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Abstract 26 

Despite intensive study, much remains unknown about the dynamics of seasonal influenza 27 
virus epidemic establishment and spread in the United States (US) each season. By 28 
reconstructing transmission lineages from seasonal influenza virus genomes collected in 29 
the US from 2014 to 2023, we show that most epidemics consisted of multiple distinct 30 
transmission lineages. Spread of these lineages exhibited strong spatiotemporal hierarchies 31 
and lineage size was correlated with timing of lineage establishment in the US. Mechanistic 32 
epidemic simulations suggest that mobility-driven competition between lineages 33 
determined the extent of individual lineages’ geographical spread. Based on 34 
phylogeographic analyses and epidemic simulations, lineage-specific movement patterns 35 
were dominated by human commuting behavior. These results suggest that given the 36 
locations of early-season epidemic sparks, the topology of inter-state human mobility 37 
yields repeatable patterns of which influenza viruses will circulate where, but the 38 
importance of short-term processes limits predictability of regional and national epidemics. 39 

Teaser 40 
 41 
Epidemics consist of multiple sub-epidemics that compete for susceptible hosts and 42 
spread due to the movement of commuters. 43 

  44 
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 2 

MAIN TEXT 45 
 46 
Introduction 47 
 48 

In the United States, seasonal influenza epidemics recur every year as the result of a 49 
complex hierarchy of transmission processes. Intercontinental viral migration, driven by 50 
global metapopulation dynamics, drives the initial early-season seeding of epidemics in 51 
the US (1–3). Following these initial epidemic sparks, inter-state patterns of human 52 
mobility disseminate viruses across the country (4–9), resulting in an interconnected 53 
network of local epidemics (10, 11). These epidemics vary substantially from year to 54 
year in their timing, size, and composition (12–14). Gaining a predictive understanding 55 
of the variables that shape the composition, timing and magnitude of these epidemics is a 56 
key public health target (15). Substantial efforts have been put into forecasting the timing 57 
of epidemic onset and epidemic peaks to aid public health planning (14, 16–21).  58 

 59 
Knowledge of the underlying transmission processes that give rise to epidemic 60 
establishment and subsequent spread is essential for a predictive understanding of 61 
epidemic characteristics (22, 23). For example, does peak-period epidemic activity arise 62 
from the gradual expansion of early-season transmission chains, or are epidemics the 63 
result of transmission chains that rapidly expanded when conditions became favorable 64 
for large-scale transmission? Similarly, do epidemics tend to comprise a single epidemic 65 
wave that sweeps across country, or rather do they consist of many co-circulating 66 
transmission lineages that jointly shape epidemics (24, 25)? Further questions remain 67 
regarding the underlying mobility drivers of viral spread, such as the roles of air travel 68 
and commuting in disseminating viruses country-wide (4–6, 26). The US forms a 69 
particularly compelling setting to explore fundamental questions about the determinants 70 
of influenza virus spread due to its geographical expanse, climatic variability and 71 
complex mobility networks.  72 

 73 
Most previous studies into seasonal influenza epidemic dynamics in the US have relied 74 
primarily on virological and syndromic surveillance data, such as pneumonia and 75 
influenza (P&I) mortality data or influenza-like illness (ILI) data (4–6). However, such 76 
data cannot effectively distinguish between distinct chains of transmission, potentially 77 
limiting the precision and specificity with which the underlying dynamics of epidemic 78 
establishment and viral migration can be reconstructed (4, 23). Hence, we turned to 79 
genomic data, collected during routine surveillance in the United States. By decomposing 80 
epidemics into contributions of individual transmission lineages and reconstructing their 81 
individual spread, we aimed to gain more fine-grained insight into the processes of 82 
epidemic establishment and spread. 83 

 84 
Results  85 
 86 

Influenza virus epidemics consist of many distinct co-circulating transmission lineages 87 
 88 

First, we characterized the transmission lineage structure of US seasonal influenza 89 
epidemics. We investigated whether epidemics tend to comprise many distinct co-90 
circulating transmission lineages that independently emerged in different states, or rather 91 
consist of a single dominant transmission lineage that propagates across the country. We 92 
analyzed 30,508 whole-genome seasonal influenza virus sequences from the 48 93 
contiguous states and the District of Columbia, collected during routine surveillance in 94 
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the United States from 2014 to 2023, the most recent period for which substantial whole-95 
genome sequences were available. In this period, all four influenza A subtypes/influenza 96 
B lineages (henceforth, subtypes) caused epidemic activity, but patterns of subtype 97 
dominance differed substantially from season to season (Fig. S1). To classify the viruses 98 
circulating in each season into transmission lineages, we phylogenetically grouped the 99 
viruses into clusters of viruses that exhibit a comb-like branching structure, suggestive of 100 
exponential spread (27). Given the exponential nature of influenza virus epidemics, we 101 
posit that groups of viruses with such a rapidly expanding branching structure plausibly 102 
represent groups of viruses that expanded from a single ancestral virus in the United 103 
States (Fig. 1A, S2-5). 104 

 105 

 106 
Fig. 1: Lineage structure of US seasonal influenza epidemics.  107 
(A) Phylogenies of six representative subtype-season pairs, with tips colored by 108 
identified transmission lineage. The shaded grey area corresponds to the cumulative 109 
proportion of nation-wide positive tests in public health laboratories of the corresponding 110 
subtype at each point in time. 111 
(B) The size distribution of lineages by season and subtype. Each line represents the 112 
cumulative proportion of sequences that is accounted for by a number of lineages on the 113 
x-axis. Each line corresponds to an individual season, for an individual subtype. 114 
(C) The number of lineages across that accounts for >5% of sequences in a season-115 
subtype in at least the number of states on the x-axis, by subtype. 116 
(D) Relationship between the first collection date of virus in a lineage and the lineage’s  117 
country-wide size normalized by state. Lineage sampling dates were computed relative to 118 
the timing of nation-wide epidemic onset, which was defined as the first week in which 119 
>5% of the season’s cumulative positive tests had been collected. 120 
(E) Relationship between the timing of establishment of substantial circulation of a 121 
lineage and its country-wide size normalized by state. Lineage establishment timing was 122 
computed relative to nation-wide epidemic onset analogous to (D). 123 

124 
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Using this procedure, we clustered 81.2% of sequences into 3,842 lineages of at least two 125 
viruses. In most seasons, a relatively small number of transmission lineages accounted 126 
for the bulk of sequenced viruses (Fig. 1B), with the median minimum number of 127 
lineages that together accounted for at least 50% of sequences amounting to 5 lineages 128 
(range 1-13) across all seasons for subtypes that accounted for >10% of positive tests in 129 
the respective season. The degree of lineage diversity differed substantially across 130 
seasons (Fig. 1B). For example, in the 2015/2016 A/H1N1pdm09 epidemic, a single 131 
transmission lineage accounted for >50% of sequenced viruses, normalized across states. 132 
In contrast, in the 2016/2017 A/H3N2 season, the largest lineage accounted for only 133 
6.4% of sequenced viruses. Lineage structure was evident for both circulating influenza 134 
A virus subtypes and both influenza B virus lineages, though transmission lineage 135 
clustering results are likely more error-prone for influenza B viruses given their lower 136 
evolutionary rate (28), particularly in seasons that saw relatively little circulation and 137 
were less densely sampled.  138 
 139 
Consistent with the lineage size distribution, most transmission lineages were confined to 140 
a relatively small number of states, with a small proportion of lineages spreading widely 141 
across the country (Fig. 1C): among the 1,104 identified transmission lineages that 142 
accounted for at least 5% of sequences in a season in at least one state, 144 (13.0%) 143 
lineages did so in at least 10 states, and 27 (2.4%) did so in at least 25. Patterns of lineage 144 
diversity at the state level mirrored those at the national level, with some seasons seeing 145 
very high within-state lineage diversity (e.g. 2018/2019 A/H1N1pdm09, median state-146 
wise Shannon entropy of lineage composition = 0.76, inter-quartile range 0.68-0.82), 147 
whereas in other seasons a few lineages dominated state-level epidemics (e.g. 2018/2019 148 
A/H3N2, median Shannon entropy = 0.44, inter-quartile range = 0.31-0.58). These 149 
results indicate that in most seasons, seasonal influenza epidemics are the result of the 150 
co-circulation of multiple independent chains of transmission, consistent with previous 151 
studies into individual seasons, both at the national and state level (24, 25).  152 

