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Abstract: Different varieties of raisins have different nutritional properties and vary in commercial
value. An identification method of raisin varieties using hyperspectral imaging was explored.
Hyperspectral images of two different varieties of raisins (Wuhebai and Xiangfei) at spectral range
of 874–1734 nm were acquired, and each variety contained three grades. Pixel-wise spectra were
extracted and preprocessed by wavelet transform and standard normal variate, and object-wise
spectra (sample average spectra) were calculated. Principal component analysis (PCA) and
independent component analysis (ICA) of object-wise spectra and pixel-wise spectra were conducted
to select effective wavelengths. Pixel-wise PCA scores images indicated differences between
two varieties and among different grades. SVM (Support Vector Machine), k-NN (k-nearest
Neighbors Algorithm), and RBFNN (Radial Basis Function Neural Network) models were built
to discriminate two varieties of raisins. Results indicated that both SVM and RBFNN models based
on object-wise spectra using optimal wavelengths selected by PCA could be used for raisin variety
identification. The visualization maps verified the effectiveness of using hyperspectral imaging to
identify raisin varieties.
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1. Introduction

Raisins are generally consumed as snacks, and they are also served as popular ingredients in
many other food menus. Raisins are dried grapes which are rich in dietary fiber, carbohydrates with a
low glycemic index, and minerals like copper and iron, with a low fat content [1,2]. In addition to their
nutritional value, they also have medical value, such as regulating blood pressure for individuals with
mild increases in blood pressure [2–4]. In general, raisins are important commercial products for the
grape industry.

The commercial value of raisins differs according to the production area. In China, Xinjiang Uygur
Autonomous Region is one of the major producing regions of grape, the perfect producing conditions and
climates make it quite suitable for grape planting and deep processing. Variety is another important factor
which influences the taste and nutritional compositions of raisins. To satisfy the demands of producers and
consumers, different varieties of grapes are developed. Variety is one of the important factors in pricing
the raisins. Varieties of raisins can be identified by specialist, experienced famers, and laboratory-based
chemical analysis methods. To improve the identification efficiency, advanced non-destructive methods
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have been introduced, among which computer vision, spectroscopy, and spectral imaging techniques have
shown great efficiency and potential for large scale detection at industrial level. Ma et al. achieved rapid
non-destructive identification of apple varieties with 96.67% accuracy based on hyperspectral imaging [5].
Zhang et al. identified coffee variety using mid-infrared transmittance spectroscopy combined with
pattern recognition algorithm [6]. Yang et al. developed a model for maize seed variety identification
based on hyperspectral imaging [7].

Hyperspectral imaging is a technique combining computer vision and spectroscopy. Images of the
study objects can be acquired for image analysis, and spectral information can be extracted from each
pixel within the image for spectral analysis. A combination of image analysis and spectral analysis can
also be explored. Hyperspectral imaging has been widely used in food analysis [8,9], and it has showed
great potential in the grape industry. Fernandes et al. estimated grape anthocyanin concentration
using hyperspectral imaging data. The squared correlation coefficient value was 0.65 compared to
the values measured using conventional laboratory techniques [10]. Rodríguez-Pulido et al. found
it was possible to assess the maturation stage in grape seeds based on the near-infrared spectra with
prediction models and multivariate analysis methods [11]. Zhao et al. used hyperspectral imaging to
identify different varieties of grape seeds. The results indicated that the variety of each single grape
seed was accurately identified with 94.3% accuracy of the calibration set and 88.7% accuracy of the
prediction set [12].

The general application of hyperspectral images is to conduct data analysis on a predefined region
of interest (ROI) [12–14]. Spectral information is most widely used in hyperspectral image analysis,
due to the advantage that spectral information can be precisely extracted from each pixel within ROIs.
In general, pixel-wise spectra are averaged to build calibration models, and some researchers have
focused on using pixel-wise spectra to build calibration models [15–18]. In fact, the size and the shape
of raisins, which are key factors for the classification of different varieties, also play an important role
in raisin grading within one variety. The raisin size can be influenced by the harvesting procedure of
fresh grapes and the air-drying procedure, which can also beget irregular shapes of raisins in addition
to storage.

