS [148,153]. Nevertheless, few studies have
investigated the relationship between AAPs and the WNT/β-catenin pathway in glau-
coma by acting OS and thus, the ROS production. This possible mechanism should be
investigated in clinical studies.

Neurotrophins have a major role in cell survival. Several studies have shown that
IOP elevation is associated with the inhibition of the retrograde transport of brain-derived-
neurotrophic factor (BDNF) which contribute to loss of visual signal [154–156]. AAPs, such
as risperidone and clozapine, can decrease haloperidol-induced reduction of neurotrophins
and can increase BDNF levels [152]. Neurotrophins can control different pathways influ-
encing the activities of GSK3-β and PI3K/Akt pathway [157]. Olanzapine, quetiapine and
clozapine, can stimulate in PI3K/Akt pathway and ERK phosphorylation [158]. Recently,
clozapine has been shown to directly stimulate ERK phosphorylation in different cell
lines through a 5-HT2A receptor-mediated G protein independent pathway [159]. Thus,
AAPs could activate neurogenesis. Clozapine can stimulate adult neurogenesis and neu-
ronal survival in hippocampus and PFC regions [160]. Similar to clozapine, other AAPs
like quetiapine, olanzapine and aripiprazole have also been shown to increase neural
proliferation [161].

Antipsychotics may lead to an added risk of developing POAG, but only in predis-
posed eyes. Moreover, topiramate has been frequently associated with numerous ocular
symptoms, such as acquired myopia and POAG [162]. Unfortunately, drug package inserts
are often confusing for clinicians and patients; they simply state “glaucoma” as a contra-
indication without further detail [163]. At this time, only a high dose of antipsychotics
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with high level of anticholinergic and antiadrenergic mechanisms could be a risk factor
for angle-closure glaucoma [162]. In comparison, antipsychotics have weaker actions on
ocular smooth muscle compared to tricyclic antidepressant and no reports in literacy have
shown antipsychotic-induced-angle-closure glaucoma [162]. Muscarinic receptors have
been inhibited in glaucoma and lead to the impairment of the visual cortex [164,165]. Nev-
ertheless, many studies have shown that many AAPs may have an antimuscarinic action
and could participate in the enhancement of glaucoma. Clozapine and olanzapine present
high affinity for the muscarinic receptors by inhibiting it and present an anticholinergic
activity [166]. By these mechanisms, AAPs may exacerbate glaucoma process [167]. Thus,
the different actions of the AAPs by downregulating both OS and neurotrophins could
be unbalanced by their negative role on the muscarinic receptors and may explain that
psychotropic medications generally do not affect glaucomatous conditions [162].

6. Activation of the Canonical WNT Pathway by Lithium: A Potential Therapeutic Strategy

The dysregulation of GSK-3β is implicated in the pathogenesis of numerous patholo-
gies, such as neuropsychiatric disorders and neurodegenerative diseases [107]. GSK-3β
is a controller of numerous pathways including inflammation, neuronal polarity or cell
membrane pathways [102]. GSK3β is one of the main inhibitors of the canonical WNT/β-
catenin pathway [108]. GSK-3β downregulates the canonical WNT/β-catenin pathway
by inhibiting β-catenin cytosolic stabilization and its translocation in the nucleus [168].
Moreover, several studies have shown a link between neuro-inflammation and the aug-
mentation of the GSK-3β pathway and in parallel the diminution of the WNT/β-catenin
pathway and the PI3K/Akt pathway [94].

Lithium at concentrations of 1 to 2 mM could downregulate GSK-3β activity [169–171].
Lithium diminishes GSK-3β activity through the increase of the inhibitory phosphorylation
of GSK3β and by activating the Akt signaling. The stimulation of Akt pathway controls
forkhead bow class O (FOXO), Bcl-2 associated death protein (Bad) (a pro-apoptotic protein
of the Bcl-2 family) [172,173].

Therapeutic concentrations of the GSK-3β inhibitor lithium involves to the augmenta-
tion in β-catenin levels [174,175] and then leads to β-catenin transcriptional activity [11,176].
In mouse brains, the activation of β-catenin levels could have anti-depressant-like actions
of lithium [177] whereas the inhibition of β-catenin implicate a depression-like pheno-
type [178,179].