 153 
Lineage size correlates with timing of establishment but not emergence 154 

 155 
Next, we investigated the factors that influence the extent to which any individual 156 
transmission lineage will spread country-wide. We hypothesized that onset timing would 157 
explain the substantial variation in lineage size, where the first lineages to emerge in any 158 
season, for any subtype, would be larger. Here, we defined lineage size as the proportion 159 
of sequences that a lineage accounts for in a season for a subtype across all states, where 160 
each state has an equal weight. However, across all subtypes and seasons, we found that 161 
a relationship between time of first sampling of a lineage and (log) lineage size was weak 162 
(Spearman r = -0.07, P = 0.024) (Fig. 1D). We observed the proliferation of some 163 
transmission lineages that were first sampled a substantial amount of time prior to onset 164 
of nation-wide epidemic activity, but many of the most successful lineages emerged and 165 
were first sampled relatively close in time to the ramp-up of national epidemic activity 166 
(Fig. 1D).  167 
 168 
For example, by the time of first sampling of the largest lineage in the highly severe (29) 169 
2017/2018 season (Fig. 1A, topmost lineage), >10% of all the season’s sequences had 170 
already been collected. Despite its relatively late emergence, the lineage accounted for 171 
>40% of sequences during peak epidemic periods following rapid expansion. These 172 
rapidly expanding lineages could in some cases descend from unsampled viruses that had 173 
circulated prior locally at low levels, but the fact that a single ancestral virus could 174 
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rapidly sweep to national dominance despite emerging at a time when many other 175 
transmission lineages already circulated suggests that early-season transmission 176 
processes are highly heterogeneous. Furthermore, the fact that the lineages dominating 177 
during peak epidemic periods often rapidly expanded around the time of epidemic onset, 178 
outcompeting co-circulating low-level transmission lineages, indicates that in many 179 
seasons very short-term epidemiological processes are crucial determinants of seasonal 180 
influenza epidemic dynamics. 181 

 182 
The weak correlation between timing of first lineage sampling and lineage size suggests 183 
that early-season transmission chains frequently go extinct before the onset of substantial 184 
epidemic activity. However, we hypothesized that if a lineage did cause substantial 185 
epidemic activity early on, it would be well-positioned to be successful country-wide. 186 
Correspondingly, we found that the timing of establishment of substantial epidemic 187 
activity of a transmission lineage correlated strongly with nation-wide lineage size 188 
(Spearman r = -0.53, P < 0.001) (Fig. 1E). Here, we defined the timing of lineage 189 
establishment as the first week in which the lineage accounted for substantial epidemic 190 
activity (i.e. at least 5% of total estimated incidence in the season; see Materials and 191 
Methods) in at least one state. The fact that the lineages that first established substantial 192 
epidemic activity somewhere in the US were more likely to be successful country-wide 193 
suggests that the states with the earliest epidemic onset have outsized contributions to 194 
nationwide epidemic lineage composition. 195 

 196 
Transmission lineages are highly spatially structured 197 

 198 
To investigate the extent to which transmission lineages are spatially structured, we 199 
computed the Bray-Curtis similarity index of epidemic transmission lineage 200 
compositions for all pairs of states. Here, states that more frequently sampled viruses 201 
belonging to the same transmission lineages have a higher similarity index. Aiming to 202 
identify communities of states that are more closely linked to one another than to other 203 
states, we performed hierarchical clustering on the similarity matrices. Qualitatively, this 204 
clustering recapitulated the geography of the United States, with relatively higher 205 
similarity for states within the same census region (Fig. 2A). Projecting the similarities 206 
among states onto a two-dimensional surface further recapitulated this spatial structure; 207 
for example, states belonging to the Northeast and Southeast appeared to form distinct 208 
clusters (Fig. 2B). However, the continuous distribution of states on the plane suggests 209 
states cannot consistently be classified into distinct communities, suggestive of 210 
substantial inter-regional mixing. 211 
 212 
Consistent with the states’ clustering by geography, we found that epidemics in states in 213 
closer geographic proximity more frequently comprised the same transmission lineages 214 
(Mantel test, P < 0.001) (Fig. 2C). The highest similarity indices were found for 215 
neighboring states (highest: MS-LA, MO-KS, GA-AL, NH-MA, UT-ID), with a 216 
neighboring state being the state with the highest similarity in 81% (34/42) of states 217 
included in the analysis. Stratifying by season and subtype, this correlation between 218 
distance and similarity (Mantel test, P < 0.01) was present in almost all (14/15) subtype-219 
season pairs that accounted for >10% of nation-wide positive tests in their respective 220 
season. Together, these results show that at the transmission lineage level, US seasonal 221 
influenza epidemics are highly spatially structured. 222 

 223 
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 224 
 225 

Fig. 2: Spatial structure of US seasonal influenza epidemics.  226 
(A) Complete-linkage hierarchical clustering of pairwise state-to-state transmission 227 
lineage composition Bray-Curtis similarities across all subtypes, colored by census 228 
region. 229 
(B) Multi-dimensional scaling plot of the pairwise lineage composition Bray-Curtis 230 
similarity among states, colored by census region. 231 
(C) Relationship between pairwise transmission lineage compositional similarity and 232 
pairwise centroid distance rank. Vertical lines show 50% CI for each value of rank 233 
similarity, line corresponds to LOESS fit to medians.  234 
(D) Examples of lineage spatiotemporal spread. In each map, circle size and color 235 
correspond to the relative size and establishment timing of the corresponding lineage in 236 
each state, respectively. Grey fill corresponds to unknown lineage establishment timing. 237 

 238 
To further investigate the spatiotemporal dynamics of viral spread, we reconstructed the 239 
spread of individual transmission lineages. We mapped the sampling dates of the viruses 240 
in each lineage to epidemiological data to quantify, in each state, 1) the relative size of 241 
each lineage, defined as the proportion of all viruses of that subtype that was accounted 242 
for by the lineage in that season; and 2) the week of lineage establishment, defined as the 243 
first week the lineage accounted for substantial levels of circulation in that state (i.e. at 244 
least 5% of total estimated incidence in the season; see Materials and Methods). We 245 
visualized lineage spread by projecting the timing of establishment and size of the 246 
lineage in each state on a map. These visualizations revealed a striking landscape of 247 
seasonal influenza spatial spread at the transmission lineage level, with examples for a 248 
geographically and temporally representative set of lineages shown in Fig. 2D. We 249 
identified instances of lineage emergence from all regions of the US, each with distinct 250 
signatures of spread. Across seasons and subtypes, many lineages exhibited a radial 251 
spatiotemporal progression and were highly regional (e.g. I, V, VI, VII, Fig. 2D); other 252 
lineages saw rapid cross-country spread (e.g. II, III, XII, Fig. 2D).  253 