The objective of this study is to explore the feasibility of using near-infrared hyperspectral imaging
to identify raisin varieties. The specific objectives are: (1) exploring the influence of fruit size and shape
in classification accuracy; (2) exploring spectral preprocessing of standard normal variate (SNV) in
classification accuracy; (3) comparing performances of objective-wise analysis and pixel-wise analysis
of SVM (Support Vector Machine), k-NN (k-nearest Neighbors Algorithm), and RBFNN (Radial Basis
Function Neural Network) models.

2. Results and Discussion

2.1. Spectral Profiles

In this research, 200 wavelength variables ranging from 975 to 1646 nm of hyperspectral images
were studied. Figure 1 presents average spectra of each grade of raisins of Wuhebai (WHB) and
Xiangfei (XF) with standard deviation (SD) at peaks and valleys (1123, 1210, 1308, and 1473 nm).
The absorbance bands at 1123, 1210, and 1308 nm are largely attributed to the C–H stretching mode
and overtone [19]. The wavelength around 1473 nm is a characteristic water wavelength [20]. It was
obvious that a large proportion of overlap exists among eight curves, so it was necessary to conduct
further study to make a better distinction between the two varieties of raisins.
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Figure 1. Average spectra with standard deviation (SD) of Wuhebai (WHB) and Xiangfei (XF). 

2.2. PCA Scores Image Visualization 

Pixel-wise PCA scores could be used to depict the PCA scores image. The first seven PCs 
explained over 99% of the total variance. Figure 2 shows visualized hyperspectral images of the first 
seven principal components (PC1–PC7) of two varieties of raisins. As can be seen from Figure 2, the 
warm color (yellow-red) accounted for the majority in WHB scores image of PC1 and PC2. In 
contrast to WHB scores image, the cold color (green-blue) was more obvious in XF scores image of 
PC1 and PC2, which revealed differences between two varieties. PCA scores image of PC5, PC6 and 
PC7 of XF exhibited obvious difference in color for Grade1 and two other grades, which showed 
differences among different grades. Although the PCA scores image could be used to distinguish 
different varieties and grades of raisins to some extent, it was necessary to conduct further study in 
order to obtain satisfactory classification results. 

Figure 1. Average spectra with standard deviation (SD) of Wuhebai (WHB) and Xiangfei (XF).

2.2. PCA Scores Image Visualization

Pixel-wise PCA scores could be used to depict the PCA scores image. The first seven PCs explained
over 99% of the total variance. Figure 2 shows visualized hyperspectral images of the first seven
principal components (PC1–PC7) of two varieties of raisins. As can be seen from Figure 2, the warm
color (yellow-red) accounted for the majority in WHB scores image of PC1 and PC2. In contrast to
WHB scores image, the cold color (green-blue) was more obvious in XF scores image of PC1 and
PC2, which revealed differences between two varieties. PCA scores image of PC5, PC6 and PC7 of
XF exhibited obvious difference in color for Grade1 and two other grades, which showed differences
among different grades. Although the PCA scores image could be used to distinguish different varieties
and grades of raisins to some extent, it was necessary to conduct further study in order to obtain
satisfactory classification results.
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Figure 2. Scores image for the first seven principal components.

2.3. Effective Wavelength Selection

PCA loadings were used to select effective wavelengths for raisin cultivars classification. Since the
first seven PCs explained over 99% of total variance, the loadings of these PCs were used. To examine
the differences of object-wise analysis (average spectra) and pixel-wise analysis (pixel-wise spectra),
PCA was conducted on both object-wise spectra and pixel-wise spectra of two different varieties
of raisins. Figure 3 and Table 1 shows 20 or 17 optimal wavelengths selected by PCA based on
object-wise analysis or pixel-wise analysis, respectively. PCA loadings plots of object-wise spectra and
pixel-wise spectra were quite similar. As shown in Table 1, corresponding optimal wavelengths for
object-wise spectra and pixel-wise spectra were nearly the same, with slight differences caused by
different varieties and grades.
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Figure 3. Corresponding optimal wavelengths selected by principal component analysis (PCA):
(a) Object-wise analysis. (b) Pixel-wise analysis.