7. Lithium and the Different Altered Pathways Involved in Glaucoma

No studies have directly focused on the interest of lithium in glaucoma by targeting
the OS. However, the energy metabolisms implicated in OS are mainly controlled by the
intracellular FOXO transcription factors (FOXO1, 3a, 4) [180]. The interaction between
β-catenin and FOXO transcription factors can lead to cell quiescence and cell cycle stop.
B-catenin inhibits its transcriptional complex with TCF/LEF by interacting with FOXO-
induced ROS [181]. β-catenin does not translocate to the nucleus and accumulates in the
cytoplasm to inactivate the WNT/β-catenin pathway [182,183]. Some studies have shown
that lithium can diminish FOXO3a transcriptional activity and can diminish the level of
active FOXO3a [184]. Thus, through the downregulation of GSK3-β pathway, stimulating
the WNT/β-catenin pathway and diminishing the FOXO, lithium may participate to the
reduction of OS (Figure 2).
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Figure 2. Underlying molecular mechanisms of lithium actions in glaucoma. BDNF: brain-derived
neurotrophic factor; FOXO: forkhead box class O; GSK-3β: glycogen synthase kinase-3β; LRP 5/6:
low-density lipoprotein receptor-related protein 5/6; NF-κB: nuclear factor-kappa B; PI3K-Akt:
phosphatidylinositol 3-kinase-protein kinase B; TrkB: tropomyosin receptor kinase B.

Lithium can activate both Bcl2 and BNDF to diminish the excitotoxicity glutamate
pathway. By inactivating GSK3-β, lithium can upregulate the WNT pathway leading to
the diminution of FOXO and then, to reduce the oxidative stress. By activating the WNT
pathway and then the PI3K/Akt pathway, lithium can reduce inflammation by decreasing
the expression of NF-kB pathway and PPARγ.

Moreover, numerous in vitro studies have presented that lithium administration may
downregulate hydrogen peroxide-induced cell death as well as obstruct lipid peroxidation
and protein oxidation in cortical cells [185–190]. Furthermore, lithium can act as an anti-
oxidant by increasing CHS levels in neurons of rat dopaminergic N27 [186,190].

7.1. Lithium and Inflammation

By inhibiting the GSK-3β activity and thus increasing the WNT/β-catenin path-
way, the lithium administration could implicate a decrease of the neuro-inflammation
by controlling the NF-κB pathway. The stimulation of the WNT pathway cascade di-
minishes inflammation and involves the neuroprotection through interactions between
microglia/macrophages and astrocytes [191,192].

Numerous findings have presented a negative interplay between WNT/β-catenin
pathway and NF-κB pathway [193]. The NF-κB transcription factor family belongs of five
members in the cytosol under non-activated conditions: NF-κB1 (p50/p105), NF-κB 2
(p52/p100), RelA (p65), RelB and c-Rel [194]. B-catenin can complex with RelA and p50 to
diminish the activity of the NF-κB pathway [195]. Furthermore, through the interaction
with the PI3K, β-catenin can diminish the activity of NF-κB pathway [196]. This inhibitory
role of β-catenin on NF-κB pathway activity was shown in several cell types, including
fibroblasts, epithelial cells, hepatocytes and osteoblasts [193]. Moreover, the stimulation
of GSK-3β inhibits the β-catenin and activates the NF-κB pathway [197]. The potential
protective role of β-catenin was due to the stimulation of PI3K/Akt pathway and thus the
diminution of TLR4-driven inflammatory response in hepatocytes [198]. NF-κB pathway
stimulation inhibits the complex β-catenin/TCF/LEF by the activation of LZTS2 in cancer
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cells [199]. DKK1, a WNT inhibitor, was a target gene of the NF-κB pathway leading to a
negative interplay to decrease the β-catenin signaling [200] (Figure 2).

A recent study has shown that the WNT pathway was one of the major process
of action of lithium in adipose cells, and this interaction is done by the diminution of
PPARγ expression [201]. PPARs are ligand-activated transcription factors which bind PPRE
(PPAR-response elements). PPARs are involved in several disease processes, including cell
differentiation, proteins metabolism, lipids metabolism, carcinogenesis [202,203], adipocyte
differentiation, insulin sensitivity, and inflammation [204,205]. PPARγ ligands, such as
thiazolidinediones (TZDs), are able to diminish inflammation process [206].

A negative interplay was well described between PPARγ and the WNT path-
way [108,207–209]. The PI3K/Akt pathway, which is activated by β-catenin [112,210],
interacts by phosphorylating GSK-3β to negatively control the expression of PPARγ [211].
PPARγ agonists diminish β-catenin expression through the activation of GSK-3β [212].
Moreover, PPARγ agonists stimulate Dickkopf-1 (DKK1) to diminish the canonical
WNT/β-catenin pathway and then to downregulate fibroblasts differentiation [213].
Furthermore, PPARγ agonists activate GSK-3β to decrease β-catenin expression [212].