  254 
Consistent source-sink dynamics are absent across seasons and subtypes 255 

 256 
The above results suggest that lineages can potentially emerge in any region of the 257 
United States. We sought to more rigorously investigate seasonal influenza virus source-258 
sink dynamics at the transmission lineage level for all seasons and subtypes by 259 
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identifying each lineage’s most likely origin state. We performed discrete trait 260 
phylogeographic reconstructions for each lineage individually in BEAST (30), 261 
identifying the Health & Human Services (HHS) region that represented the most likely 262 
region of initial expansion for each of the 262 transmission lineages that accounted for 263 
>0.5% of sampled viruses, normalized by state, in their respective season. To ensure our 264 
results were robust to differences in sampling across regions, we performed these 265 
analyses with two distinct subsampling strategies: first, one where the number of 266 
sequences included for each HHS region depended on its population size; and second, 267 
one with a constant number of sequences across HHS regions. We found substantial 268 
season-to-season variation for the most probable origin regions for successful lineages. 269 
Of the seven transmission lineages that accounted for >10% of sequences in a single 270 
season, normalized across states, three likely first established in the South (HHS regions 271 
4 & 6; e.g. lineages II & XII, Fig. 2D), one likely emerged in the West (HHS region 9; 272 
lineage III, Fig. 2D), one in the Midwest (HHS regions 7 & 5; lineage XI, Fig. 2D), one 273 
in the Northeast (HHS region 1), and one could not consistently be attributed to a single 274 
region across both sampling strategies. 275 
 276 
With the aim of identifying regional variation in source-sink dynamics, we computed 277 
state-specific origin profiles that quantify the role of each HHS region as the region of 278 
initial lineage expansion of sampled viruses in each state. These profiles differed 279 
substantially across states (Fig. S6, S7). For example, averaged across both subsampling 280 
strategies, the proportion of sequences reconstructed to coalesce to epidemic expansions 281 
in HHS region 4, encompassing most of the Southeast, ranged from 39.3% in South 282 
Carolina (HHS region 4) and 27.4% in Arkansas (HHS region 6) to 13.0% in Arizona 283 
(HHS region 8). Similarly, lineages expanding in HHS region 10, encompassing the 284 
Pacific Northwest, accounted for 15.3% of sampled viruses in Idaho (HHS region 10), 285 
10.7% in North Dakota (HHS region 8), and only 2.7% in Arkansas (HHS region 6). 286 
States in closer geographic proximity saw more similar origin profiles, even if they 287 
corresponded to different HHS regions (Mantel test, P < 0.001). Across all states, a 288 
relatively limited proportion of viruses corresponded to lineages that originated from the 289 
state’s own HHS region (median 17.3%, range 11.4%-29.8% for uniform subsampling 290 
strategy), suggesting a high degree of viral mixing at the national level. Importantly, 291 
origin profiles were strongly correlated across the two subsampling strategies (Spearman 292 
r = 0.81, P < 0.001). Together, these results suggest that influenza virus source-sink 293 
dynamics are highly heterogeneous, without consistent source regions of successful 294 
lineages, but are spatially structured.  295 

 296 
Mechanistic simulations suggest commuting flows drive viral spread 297 

 298 
Our analyses established a strong correlation between timing of lineage establishment 299 
and lineage size (Fig. 1E). However, this correlation does not account for a substantial 300 
portion of the observed variation in transmission lineage size. We hypothesized that 301 
differences in mobility flows, coupled to inter-lineage competition, could explain why 302 
some lineages spread widely following local establishment, whereas other lineages 303 
remain highly spatially constrained. Importantly, the reconstructed spread of individual 304 
lineages provided a vital ground truth which we could leverage to resolve long-standing 305 
questions regarding the underlying mobility determinants of influenza virus spread. 306 

 307 
The lineage competition hypothesis appears to explain lineage dynamics in the 308 
2018/2019 A/H3N2 season. The beginning of this season was dominated by 309 
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A/H1N1pdm09 viruses, but it also saw the rapid expansion of viruses of the A/H3N2 310 
subtype that were associated with decreased vaccine effectiveness (31). Phylogenetic 311 
analyses, integrated with epidemiological data, indicate that A/H3N2 circulation in this 312 
season was dominated by two lineages, appearing to emerge from Georgia (GA, lineage 313 
1) and Nebraska (NE, lineage 2), respectively (Fig. 3, left), each establishing swiftly as 314 
evidenced by a comb-like, rapid branching structure. Visualizations of the lineages’ 315 
distributions across states suggest that spread of the Nebraskan lineage was regional and 316 
radial, causing substantial epidemic activity mainly in the immediately surrounding states 317 
in a clear spatiotemporal hierarchy (Fig. 3, left). Conversely, the lineage from Georgia 318 
quickly spread to almost all states with a less prominent temporal hierarchy, although it 319 
appeared to arrive in neighboring states first. We hypothesized that competition from the 320 
Georgian lineage explained why spread of the Nebraskan lineage remained so regional. 321 
In turn, this would explain why the Georgian lineage failed to spread substantially in 322 
Nebraska and immediately surrounding states. 323 

 324 
 325 

 326 

Fig. 3: Mobility drivers of influenza virus spread.   327 
Phylogenies represents the 2018/2019 A/H3N2 season (left) and 2017/2018 328 
A/H1N1pdm09 season (right), with the two largest lineages labeled in each. For both 329 
seasons, the maps in the top row visualize the reconstructed spread of the labeled 330 
lineages, with size and color corresponding to lineage size and establishment timing, in 331 
each state, respectively. Middle maps show simulated spread of the two lineages for each 332 
of the two seasons, using commuting data, when initialized in their origin state in their 333 
likely origin week. Bottom maps are analogous to the middle maps but using air travel 334 
data instead of commuting data. Light grey circles represent the total proportion of 335 
sequences in that state that are accounted for by the lineages that were simulated, to 336 
account for the fact that simulations only incorporated a subset of all lineages; circles for 337 
the simulated lineages have their size scaled such that the sum of simulated lineages’ 338 
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sizes for each state is proportional to the proportion of sequences accounted for by the 339 
simulated lineages in that state (i.e., the light grey area). Dark grey fill corresponds to 340 
absence of an establishment week (for top row, potentially due to missing data), or 341 
establishment after the 15th week.  342 

 343 
To test the hypothesis that competitive interactions between lineages, coupled to 344 
mobility, drive lineage spread, we explored if we could reproduce the spread of these two 345 
lineages in mechanistic epidemic simulations. To do so, we used a metapopulation model 346 
that models viral spread between states in a susceptible-infected-recovered (SIR) 347 
epidemic framework. The model simulates the spread of multiple co-circulating lineages 348 
that compete for disease-susceptible individuals with perfect cross-immunity between 349 
transmission lineages. We initialized the simulations in the lineages’ respective 350 
establishment weeks, in their respective onset states (Georgia and Nebraska) and 351 
simulated forward in time to model the spread of the two lineages. By visualizing which 352 
of the two lineages would predominate in each state in the simulations, we could 353 
ascertain if we could reproduce their observed spread. To ascertain the predominant 354 
mobility drivers of viral spread, we parameterized rates of state-to-state mobility using 355 
either commuting flows, extracted from the US Census Bureau, or air travel data, 356 
extracted from the US Department of Transportation. 357 
 358 
When using rates of commuting to parameterize rates of inter-state travel, we could 359 
reproduce the observed spread of the two lineages with striking accuracy: the simulations 360 
recapitulated the radial spread from Nebraska, and the relative success of the lineage 361 
emerging from Georgia (Figure 3, left). The simple model of inter-lineage competition 362 
driven by commuting also explains why the lineage from Georgia failed to cause 363 
epidemic activity in the Nebraska and the immediately surrounding states. On the other 364 
hand, the correspondence to observed spread was very poor when using air travel flows, 365 
with an absence of substantial spread from Nebraska. Together, these mechanistic 366 
simulations suggest that commuting flows were the primary correlate of viral spread. 367 
These results also support the notion that competitive interactions between lineages, 368 
mediated by mobility flows, shape the distribution of lineages across states. 369 