Table 1. Corresponding optimal wavelengths selected by PCA.

Type of Analysis No. Optimal Wavelengths (nm)

Object-wise 20 1005, 1032, 1049, 1086, 1119, 1160, 1173, 1187, 1200, 1220, 1244, 1254, 1278, 1305,
1328, 1352, 1379, 1406, 1433, 1473

Pixel-wise 17 1005, 1029, 1103, 1119, 1164, 1200, 1214, 1251, 1261, 1315, 1328, 1355, 1375, 1406,
1426, 1436, 1473

ICA was also conducted on object-wise spectra and pixel-wise spectra. To compare with PCA, the
same numbers of optimal wavelengths are showed in Table 2.
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Table 2. Corresponding optimal wavelengths selected by independent component analysis (ICA).

Type of Analysis No. Optimal Wavelengths (nm)

Object-wise 20 982, 985, 995, 999, 1002, 1009, 1012, 1015, 1019, 1022, 1025, 1029, 1032, 1035, 1039,
1042, 1046, 1049, 1052, 1056

Pixel-wise 17 1139, 1143, 1146, 1150, 1153, 1156, 1207, 1210, 1230, 1521, 1527, 1531, 1548, 1554,
1561, 1575, 1582

2.4. Raisin Variety Classification Models Based on Different Grades

The PCA analysis above indicated that there were differences between different varieties of raisins,
and there were also differences among different grades of raisins. Thus, grade was an important factor
which influenced classification results of two varieties of raisins.

To evaluate the influence of different grades on model performances, samples from the same
grade of raisins were formed as calibration set, and the remaining samples were used as prediction
set. SVM (Support Vector Machine) models were built using effective wavelengths selected by PCA,
and the results are shown in Table 3.

For the calibration model built based on Grade1, classification results of the calibration set were good
for both varieties and prediction results of three grades of WHB were good, while prediction results of XF
were poor. There were no correctly classified samples for Grade3 of XF. The SVM model built based on
Grade2 exhibited better performance compared with SVM model based on Grade1. For the calibration
model built based on Grade2, both the calibration set and prediction set obtained satisfactory results,
and WHB and XF both obtained good classification results. When the calibration set was built according
to Grade3, classification results of calibration set were good. The prediction results of the three grades of
WHB were good, and the prediction results of Grade2 and Grade3 of XF were also good. However, the
prediction result of Grade1 was poor with classification accuracy lower than 20%.

These results revealed that different grades of raisins had influences on variety classification.
As shown in Table 3, classification models based on Grade1 and Grade3 obtained poorer classification
results compared with classification models based on Grade2. The reason might be that feature
differences between Grade1 and Grade3 of XF were significant (for example the difference of sample
size of different grades for same raisin variety was obvious as shown in Figure 4). The calibration set
using Grade1 or Grade3 might not cover enough sample features used for PCA scores analysis.

Table 3. Classification models based on different grade using optimal wavelengths selected by PCA.

WHB XF C 4 γ 4 Cal. Result Pre. Results

WHB XF Pre. set WHB XF

Grade1 1 Grade1 1 3.0 665/665 245/246
Grade3 1382/1382 0/602
Grade2 930/931 22/453
Grade1 380/380 99/116

Grade2 2 Grade2 256 16 622/622 304/305
Grade3 1371/1382 559/602
Grade2 305/309 146/148
Grade1 1040/1045 323/362

Grade3 3 Grade3 48.5 9.1 950/950 405/405
Grade3 419/432 197/197
Grade2 658/931 434/453
Grade1 1033/1045 51/362

1 Grade1 represents large size; 2 Grade2 represents medium size; 3 Grade3 represents small size; 4 C and γ are
parameters of SVM model.

Table 4 shows the results of SVM models built based on optimal wavelengths selected by ICA.
Compared with Table 3, the calibration and prediction accuracies of SVM models based on Grade1 and
Grade3 using optimal wavelengths selected by ICA were close to SVM models using optimal wavelengths
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selected by PCA. The accuracies based on Grade2 using optimal wavelengths selected by ICA were lower
than SVM models based on PCA optimal wavelengths selection for both varieties of raisins.