7.2. Lithium and Glutamatergic Pathway

Lithium has been also associated with an influence in levels of pro-apoptotic proteins.
Bax, named Bcl-2 associated C protein, is a key modulator promoting apoptosis by binding
to and antagonizing the Bcl-2 protein. The tumor suppressor protein, p53, targets Bcl-2 and
Bax and then promotes growth arrests and cell death in response to cell damage [214].

Several studies have demonstrated that the neuroprotective effects of lithium could
be attributed to increased Bcl-2 levels. Indeed, lithium therapy of cultured cerebellar
granule cells increased mRNA and protein levels of Bcl-2, the Bcl-2/Bax protein level ration
increased by 5-fold after treatment duration for 5 to 7 days [122]. The stimulation in Bcl-2
expression involves neurogenesis in the hippocampus and entorhinal cortex in mice by the
stimulation of axon diameters and neurite growth on the CA3 area of the hippocampus and
increase myelination in the entorhinal cortex [215]. Lithium can stimulate anti-apoptotic-
increasing Bcl-2 levels and can reduce Bax activity [216]. The phosphorylation of Bcl-2
at serine 70 is required for a complete anti-apoptotic action [217] and lithium have this
ability [218]. Lithium inhibits Bcl-2 dephosphorylation and caspase-2 activation through
the reduction of the protein phosphatase-2A activity [218] (Figure 2).

Glutamate excitotoxicity has been associated with the upregulation of Bax and p53 and
the diminution of Bcl-2 [122]. The apoptosis role of the glutamate was associated with the
stimulation of activator protein-1 (AP-1) stimulated by the activation of c-Jun N-terminal
kinase (JNK) and p38 mitogen-activated protein kinase (MAP kinase) and phosphorylation
of c-Jun and p53 [219].

Through the diminution of the GSK-3β activity, lithium activates as a powerful con-
troller of both EAAT3 and NMDA receptors [220]. Furthermore, a direct possible way may
be the diminution of presynaptic NMDA receptors and then the stimulation of postsynaptic
AMPA receptors by glutamate release. This process is followed by the stimulation of the
influx of calcium and secretion of brain-derived neurotrophic factor (BDNF). Lithium can
activate the release of the excitatory neurotransmitter and glutamate, from cerebral cortex
slices [221]. This release was associated by the stimulation of inositol 1,4,5-trisphosphate
[Ins(1,4,5)P3] accumulation. The stimulation in Ins(1,4,5)P3 accumulation was involved by
the selective stimulation of the N-methyl-d-aspartate (NMDA) receptor/channel by gluta-
mate. The upregulation of the NMDA receptor is known to lead in increase Ins(1,4,5)P3
accumulation [222]. Then, BDNF activates the receptor tyrosine kinase B (TrkB) leading to
neuronal survival and differentiation [223].

The stimulation of BDNF-TrkB pathway activates the Akt/mTOR pathway leading
to the activation of the WNT/β-catenin pathway and to the enhancement of synaptic pro-
teins [224]. Few therapeutic levels of lithium stimulate the BDNF-TrkB pathway and then
the Akt/mTOR pathway to protect neurons from glutamate excitotoxicity [225]. Lithium
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downregulates excessive glutamate, NMDA receptor-mediated calcium influx in neurons,
and diminishes NR2B subunit tyrosine phosphorylation by the Src/Fyn kinase [226].

PPARγ antagonists can stop the stimulation of PPARγ DNA binding activity and
antioxidant enzymatic activities (SOD) downregulating the protection of PPARγ activation
in OGD-exposed neurons [227]. Other processes by which these PPARγ agonists can
prevent OS include a diminution in iNOS activity, NFκB blockade, inhibition of TNF-α
release, or activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) [228]. By the
negative crosstalk between WNT and PPARγ, Lithium administration by inhibiting the
GSK-3β could act as a PPARγ antagonist and leads to increase the WNT pathway resulting
in the diminution of oxidative stress.

8. Conclusions

Currently, few investigations have studied lithium as a possible alternative therapeutic
way to treat glaucoma patients. Nevertheless, lithium, in low doses, appears to be helpful
for treating glaucoma by targeting oxidative stress, inflammation, and the glutamatergic
pathway. The action of lithium is mainly involved by its negative interaction with GSK-3β,
the main inhibitor of the WNT/β-catenin pathway. In glaucoma, the WNT/β-catenin is
downregulated to allow the stimulation of oxidative stress, inflammation, and glutamater-
gic pathway. Stimulating the WNT/β pathway, through the inhibition of GSK-3β, lithium,
could be an innovative therapeutic way in glaucoma. In current clinical practice, lithium
is coupled with AAPs. AAPs have a hypotension effect but little impact on the glaucoma
process. Future prospective studies should focus on lithium and its different actions in
glaucoma and the possible effects of the association lithium-AAPs in this disease.
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