 370 
Spatial segregation and limited competition allow lineages from small states to spread 371 
widely 372 

 373 
The 2018/2019 A/H3N2 season lends genome-informed credence to the conjectured 374 
gravity-like spread of seasonal influenza viruses (5), with a lineage originating from a 375 
populous, highly connected state (in this case, Georgia, population ~11 million) 376 
spreading quickly through strong long-range connections, while spread from a smaller 377 
state (Nebraska, population ~2 million) was slower and more local. Georgia’s high 378 
degree of connectivity and earlier onset allowed lineage 1 to spread to other states more 379 
rapidly than lineage 2, with its day of arrival in another state on average 42 days (IQR 380 
27-53) earlier than lineage 2’s in metapopulation simulations. Nevertheless, the 381 
substantial spread of the Nebraskan lineage shows that spatial segregation between 382 
lineages can allow a lineage emerging from a small state to proliferate, even if it co-383 
circulates with a lineage emerging from a more populous state, as long as it sees 384 
sufficiently early establishment and is spatially segregated from the lineage emerging 385 
from the larger state.  386 

 387 
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Our results suggests that by facilitating spread from less populous states, the short-range 388 
spatial coupling reflected in commuting flows is a key determinant of seasonal influenza 389 
virus spread. This notion is further supported in the 2017/2018 A/H1N1pdm09 season, in 390 
which the two largest lineages appeared to emerge in Mississippi (MS) and Oregon (OR), 391 
respectively (Fig. 3, right). When using commuting flows, the relative degree of spread 392 
of the two lineages could be reproduced. Despite its relatively small population, 393 
Mississippi’s high connectivity through commuting flows allowed lineage 1 to rapidly 394 
spread beyond local constraints. In contrast, due to Oregon’s relatively limited 395 
connectivity and the later establishment of lineage 2, competition from lineage 1 likely 396 
constrained the spread of those viruses to the Western United States. When using only air 397 
travel to parameterize inter-state mobility, the simulations strongly overestimated the 398 
degree of spread from Oregon relative to Mississippi, with too slow spread from 399 
Mississippi, compared to the ground truth (Fig. 3, right).  400 
 401 
Using counterfactual simulations, we explored how mobility interacts with establishment 402 
timing to competitively shape the spread of individual lineages. Under the baseline 403 
simulations for the 2018/2019 A/H3N2 season, lineage 2 accounted for >10% of 404 
circulation among the two lineages in 11 states. Simulations indicate that had lineage 2 405 
established in Nebraska four weeks later (with lineage 1’s establishment timing 406 
unchanged), lineage 2 would have accounted for >10% of circulation in only 4 states, 407 
constrained by competition from lineage 1. Conversely, if it had established four weeks 408 
earlier, lineage 2 would have been accounted for >10% of circulation in 37 states, 409 
spreading much more extensively (Fig. S8). Similarly, in the 2017/2018 A/H1N1pdm09 410 
season, later onset for lineage 2 would have constrained it to the Pacific Northwest, 411 
whereas earlier onset would have facilitated substantially more expansive spread (Fig. 412 
S9).  413 
 414 
Mobility patterns coupled to inter-lineage competition explain differences in lineages’ 415 
spread 416 

 417 
To further test the capacity of mobility-mediated inter-lineage competition to explain 418 
individual lineages’ spread, we performed in-depth investigations into the 2019/2020 419 
B/Victoria season, which was characterized by anomalously high amounts of epidemic 420 
activity (32) and a highly spatially diverse lineage composition, with the largest lineages 421 
appearing to originate in or in the vicinity of California (lineage 1), Florida (lineage 2), 422 
Texas (lineage 3), Louisiana (lineage 4), Nevada (lineage 5), and Washington (lineage 6), 423 
respectively (Fig. 4). Some lineages spread to over half of all states (e.g. lineages 1 and 2 424 
from Florida and California, respectively), whereas spread was more regional for others. 425 
We sought to establish if we could analogously reproduce the distribution of the lineages 426 
across states using epidemic simulations.  427 
 428 
Using a combination of commuting flows and air travel flows, the simulations 429 
reproduced the spread of individual lineages and their distribution across states (Fig. 4). 430 
Differences in mobility flows in combination with competition for susceptible 431 
individuals, linked to timing of lineage establishment, parsimoniously explain why the 432 
lineages emerging from California and Florida spread widely, whereas the lineages from 433 
Louisiana and Washington were more spatially constrained. Commuting flows in 434 
isolation provided a similarly strong fit, but underestimated spread from Nevada, 435 
suggesting that residual air travel flows not captured by commuting could play a role in 436 
viral dissemination (Fig. S10). Conversely, simulations using air travel deviated from the 437 
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ground truth, particularly by underestimating short-range viral migration from Louisiana 438 
and Washington (Fig. S11). 439 
 440 
The co-circulation of many lineages across distinct regions in this season illustrates how 441 
concurrent processes of epidemic establishment in different states, interacting with 442 
mobility, mediate nation-wide epidemic lineage composition and spatial structure. This 443 
season also highlights the heterogeneity of lineage establishment processes. For example, 444 
the lineage emerging from Florida likely emerged in in the spring of 2019 (posterior 445 
mean TMRCA May 5, 95% CrI March 14 –June 12), seemingly persisting throughout the 446 
2019 summer in Florida. Hence, this lineage potentially provides a counterexample to the 447 
general trend that viruses do not persist between seasons (24). Conversely, the lineages 448 
from California, Nevada, and Texas spread widely following rapid establishment, despite 449 
much later emergence (e.g. lineage 1: posterior mean TMRCA August 29, 95% CrI July 450 
3 – September 25). 451 

 452 

453 
Fig. 4: Mobility-induced competition drives individual lineage spread.   454 
Phylogeny represents the 2019/2020 B/Victoria season, with the six largest lineages 455 
labeled in order of size. Top row of maps represents the reconstructed spread and 456 
distribution of each of the six largest lineages. Bottom row of maps represents the 457 
simulated spread and distribution of the six lineages, initialized in the lineages’ 458 
respective onset state and onset week, simulated using a combination of air travel data 459 
and commuting data. Circle sizes are scaled as in Fig. 3. 460 

  461 
Rates of reconstructed viral migration correlate with commuting and not air travel 462 

 463 
Using mechanistic metapopulation simulations, the above results suggest that commuting 464 
flows are the primary mobility drivers of influenza virus spread. However, these 465 
reconstructions could only be performed for the seasons with relatively low lineage 466 
diversity, as the large number of co-circulating lineages in some seasons rendered sample 467 
counts too low for individual lineages to yield a reliable ground truth for reconstructions 468 
of spread. To confirm that commuting is the predominant drivers of viral spread when 469 
incorporating all lineages across all seasons in the analysis, we investigated if the same 470 
mobility processes were reflected in the genetic relationships between viruses in the 471 
lineage phylogenetic trees themselves. To do so, we leveraged phylogeographic analyses 472 
to compute the relative role of each state as a donor or recipient state of viral migration 473 
events for each other state. Here, the relative viral jump contribution x→y represents the 474 
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proportion of reconstructed migration events to and from state y that was accounted for 475 
by state x. Then, we correlated this metric of relative viral migration frequency with 476 
metrics of human mobility.  477 
 478 
The states with the greatest role as the source or destination of viral migration events 479 
to/from a given state tended to be the states that were most strongly connected through 480 
commuting flows to that state (Spearman r = 0.63, P < 0.001) (Fig. 5A). A correlation 481 
between relative jump contribution and air travel contribution was also present 482 
(Spearman r = 0.32, P = <0.001), but this correlation was weaker, with often a relatively 483 
high pairwise viral migration frequency even for states poorly linked through air travel 484 
(Fig. 5B). These results provide orthogonal support for the dominant role of commuting 485 
flows in driving seasonal influenza virus spread. We note that because we use a 486 
maximally uninformative phylogeographic model for viral migration, the model likely 487 
overestimates rates of spatially uncorrelated spread, but our conclusions are robust to 488 
such biases (see Materials and Methods). 489 

  490 

 491 
Fig. 5: Phylogeographic analyses of mobility drivers.  492 
(A) Relationship between the relative contribution of each other state to a state’s inbound 493 
and outbound reconstructed viral migration events, and the other state’s relative role as a 494 
state’s commuting destination. 495 
(B) Analogous to (A), for air travel data.  496 
(C) Visualization of the 20 highest values of the relative jump contribution. 497 
(D) Visualization of the 20 highest values for the normalized pairwise jump frequency. 498 
(E) The distribution of normalized pairwise migration frequencies for pairs of adjoining 499 
and non-adjoining states. 500 