Table 4. Classification models based on different grade using optimal wavelengths selected by ICA.

WHB XF C γ
Cal. Result Pre. Results

WHB XF Pre. set WHB XF

Grade1 Grade1 147.0 0.3 664/665 242/246
Grade3 1380/1382 0/602
Grade2 931/931 17/453
Grade1 379/380 100/116

Grade2 Grade2 147.0 48.5 606/622 255/305
Grade3 1360/1382 267/602
Grade2 296/309 119/148
Grade1 1014/1045 306/362

Grade3 Grade3 84.4 3.0 944/950 385/405
Grade3 409/432 197/197
Grade2 487/931 393/453
Grade1 899/1045 15/362

2.5. Classification Results of Pixel-Wise and Object-Wise Spectra

According to Zhang et al. (2018) [21], pixel-wise spectra can be used to build classification
models, and can achieve good prediction results on sample average spectra. The results of average
spectra showed that sample size might be a factor influencing classification results. The advantage
of hyperspectral imaging was to obtain spectral information of each pixel within the sample.
Previous results have showed that pixel-wise spectra analysis has great value in hyperspectral image
analysis [22,23]. For each variety of raisins, pixel-wise spectra were extracted. In all, there were about
300,000 pixels of each grade within the calibration sets of WHB and XF raisins. Establishing calibration
models using such a great number of pixels (over 1,800,000 pixels) requires quite heavy computation.
Selecting effective wavelengths could reduce the data volume significantly, but the data volume was
still large. As for about 300,000 pixels of each grade of raisins, there might be redundant pixels for
modelling, so representative pixels should be selected to reduce the data amount.

To select representative pixel-wise spectra, a calibration set selection procedure was proposed by
Kang et al. (2004) [24]. Firstly, for pixel-wise spectra of all grades of a variety, the collected pixel-wise
spectra were clustered into 3000 groups using the k-means algorithm. Secondly, the Euclidean distance
between sample and group centroid was calculated, and the sample with smallest Euclidean distance
was selected into the new calibration set.

SVM, k-NN, and RBFNN models were built using selected pixel-wise spectra or object-wise
spectra, and prediction set was also formed based on selected pixel-wise spectra or object-wise spectra.
The results are shown in Table 5. The value of sensitivity means the classification accuracy of WHB,
and the value of sensitivity means the classification accuracy of XF.

From Table 5, the results of SVM and RBFNN models using pixel-wise spectra to predict pixel-wise
spectra were acceptable, with classification accuracy of calibration and prediction about 80%–90%.
Meanwhile, the results of SVM and RBFNN models using pixel-wise spectra to predict object-wise
spectra also obtained good results for calibration set, with 93.62% and 88.40% accuracy, respectively.
Compared with SVM and RBFNN models based on pixel-wise spectral, the results of k-NN were
slightly poorer, with accuracies varied from 40%–90%. Three models based on object-wise spectra all
obtained acceptable results for the calibration set, with accuracies ranging from 87%–99%. SVM, k-NN
and RBFNN models using object-wise spectra to predict object-wise spectra obtained better results
for the prediction set compared with models using pixel-wise spectra to predict object-wise spectra,
with all accuracies above 80%.

The overall results indicated that SVM and RBFNN models using object-wise spectra to predict
object-wise spectra could be used to identify raisin varieties. Selection of representative samples was
of significance for stable and accurate models, which should be further studied.
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Table 5. Classification results for SVM, k-NN, and RBFNN models based on optimal wavelengths
selected by PCA.

Model Parameter 5 Calibration Set Prediction Set

Acc. 6 (%) Sen. 7 Spe. 8 Acc. (%) Sen. Spe.