 501 
The highest values of the relative jump contribution x→y were found when state x was 502 
highly populous and state y was in close geographical proximity to state x. For example, 503 
the highest values across all pairs were found for CA→NV, CA→AZ, TX→OK, 504 
CA→OR, and CA→NM (Fig. 5C). This is expected under classical gravity-like spread 505 
where, for any given state, the highest connectivity is expected to be to states that are in 506 
close geographic proximity and highly populous. However, this pattern could be 507 
confounded by higher sample counts for the most populous states, as higher sample 508 
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counts for a deme in phylogeographic analyses will a priori be expected to lead to more 509 
reconstructed migration events even in the absence of any spatial signal in the data. As 510 
such, we also computed an alternative metric that accounts for this potential confounder. 511 
Here, the normalized pairwise jump frequency x↔y represents the proportion of 512 
migration events to/from state y that is accounted for by state x, normalized relative to the 513 
mean proportion of migration events that state x accounts for across all states. This 514 
quantity is symmetric, i.e. x↔y = y↔x. The highest values were for adjacent states that 515 
are strongly connected through commuting flows (highest: WA↔OR, MA↔CT, 516 
MO↔KS, MS↔LA, UT↔ID (Fig. 5D), indicating that when accounting for effects of 517 
population size and/or sampling, viral migration is strongly skewed toward short 518 
distances. Consistent with this, the normalized pairwise migration frequency was 519 
substantially greater for states that are adjacent than those that are non-adjacent (Fig. 5E). 520 
These results provide further evidence for the important role of short-distance spatial 521 
coupling in viral spread.  522 

 523 
Discussion 524 
 525 

Our analyses at the transmission lineage level reveal the structure of seasonal influenza 526 
virus epidemics at a fine-grained resolution. Spread of individual lineages often occurred 527 
in a clear spatiotemporal hierarchy, and the competitive co-circulation of different 528 
lineages induced a strong spatial structure in seasonal influenza epidemics. The lineage 529 
structure of epidemics cannot reliably be identified from epidemiological data alone, but 530 
it is an essential component of seasonal influenza epidemiological dynamics. For 531 
example inter-state patterns of spatial coupling at the transmission lineage level as 532 
identified in this study differ substantially from patterns of similarity solely defined as 533 
correlation of influenza-like illness in approximately the same time period (19). 534 
Furthermore, the previously identified strong spatial coupling between the more 535 
populous states from epidemic synchrony could be the result of concurrent processes of 536 
epidemic establishment resulting from distinct seeding events, rather than the result of 537 
hierarchical spread between different states (5, 26).  Lineage structure is also key to 538 
understanding seasonal influenza source-sink dynamics. Previous studies based on the 539 
ILI data have posited that the South represents the dominant source of influenza virus 540 
epidemics (4, 6). While our analyses reveal the frequent early establishment and national 541 
success of lineages emerging in the South, this pattern was not consistent across seasons 542 
and the lineage complexity of epidemics means that source-sink dynamics are highly 543 
heterogeneous across seasons. Our inferences regarding source-sink dynamics also differ 544 
from those in studies that implicitly assume that a single lineage generated all epidemic 545 
activity in a given season (33).  546 

 547 
Using a mechanistic epidemic model to reproduce lineage spread, we show that observed 548 
dynamics of lineage spread are mostly driven by commuting flows, which generate the 549 
network on which co-circulating lineages compete for disease-susceptible individuals. It 550 
is striking that we could reproduce lineage spread dynamics using mechanistic 551 
simulations when parameterizing mobility directly using commuter surveys. Commuting 552 
data has previously been suggested to drive influenza viral spread based on analyses of 553 
ILI data (4, 5), but this has not been shown mechanistically or validated against 554 
phylogenetically supported instances of viral spread across (sub)types (4, 8, 23). While 555 
we found a clear dominance of commuting over air travel when considering these metrics 556 
in isolation, our results also suggested that air travel flows not captured in commuter 557 
surveys could play a role in viral dissemination.  558 
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 559 
The competitive dynamics of individual lineages exhibit the characteristics of gravity-560 
like spread with localized, radial spread from less populous states, and strong long-range 561 
connections allowing rapid cross-country spread from highly populous states. The 562 
coupling induced by human mobility as reflected in the clear spatial hierarchies of 563 
lineage spread provides an explanation why including spatial coupling has been found to 564 
increase forecasting performance (18, 19). The often highly repeatable dynamics of 565 
human mobility suggest a potential role for ensemble forecasts that integrate lineage-566 
specific epidemic dynamics with patterns of human mobility to predict epidemic make-567 
up. Upon local establishment of different lineages in different states, such simulations 568 
could be used to forecast which lineages are likely to predominate where, but given the 569 
stochastic dynamics of lineage establishment, forecasting efforts would also need to take 570 
into account uncertainties arising from the potentially rapid spread of lineages that have 571 
yet to establish. These forecasts could be especially valuable for public health planning if 572 
antigenically distinct viruses establish transmission chains in different states, such as 573 
observed in the 2018/2019 A/H3N2 season (31).  574 

 575 
Early-season virologic surveillance data have been shown to given clues as to epidemic 576 
subtype composition (20), but the importance of short-term lineage establishment 577 
processes crucially suggests that the transmission chains corresponding to the earliest-578 
sampled viruses will often not propagate into periods of peak epidemic activity, limiting 579 
the predictive utility of early-season genomic surveillance efforts. On the other hand, the 580 
strong correspondence between lineage establishment timing and lineage size, where the 581 
most dominant lineages are the ones that establish earliest, underscores the importance of 582 
high-resolution information on where substantial levels of seasonal influenza virus 583 
epidemic activity are occurring. Our study highlights the importance of nowcasting 584 
efforts to identify the locations of epidemic establishment which, when combined with 585 
high-resolution genomic surveillance in those areas, could be leveraged to generate more 586 
robust predictions of lineage spread (19). 587 

 588 
Our analyses have a number of limitations. The procedure used to classify viruses into 589 
transmission lineages could introduce errors, but the strong spatial structures identified 590 
lend credence to the clustering method used. Furthermore, we could only perform our 591 
analyses at the state level owing to that being the level of spatial resolution in most virus 592 
metadata, and analyses at other spatial scales may yield different results regarding modes 593 
of virus spread (4, 34). Our analyses are limited by the relatively low evolutionary rate 594 
and relatively limited sampling of influenza B viruses, complicating the accurate 595 
delineation into transmission lineages. Mobility flows underlying the spread of influenza 596 
B viruses are potentially different from those for influenza A viruses as a result of 597 
differences in the age distribution of infection (2). However, the identification of 598 
subtype-specific variation in dominant mobility flows was hampered by the substantial 599 
variation in epidemic size among subtypes and seasons, which renders potential 600 
differences in mobility flows difficult to disentangle from other sources of variation. 601 
Nevertheless, our mechanistic simulations were able to recapitulate observed patterns of 602 
spread using commuting data for influenza A and B viruses, suggesting similar 603 
mechanisms drive the spread of both. 604 

 605 
We found that many of the most successful transmission lineages emerged very shortly 606 
before epidemic onset and established rapidly, sometimes sweeping to national 607 
dominance despite substantial competition from other contemporaneous transmission 608 
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chains. The observed heterogeneity of transmission processes raises important questions 609 
regarding the predictability of early-season seasonal influenza epidemiological dynamics 610 
at multi-week time horizons, even in the presence of perfect data. The fact that seasonal 611 
influenza forecasts rarely outperform models based on historical baseline activity at 612 
timescales greater than a few weeks (22, 35) is likely tied to these heterogeneities. An 613 
essential question remains what drives the timing and location of the highly explosive 614 
epidemic sparks that can lead to rapid lineage expansion. It is striking that in some 615 
seasons, the majority of peak-period circulation descended from a single ancestral virus 616 
that existed when relatively substantial circulation was already ongoing. Epidemic 617 
establishment processes are highly complex, likely influenced by many factors, including 618 
but not limited to immune susceptibility (36–38), climate (11, 39, 40), spatial 619 
organization (11), contact network structure (10), human behavior (41, 42), inter-subtype 620 
competition (37, 43), and international (44) and domestic travel acting in concert. High-621 
resolution characterization of early-season epidemic dynamics at the transmission lineage 622 
level among diverse geographical localities is likely necessary to disentangle the 623 
contributions of these variables. Even if our results shed light on the potentially 624 
predictable underlying drivers of viral migration, an understanding of all the above 625 
factors will likely be necessary to probe the limits of seasonal influenza epidemic 626 
predictability.  627 

  628 
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 629 
Materials & Methods 630 