Pixel to pixel 1
SVM (256, 5.28) 91.83 0.898 0.939 80.10 0.800 0.802
k-NN 3 78.48 0.700 0.870 78.18 0.642 0.895

RBFNN 7 88.40 0.842 0.926 80.89 0.797 0.819

Pixel to object 2
SVM (256, 5.28) 91.83 0.898 0.939 93.62 0.785 0.998
k-NN 3 78.48 0.700 0.870 83.82 0.464 0.992

RBFNN 7 88.40 0.842 0.926 91.40 0.711 0.997

Object to pixel 3
SVM (147, 9.12) 99.72 0.994 0.998 71.10 0.817 0.626
k-NN 5 95.46 0.870 0.991 76.86 0.727 0.803

RBFNN 3 99.78 0.994 0.999 54.14 0.819 0.317

Object to object 4
SVM (147, 9.12) 99.72 0.994 0.998 99.12 0.987 0.993
k-NN 5 95.46 0.870 0.991 94.06 0.839 0.982

RBFNN 3 99.78 0.994 0.999 99.30 0.983 0.997
1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means
models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise
spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict
object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and
parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.

Table 6 shows the classification results for SVM, k-NN, and RBFNN models based on optimal
wavelengths selected by ICA. The accuracies based on models using pixel-wise spectra to predict
pixel-wise spectra or object-wise spectra were much lower than the same models using optimal
wavelengths selected by PCA. The prediction set results of models using object-wise spectra to predict
pixel-wise spectra were poor, with accuracies varying from 48%–63%. Models using object-wise
spectra to predict object-wise spectra obtained acceptable results, with all accuracies above 90%.
However, the calibration results of three models using object-wise spectra as the calibration set using
optimal wavelengths selected by ICA were slightly lower than the results of three models using
optimal wavelengths selected by PCA.

Table 6. Classification results for SVM, k-NN, and RBFNN models based on optimal wavelengths
selected by ICA.

Model Parameter 5 Calibration Set Prediction Set

Acc. 6 (%) Sen. 7 Spe. 8 Acc. (%) Sen. Spe.

Pixel to pixel 1
SVM (256, 16) 82.15 0.739 0.903 74.9 0.708 0.784
k-NN 3 85.60 0.791 0.896 71.13 0.618 0.789

RBFNN 6 78.92 0.695 0.884 76.74 0.797 0.819

Pixel to object 2
SVM (256, 9.19) 82.15 0.739 0.903 78.63 0.271 0.998
k-NN 3 85.60 0.791 0.896 79.58 0.393 0.962

RBFNN 6 78.92 0.695 0.884 80.47 0.341 0.996

Object to pixel 3
SVM (147, 84.45) 94.68 0.879 0.976 54.63 0.870 0.285
k-NN 5 93.64 0.849 0.974 62.17 0.709 0.551

RBFNN 3 93.96 0.851 0.977 48.34 0.565 0.417

Object to object 4
SVM (147, 84.45) 94.68 0.879 0.976 93.81 0.863 0.969
k-NN 5 93.64 0.849 0.974 90.58 0.805 0.947

RBFNN 3 93.96 0.851 0.977 93.30 0.844 0.970
1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means
models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise
spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict
object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and
parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.
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2.6. Prediction Maps of Raisin Variety Detection

Based on the developed models, prediction maps of different raisins varieties could be formed.
According to the results in Table 5, we used the pixel-wise SVM model to form prediction maps.
Raisin grades of the corresponding pixel were predicted to form classification maps, and prediction
maps are shown in Figure 4. Pixel-wise prediction maps indicate that most of the pixels could be
correctly classified. The prediction maps show clear a difference between WHB and XF according to
different visualized prediction color.
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3. Materials and Methods

3.1. Sample Preparation

Two varieties of raisins, including Wuhebai (WHB) and Xiangfei (XF), were collected from a
local market in Shihezi, Xinjiang Uygur Autonomous Region, China. For each variety of raisin,
three grades (Grade1-large size, Grade2-medium size, Grade3-small size) of raisins were manually
collected according to the raisin size. For each grade, 450 g samples were divided into 30 groups
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(nearly 15 g per group) to acquire 30 hyperspectral images. Two varieties of raisins were all produced
in 2017. RGB images of the two varieties of raisins are shown in Figure 5.
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Figure 5. RGB images of the two varieties of raisins: (a) WHB; (b) XF.