 631 
Data 632 
  633 
We downloaded all influenza A and B virus sequences corresponding to the A/H3N2 or 634 
A/H1N1pdm09 subtypes and B/Victoria and B/Yamagata influenza B lineages, collected 635 
from humans in the United States between July 1st 2014 and July 1st 2023 from the 636 
GISAID (45) EpiFlu database. Throughout, we use the term ‘subtype’ to refer to the 637 
influenza A subtypes and influenza B lineages individually, to avoid confusion between 638 
transmission lineages and influenza B lineages. We limited the dataset to viruses with 639 
sequences available for all eight gene segments. Furthermore, we retained only virus 640 
sequences with the US Centers for Disease Control as submitting laboratory, to minimize 641 
the impact of targeted sequencing investigations that are potentially not representative 642 
and could bias the data, particularly the branching structure of phylogenies. This led to a 643 
full dataset consisting of 30,508 viruses (A/H3N2: 14,235, A/H1N1pdm09: 8,155, 644 
B/Yamagata: 3,543, B/Victoria: 4,584). We downloaded weekly proportions reporting 645 
for influenza-like illness by state and season for the same time period from the CDC 646 
FluView website (https://www.cdc.gov/flu/weekly/fluviewinteractive.htm). From this 647 
website, we also downloaded weekly counts of positive influenza A and B tests in 648 
clinical laboratories, and weekly counts of positive tests by influenza A subtype and 649 
influenza B lineage in public health laboratories, by state and season. For the 2014/2015 650 
season, positive tests for clinical laboratories were stratified by (sub)type/lineage. We 651 
similarly downloaded the number of positive tests in public health laboratories at the 652 
national level. We downloaded data on commuting flows for 2016-2020 from the US 653 
Census Bureau (https://www.census.gov/data/tables/2020/demo/metro-654 
micro/commuting-flows-2020.html). This data is stratified by origin and destination 655 
county. We downloaded data on air travel fluxes between states, stratified by origin and 656 
destination airport for the year 2017 from the US Bureau of Transportation Statistics 657 
(https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=GED&QO_fu146_anzr658 
=). 659 
 660 
Phylogenetic analyses 661 
  662 
We aligned the sequences for each gene segment and subtype using MAFFT (46). We 663 
then clustered viruses, for each segment and subtype individually, into groups of highly 664 
related viruses using CD-HIT (47), with a clustering threshold of 99.5% nucleotide 665 
identity. Using a single representative virus for each cluster, we built a single tree for 666 
each subtype and segment individually using FastTree (48). We then fit a molecular 667 
clock to each tree using TempEst (49), and removed sequences belonging to CD-HIT-668 
identified clusters for which the representative virus was classified as a molecular clock 669 
outlier from the dataset. This led to the removal of 40 viruses from the dataset. For each 670 
subtype, we then constructed a phylogenetic tree for each segment individually using all 671 
viruses for the entire period using IQTree (50) with a HKY (51) substitution model. We 672 
clustered the taxa in each of these trees by computing the largest groups of viruses where, 673 
for each taxon within a cluster, there was at least one other taxon in the group that saw a 674 
patristic distance to the former taxon that was smaller than a given distance threshold. 675 
We defined this distance threshold as the expected number of mutations over a two-year 676 
period given the estimated molecular clock rate for that segment and subtype/lineage; we 677 
used a more relaxed three-year period for the MP and NS segments for additional 678 
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lenience given their lower evolutionary rate. Using these cluster delineations, we 679 
assigned each taxon a segment-specific cluster identity. Using the cluster identities for 680 
each individual segment, we assigned each taxon a genome-wide cluster identity as the 681 
combination of individual segment identities. These identities were defined for each 682 
season individually, retaining the sequences from the 1st of January of the preceding 683 
winter period up to the 1st of July of the following year. We concatenated the sequences 684 
for all segments for viruses and constructed whole-genome phylogenetic trees for each of 685 
the genome-wide cluster identities individually. Concatenating gene segments runs the 686 
risk of introducing error due to potential reassortment events; we aimed to minimize this 687 
risk by clustering all taxa into groups of similar viruses using the procedure described 688 
above. We constructed phylogenies in IQTree (50) using a HKY (51) substitution model 689 
using a segment-proportional model (52). Given these maximum-likelihood phylogenies, 690 
we constructed temporally resolved trees using TreeTime (53) using a fixed clock rate 691 
estimated using TempEst. 692 
 693 
Transmission lineage identification 694 
 695 
Using these time trees, we then sought to delineate the whole-genome phylogenetic trees 696 
into individual transmission lineages. We defined transmission lineages as groups of taxa 697 
on a phylogeny that plausibly descended from a common ancestor in the United States. 698 
Given the exponential nature of influenza epidemics, we identified groups of highly 699 
related viruses for which the tree structure follows the comb-like shape expected under 700 
an exponential growth population dynamic process, where most coalescent events 701 
happen close in time to the common ancestor. To do so, we used a modified version of 702 
Phydelity (54), a tool designed for the identification of transmission clusters on 703 
phylogenies. We imposed the constraint that each transmission lineage was required to 704 
exhibit the characteristic branching structure of exponential spread. Specifically, we 705 
required that for each transmission lineage, a certain proportion p of all coalescent events 706 
must occur within a particular period t of the putative lineage’s root, with p and t 707 
specified. Given the constraints, Phydelity aims to cluster as many taxa as possible given 708 
some constraints, formulating the problem as an integer linear programming (ILP) 709 
problem. Here, every internal node in the phylogeny is a potential transmission cluster, 710 
and the algorithm aims to cluster as many tips as possible, given the constraints.  711 
 712 
If t is very high and p is very low the constraints imposed on the tree shape of a 713 
transmission lineage are relatively less stringent. As a result, sensitivity is high for 714 
purpose of clustering as many taxa as possible, but this might also result in erroneous 715 
clustering if genetically similar viruses were independently seeded into the United States 716 
and individually proliferated. On the other hand, a very stringent threshold (i.e. low t and 717 
high p) will lead to high specificity, but might also lead to erroneous discarding of true 718 
transmission lineages, as some true lineages will necessarily have a less comb-like 719 
structure, for example if they emerged early in the season, outside of typical periods of 720 
respiratory virus circulation, and spread at low levels before expanding when conditions 721 
were favorable for large-scale transmission. In the main text, we chose p = 0.10 and t = 722 
1/12, i.e. 10% of coalescent events in a lineage must occur in the first month after its 723 
root. These values were chosen to balance sensitivity and specificity. We visualized the 724 
clustered trees using the ggtree (55) package, presenting all transmission lineages in a 725 
single tree. Because we clustered the trees into groups of similar viruses at the whole-726 
genome level before the identification of transmission lineages, we did not reconstruct 727 
the ancestral relationships between all taxa. Hence, we only present the relationships 728 
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between taxa if they belonged to the same whole-genome cluster identity. Differences in 729 
sampling among states could affect the delineations of viruses into clusters, principally 730 
by affect the branching structure within putative clusters. We found a strong log-linear 731 
relationship between a state’s population size and its sequencing rate relative to its 732 
population size (Pearson r = -0.73, P < 0.001), but some states had substantially greater 733 
sampling rates than would be expected under the identified relationship given their 734 
population size. To minimize effects of differences in sampling on cluster delineations, 735 
we subsampled the taxa in each state, for each season-subtype pair, such that no state had 736 
a number of sequences more than 0.5 log units greater than the regression-predicted 737 
number given its population size. 738 
 739 
To reconstruct the spatiotemporal spread dynamics of individual lineages, we integrated 740 
the sampling date of each taxon with influenza-like illness and virological surveillance 741 
data. For each season and state individually, we computed the influenza type-specific 742 
disease signal by multiplying the proportion reporting influenza-like illness in each week 743 
by the proportion of tests positive for influenza A and B separately, yielding a measure of 744 
type-specific incidence. We then applied a 4253H, Twice smoother, implemented in the 745 
sleekts R package, to smooth the epidemic curves. To extract transmission lineage-746 
specific epidemic curves, we fitted the sampling dates of taxa belonging to individual 747 
transmission lineages to the reconstructed type-specific epidemic curves. For each state 748 
and type (i.e. A or B) individually, we used a kernel density estimate given by a normal 749 
distribution centered around each taxon’s sampling date, with a two-week standard 750 
deviation. We retained taxa that were not assigned to any transmission lineage as a 751 
separate group. In each week, the relative incidence of a transmission lineage in that state 752 
was given by the proportion of all kernel density estimate contributions in that week 753 
corresponding to that lineage, multiplied by type-specific incidence.  754 
 755 
Given each lineage’s reconstructed epidemic dynamics in each state, we computed two 756 
key state-level transmission lineage-specific summary statistics. 1) Lineage size, 757 
computed by dividing the number of taxa sampled in each state belonging to a particular 758 
by the total number of sequenced viruses in the state for that subtype, in the 759 
corresponding season, i.e. ranging from 0 to 1; and 2) lineage establishment timing, 760 
defined as the first week the lineage had accounted for at least 5% of total incidence in 761 
that season (if at all), using the mapping of sequence sampling date to incidence data 762 
described above. In some states, ILI and/or virologically confirmed data was absent for 763 
all or some seasons; in these cases, we only computed the lineage size, and not the onset 764 
week. Using these state-specific quantities, we computed nation-wide lineage size as the 765 
sum of state-specific relative sizes divided by the number of states; hence, each state is 766 
equal-weighted, irrespective of the state’s population size or sample count. We also 767 
computed the nation-wide time of lineage establishment as the first week of lineage 768 
establishment in any state. For each state, in each subtype-season pair, we computed the 769 
normalized Shannon entropy of the season’s lineage composition, which equates to 1 if 770 
each sampled virus corresponded to a different transmission lineage, and 0 if all sampled 771 
viruses belonged to the same lineage. In the regression analyses for the determinants of 772 
lineage size, we included only subtype-season pairs where the subtype accounted for 773 
>10% of a season’s total positive tests. 774 
 775 
Spread reconstruction 776 
 777 
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To characterize the similarity of lineage compositions across all pairs of states, we 778 
computed the median Bray-Curtis similarity for all pairs of states. We sampled 20 779 
clustered viruses from each state for each season across all (sub)types (or retained all if 780 
fewer than 20 sequences were available) and computed the Bray-Curtis similarity of the 781 
transmission lineages corresponding to the sampled viruses using the vegdist command 782 
in the vegan (56) R package. We performed this procedure 50 times, retaining the mean 783 
value of each pair of states’ similarity across all replicates. All analyses were performed 784 
for the seasons from 2014/2015 to 2019/2020 and 2022/2023, omitting the 2021/2022 785 
season due to its aberrant epidemic dynamics following the COVID-19 pandemic; this 786 
season saw substantial levels of circulation during the summer period, complicating the 787 
delineation of lineages into individual seasons. We retained only states with at least 10 788 
sequences in all seasons, leaving a set of 42 states.  789 
 790 
We performed hierarchical clustering on the similarity matrix across all seasons/subtypes 791 
using the hclust R function, using complete linkage clustering. We performed isometric 792 
multi-dimensional scaling using the isoMDS function in the MASS R package. To 793 
compute the correlation states between compositional similarity and centroid distance, 794 
we correlated the similarity matrix with states’ centroid distances using the mantel 795 
command in the vegan package. We performed these analyses at the individual season-796 
subtype pair level in the same fashion, sampling 10 viruses from the set of clustered taxa 797 
sampled in that season for that subtype and computing the Bray-Curtis similarity as 798 
described above. Here, we retained only season-subtype pairs that saw at least 40 states 799 
with at least 10 clustered viruses. 800 
 801 
Source-sink phylogeographic inference 802 
   803 