3.2. Hyperspectral Imaging System

The hyperspectral image acquisition was carried out using an assembled near-infrared
hyperspectral imaging system with the spectral range of 975–1646 nm. The system consisted of
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an ImSpector N17E imaging spectrograph (Spectral Imaging Ltd., Oulu, Finland), a Xeva 992 camera
(Xenics Infrared Solutions, Leuven, Belgium) installed with an OLES22 lens (Spectral Imaging Ltd.,
Oulu, Finland), two 150 W tungsten halogen lamps (3900 Lightsource, Illumination Technologies Inc.,
Elbridge, NY, USA) that were symmetrically placed and served as the light source, and a conveyer
belt (Isuzu Optics Corp., Taiwan). The imaging system was controlled by the software (Xenics N17E,
Isuzu Optics Corp., Taiwan), which can be used to calibrated and analyze the images as well. The
sketch of the hyperspectral imaging system is presented in Figure 6.
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3.3. Hyperspectral Image Acquisition and Correction

To acquire hyperspectral images, the distance between sample plane and the camera was set to
16 cm, the moving speed of the plate was set to 13.5 mm/s, and the exposure time of the camera was set
to 4 ms. After adjustment, white reference image was collected by a white Teflon bar whose reflectivity
is approximately 100%, and dark reference image was acquired by turning off the light source and
covering the lens with lens cap whose reflectivity is about 0%. The white and dark reference images
were used to calibrate the light intensity and reduce the dark current. For each group, one image was
acquired. In all, 30 images were acquired for each grade of raisin.

After raw hyperspectral images acquisition, hyperspectral images were then corrected by the
following equation:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Ir is the raw image, Iw is the white reference image and Id is the dark
reference image.

3.4. Spectral Data Preprocessing and Extraction

The hyperspectral image at 1119 nm was selected for background segmentation since the
reflectance difference between sample and background was more obvious. To differentiate background
from foreground, we set the segmentation threshold to 0.122 for hyperspectral image binarization.

After image correction, spectral information was extracted from hyperspectral images. Each raisin
kernel was defined as the region of interest (ROI). Pixel-wise spectra within the ROI were firstly
extracted, and wavelet transform (WT) was used for smoothing. Wavelet function of Daubechies
7 with a decomposition level of 3 was used to reduce random noises. After WT preprocessing,
standard normal variate (SNV) was used to reduce the influence of scattering of pixel-wise spectra [25].
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Then, average spectra calculated according to pixel-wise spectra within each ROI were used to represent
the sample. In this study, pixel-wise spectra and average spectra were both used for analysis.

To extract spectral information, a binary image was obtained using the gray-scale image at
1199 nm, the background was set as 0 and the kernel regions were set as 1. The binary image was
applied to the gray-scale images at each wavelength, and the background information was thus
removed. After the background removal, pixel-wise spectra were extracted and preprocessed.

3.5. Sample Set Division

For each grade of raisin, 30 hyperspectral images were acquired. Hyperspectral images were
randomly split into the calibration set and prediction set at the ratio of 2:1, with 20 hyperspectral
images in the calibration set and 10 hyperspectral images in the prediction set for each grade.

3.6. Data Analysis Methods

3.6.1. Principal Component Analysis

Principal component analysis (PCA) was used to explore the qualitative differences among
different varieties of raisins [11,26–28]. In hyperspectral images, object-wise analysis and pixel-wise
analysis were studied. For object-wise analysis, the average spectrum of each raisin kernel was used to
conduct PCA; for pixel-wise analysis, pixel-wise spectra were used to conduct PCA. To explore the
differences among raisins, the samples in the calibration set were used to conduct PCA. Then, scores
values of each PC were then assigned to each kernel or each pixel to form the PCA scores image.

Hyperspectral imaging suffers from the large volume of data, and effectively reducing the data
volume is of significance for data processing. There are also collinearity and redundancy in the spectra,
which will affect the data analysis procedure. Variable selection is an effective strategy to reduce the
data volume and select informative wavelengths. In this study, PCA loadings were used to select
effective wavelengths. Loadings of each principal component (PC) indicate the correlation between the
original variables and new feature variables. The higher the loading value is, the more important the
variable is. The wavelengths with high absolute loading values can be selected as effective variables.

3.6.2. Independent Component Analysis

Independent component analysis (ICA) is a technique which is widely used in feature selection
and feature extraction. It extracts independent source signals which are statistical independent by
linear or nonlinear transformation. Independent component (IC) is obtained by a high-order statistic.
Given a spectral matrix X, X can be expressed as Equation (2):

X = As (2)

where s are the independent components (ICs) and A is the mixing matrix. For spectral data matrix X,
s is unknown, and the general procedure is to find the estimation of s by the following equation:

_
s = WX (3)

where
_
s is the estimation of s and W is the weight matrix for unmixing.

The procedure to select optimal wavelengths is as follow [29]. The average absolute weight value
of each variable in W is calculated, and the variables with larger average absolute weight values are
selected as optimal wavelengths. To compare with PCA, the same number of optimal wavelengths was
selected by ICA. Fast ICA proposed by Hyvarinen and Oja was used to perform ICA in this study [30].

3.6.3. Discriminant Models

Support vector machine (SVM) is used to build models to classify different varieties of raisins.
SVM is a supervised machine learning method, which is efficient to deal with linear and nonlinear data
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for classification and regression. For classification issues, SVM maps the original data into new feature
spaces [31–33]. According to linearly separable data, a simple linear classifier can be constructed.
For non-linearly separable data, the original data should be mapped into high-dimensional feature
spaces so that the non-linearly separable issue can be transformed to a linearly separable issue.
Kernel functions are the key for the mapping. Radial basis function (RBF) is a widely used kernel
function with good performances for nonlinear data, and it was used as kernel function in this study.
To conduct SVM with RBF kernel function, model penalty coefficient (C) and kernel parameter (γ)
were determined by a grid-search procedure. In this study, the range of C and γ was 2−8–28.

The k-nearest neighbors algorithm (k-NN) is a type of instance-based learning method used for
classification and regression [34,35]. Both for classification and regression, a useful technique can be
used to assign weight to the contributions of the neighbors, so that the nearest neighbors contribute
more to the average than the more distant ones. The k-NN algorithm is among the simplest of all
machine learning algorithms.

Radial basis function neural network (RBFNN) is an efficient feedforward neural network,
which has the best approximation performance and global optimal characteristics that outperforms
other feedforward networks, and has a simple structure as well as a fast training speed. On the other
hand, it is also a neural network model that is widely used in pattern recognition, nonlinear function
approximation, and other fields [36,37].

3.6.4. Software and Model Evaluation

The performance of classification models was evaluated by the classification accuracy, specificity,
and sensitivity [38]. Hyperspectral images analysis, spectral data extraction, spectral preprocessing,
PCA analysis, SVM, K-NN, and RBFNN were conducted on Matlab R2014b (The MathWorks, Natick,
MA, USA).

3.6.5. Visualization of Prediction Maps

One of the advantages of hyperspectral imaging is that prediction maps can be formed to visualize
the distribution of physical and chemical features. Object-wise or pixel-wise calibration models using
spectra extracted from the hyperspectral images can be used to predict object-wise or pixel-wise
features, and prediction maps can be formed with the predicted values [6,13,39].

4. Conclusions

Hyperspectral imaging was successfully used to identify different varieties of raisins. Three grades
of raisins of Wuhebai and Xiangfei were studied. Object-wise and pixel-wise spectra were extracted.
PCA analysis was firstly conducted to form PCA scores images, and scores images of the first seven
PCs indicated the differences between different varieties and among different grades. PCA and ICA of
object-wise spectra and pixel-wise spectra were conducted to select effective wavelengths. The overall
results indicates that SVM models and RBFNN models using object-spectra to predict object-spectra
based on optimal wavelengths selected by PCA both obtained acceptable results. The overall results
showed that hyperspectral imaging was an effective technique to identify raisin varieties, and that both
pixel-wise and object-wise could be used to build classification models. Selection of representative
samples was important for building a stable and accurate model, and how to select representative
samples should be studied in the future.
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