For the analyses of source-sink dynamics, we performed phylogeographic analyses in 804 
BEAST (30) for all transmission lineages that accounted for at least 0.5% of all 805 
sequenced viruses in a given season across all subtypes. We performed these analyses at 806 
the level of Health and Human Services (HHS) region, to allow for substantial spatial 807 
granularity while also having sufficient sequence counts per spatial unit. We used 808 
Thorney BEAST, implemented in BEAST (30) v2.3.31, to estimate a distribution of 809 
time-resolved phylogenies for each individual lineage, marginalizing over bifurcating 810 
topologies consistent with the potentially multifurcating input tree. We used divergence 811 
trees estimated in IQTREE, as explained above, as input trees, extracting the subtrees 812 
that corresponded to each transmission lineage. We furnished all transmission lineages 813 
with fewer than 50 taxa with an exponential growth coalescent prior, and a Skygrid (57) 814 
coalescent prior for all transmission lineages with at least 50 taxa. We estimated a single 815 
clock rate for each season–subtype pair. For each season–subtype pair, we ran a single 816 
MCMC chain for 500 million iterations, sampling lineage trees every 5 million states. 817 
We assessed convergence using Tracer (58), and generated a set of 90 posterior trees for 818 
each transmission lineage using TreeAnnotator (https://beast.community/treeannotator), 819 
removing the first 10% as burn-in. 820 
 821 
We performed discrete trait phylogeographic inference (59) using the posterior lineage 822 
trees. We used a CTMC model for migration where we assumed equal rates of migration 823 
between all regions. We used this model as many lineages had relatively few sequences, 824 
prohibiting the reliable estimation of pairwise region-to-region migration rates. 825 
Furthermore, these rates could not realistically be shared across transmission lineages as 826 
dynamics of migration vary substantially from lineage to lineage depending on the 827 
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location of emergence and the landscape of lineage competition, and are likely highly 828 
temporally inhomogeneous, with dominance of the origin state early on but more 829 
spatially diffuse spread later. We ran these analyses for 100 million iterations, sampling 830 
every million, and removed the first 10% for each lineage as burn-in. We leveraged 831 
stochastic mapping (60) to identify migration events on the posterior phylogenies. Using 832 
these reconstructed migration events, we identified the likely origin of each lineage in 833 
each sample as the HHS region that was the source for most of the first 10 migration 834 
events in each lineage. We used this definition for the lineage origin rather than simply 835 
the reconstructed root region as we were primarily interested in the rapid expansion of 836 
lineages, and the root could be affected by the inclusion of unrelated singleton viruses in 837 
the analysis that did not contribute to lineage expansion. Reassuringly, we found that for 838 
most transmission lineages, lineage source posterior probabilities were generally focused 839 
on a small number of HHS regions.  840 
 841 
Using the lineage origin posterior distributions, we then computed state-specific origin 842 
profiles, which represent the posterior proportion of sampled viruses in a focal state that 843 
belonged to lineages that were reconstructed to have originally expanded in each HHS 844 
region. Here, we aggregated across all subtypes and seasons, weighting each lineage 845 
according to the total proportion of circulation it accounted in the corresponding season 846 
in the focal state, across all subtypes. To investigate spatial structure in these source 847 
profiles, we correlated the Euclidean distance of these profiles between states with the 848 
centroid distance between the states using a Mantel test. Because we expected higher 849 
similarity between states in the same HHS region because they represent a single group 850 
in the phylogeographic reconstructions, we only performed this analysis for states that 851 
were not in the same HHS region. For any given state, we only included those seasons 852 
where that state had at least 10 sampled viruses when computing the source profiles, to 853 
prevent stochastic sampling effects from biasing results when sequence counts were low 854 
in a given season. 855 
 856 
Phylogeographic reconstructions are prone to bias resulting from differences in sampling 857 
rates among the geographical groupings. To assess the sensitivity of our results with 858 
respect to these biases, we used two different sampling strategies. For our first sampling 859 
strategy, we used a sampling strategy where sequences from states that had a sequence 860 
count that was greater than expected from the regression line relating sequencing rate to 861 
population size were subsampled to the sequence count predicted from the regression line 862 
given its population size. This subsampling strategy was akin to the subsampling strategy 863 
used for the cluster delineations described above, but more stringent. Hence, the sample 864 
count for each HHS region was roughly proportional to the region’s population size. For 865 
the second sampling strategy, we ensured that the number of taxa included for each HHS 866 
region was approximately uniform, irrespective of the HHS region’s population size. For 867 
each season-subtype combination, we computed the sequence count as the 25th quantile 868 
of the number of sequences in each HHS region in the population-proportional 869 
subsampling scheme used above. For regions with more sequences than this value, 870 
sequences were randomly subsampled. Because the results of the inferences are subject 871 
to variation due to the sampling strategy used, we mainly reported among-state 872 
differences for any given sampling strategy, and de-emphasized the absolute proportions 873 
estimated using the different models. For the same reason, we reported the likely origins 874 
of the largest lineages averaged across both sampling strategies. Nevertheless, the strong 875 
correlation between two sampling strategies suggests that sampling effects do not 876 
dominate the results. 877 
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 878 
To correlate mobility with rates of inter-state viral migration as reflected in the lineage 879 
phylogenies (Fig. 5), we performed Bayesian phylogeographic analyses analogous to the 880 
source-sink analyses above. We used the same procedure to perform phylogeographic 881 
reconstructions at the state level instead of the HHS region level, using the population-882 
weighted subsampling strategy where sequences from states with higher sequencing rate 883 
than expected for their population were subsampled to the regression-predicted 884 
sequencing rate. We then reconstructed Markov jumps across all posterior trees for all 885 
transmission lineages. Then, for each pair of states x and y, we computed the relative 886 
jump contribution x→y as the proportion of migration events to and from state y that was 887 
accounted for by state x. We analogously computed the proportion of travelers from state 888 
y that had state x as destination for the air travel and commuting data and correlated these 889 
quantities with the relative jump contributions as estimated from the phylogenies. Here, 890 
we added a pseudocount for pairs of states with zero commuters or air travelers. We also 891 
computed the normalized relative jump frequency x↔y, which represents the proportion 892 
of migration events to/from state y that is accounted for by state x, normalized relative to 893 
the mean proportion of migration events that state x accounts for across all states. These 894 
values are highly symmetric (Pearson r = 0.997), and hence we symmetrized to subsume 895 
pairs of states. By comparing the jump frequency between states relative to the states’ 896 
mean, this metric is not prone to potential biases resulting from differences in sampling 897 
across states. However, a limitation of this metric is that only allows for ascertainment of 898 
the effect of distance and not of characteristics that are intrinsic to a single location, such 899 
as population size.  900 
 901 
Because we used an equal-rates model for viral migration, the values of the relative jump 902 
contributions will likely overestimate rates of viral migration between spatially distant 903 
localities that are not well-connected through mobility. This is an inherent limitation of 904 
the model used. However, due to the complex migration dynamics that are likely highly 905 
time-inhomogeneous and differ substantially across lineages (as described above), 906 
migration patterns can likely not be captured by a single rate across all lineages and 907 
points in time, nor can time-inhomogeneous rates reliably be estimated or parameterized. 908 
These limitations also apply to alternative models such as a GLM formulation (44). 909 
Correlating reconstructed viral migration rates with metrics of mobility in post hoc 910 
analyses rather than including these metrics as covariates in the migration rate 911 
parameterizations affords certainty that the identified relationship between viral 912 
migration and human mobility is not a statistical artefact. The fact that we established a 913 
strong correlation between commuting rates and viral migration rates provides support 914 
for the use of the simplified model. 915 
 916 
Metapopulation model 917 
 918 
With the aim of reproducing the observed spread of co-circulating lineages, particularly 919 
the lineages’ distribution among states, we used a mechanistic epidemic model that 920 
simulates the inter-state spread of co-circulating SIR-type pathogens with perfect cross-921 
immunity that compete for disease-susceptible individuals. To limit the computational 922 
burden, we used a deterministic model that stratifies each epidemiological state into three 923 
further compartments for individuals remaining in their home state and for those visiting 924 
another state by commuting and air travel respectively. The model dynamics are then as 925 
follows: 926 
 927 
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 932 
Here, Sijm and Iijm represent the number of susceptible and infected individuals, 933 
respectively, originating from state j that are currently in state i for mobility modality m. 934 
m can represent either commuting or air travel. Analogously, Sjj and Ijj represent the 935 
number of susceptible and infected individuals, respectively that are at home in state j.  936 
Matrix 𝑙 represent the outward travel rates for each mobility modality and r represents 937 
the return rate. We assume r = 1 day-1,  g  = 0.25, and R0 = 1.35. For state-to-state air 938 
travel rates, we computed the rate of air travel between states x and y as the total number 939 
of passengers in 2016 between airports located in state x and state y, and symmetrized the 940 
counts by computing the mean of the two counts. We then computed a daily rate from x 941 
to y by as the states’ symmetrized trip count divided by 365 and the population size of 942 
state x. We computed the number of commuters between each pair of states by 943 
aggregating across origin and destination counties in each state. We analogously 944 
symmetrized these counts (though they are highly symmetric, r = 0.9998) and computed 945 
the daily commuting rate x>y as the number of symmetrized commuters between the two 946 
states divided by the population size of state x. For the simulations that used a 947 
combination of air travel and commuting flows, the rate between each pair of states was 948 
defined as the maximum of the pairwise commuting and air travel rates, to account for 949 
the possibility that some of the commuting flows are accounted for by the air travel data. 950 
The model was implemented in C++, interfacing with R using Rcpp (61). 951 
 952 
Using the metapopulation model, we investigated if we could recapitulate the distribution 953 
of lineages across the country, given the timing and location of each lineage’s onset, 954 
under the model of competition between lineages for susceptible individuals on the 955 
mobility network. For the set of lineages that were simulated, we simulated the epidemic 956 
progression forward in time, initializing each lineage in its reconstructed first week of 957 
establishment (see above), in its likely onset state. As the lineage’s onset week, we took 958 
the first week of establishment of the lineage in any state, rather than in the onset state, to 959 
account for situations where incidence data was absent for the likely onset state. 960 
However, we allowed each lineage’s onset week to vary to up to two weeks after or two 961 
weeks before its estimated data, to account for situations where the index state did not 962 
have incidence data available, and to account for error arising from the estimation of 963 
lineage-specific establishment timings with relatively noisy data. Lineages were 964 
initialized with an infected population of 1×10-5 times the index state’s population size. 965 
Analogous to the ground truth reconstructions, we computed the size of each lineage in 966 
the reconstructions as the proportion of infections across simulated lineages in a state that 967 
was attributable to a particular lineage. Similarly, we computed the week of 968 
establishment as the first week a lineage had caused >5% of total infections across 969 
simulated lineages in the full simulations. Because the simulations only included a 970 
limited set of lineages, we visualized the simulations by scaling the circles for each state 971 
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such that the total size of the circles for the simulated lineages was proportional to the 972 
total proportion of sequences in each state that was accounted for by the simulated 973 
lineages. 974 
 975 

  976 
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