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Purpose: We aim to develop a multi-task three-dimensional (3D) deep learning
(DL) model to detect glaucomatous optic neuropathy (GON) and myopic features
(MF) simultaneously from spectral-domain optical coherence tomography (SDOCT)
volumetric scans.

Methods: Each volumetric scan was labelled as GON according to the criteria of retinal
nerve fibre layer (RNFL) thinning, with a structural defect that correlated in position with
the visual field defect (i.e., reference standard). MF were graded by the SDOCT en
face images, defined as presence of peripapillary atrophy (PPA), optic disc tilting, or
fundus tessellation. The multi-task DL model was developed by ResNet with output of
Yes/No GON and Yes/No MF. SDOCT scans were collected in a tertiary eye hospital
(Hong Kong SAR, China) for training (80%), tuning (10%), and internal validation (10%).
External testing was performed on five independent datasets from eye centres in
Hong Kong, the United States, and Singapore, respectively. For GON detection, we
compared the model to the average RNFL thickness measurement generated from the
SDOCT device. To investigate whether MF can affect the model’s performance on GON
detection, we conducted subgroup analyses in groups stratified by Yes/No MF. The
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area under the receiver operating characteristic curve (AUROC), sensitivity, specificity,
and accuracy were reported.

Results: A total of 8,151 SDOCT volumetric scans from 3,609 eyes were collected. For
detecting GON, in the internal validation, the proposed 3D model had significantly higher
AUROC (0.949 vs. 0.913, p < 0.001) than average RNFL thickness in discriminating
GON from normal. In the external testing, the two approaches had comparable
performance. In the subgroup analysis, the multi-task DL model performed significantly
better in the group of “no MF” (0.883 vs. 0.965, p-value < 0.001) in one external testing
dataset, but no significant difference in internal validation and other external testing
datasets. The multi-task DL model’s performance to detect MF was also generalizable
in all datasets, with the AUROC values ranging from 0.855 to 0.896.

Conclusion: The proposed multi-task 3D DL model demonstrated high generalizability
in all the datasets and the presence of MF did not affect the accuracy of GON
detection generally.

Keywords: artificial intelligence, deep learning, multi-task, glaucomatous optic neuropathy, glaucoma, myopic
features, myopia, optical coherence tomography

INTRODUCTION

Glaucoma is the leading cause of visual morbidity and blindness
worldwide, and it is projected to affect 111.8 million people
by 2040 (1, 2). Prompt and accurate detection of glaucoma
is extremely important in preventing and reducing irreversible
visual loss. Spectral-domain optical coherence tomography
(SDOCT), a non-contact and non-invasive imaging technology
for cross-sectional and three-dimensional (3D) view of the retina
and optic nerve head (ONH), is now commonly used to evaluate
glaucomatous optic neuropathy (GON), the structural change of
glaucoma (3–5). SDOCT is widely used to quantify retinal nerve
fibre layer (RNFL), neuro-retinal rim, and other inner retinal
layers (e.g., ganglion cell layer, inner plexiform layer). SDOCT
is sensitive and specific for detecting glaucoma, especially when
combined with other ophthalmoscopic modalities (3, 4, 6).

Nevertheless, myopic features (MF), including peripapillary
atrophy (PPA), optic disc tilting, and fundus tessellation, could
influence GON identification based on RNFL thickness
measurement alone, which should be considered when
interpreting the optic disc and its circumpapillary regions
for diagnosis (7). For example, PPA beta zone correlates with
glaucoma, while gamma zone is related to axial globe elongation.
A higher degree of vertical optic disc tilting is associated with
a more temporally positioned RNFL thickness peak, and a
higher degree of fundus tessellation is associated with thinner
RNFL (8–10). Eyes with longer axial length are associated
with significantly higher percentages of false-positive errors
based on an SDOCT built-in normative database (11). Hence,
evaluating GON using SDOCT based on RNFL thickness and
built-in normative databases alone may not be reliable. As
illustrated in Supplementary Figure 1A, MF can also result in
thinning of RNFL thickness (i.e., outside of the normal RNFL
range) in eyes without GON which is similar to eyes with GON
(Supplementary Figure 1B). Other diagraphs and metrics, such

as topographical ONH measurements, RNFL thickness map,
RNFL deviation map, circumpapillary RNFL thickness with
“double-hump pattern” should also be evaluated to differentiate
these two pathologies carefully. For example, in purely myopic
eyes, the “double-hump pattern” is still existed but with temporal
shift due to optic disc tilting. The RNFL thickness map also
shows normal thickness except that the angle between superior
and inferior RNFL bundles is smaller. While in GON eyes,
RNFL “double hump pattern” is altered and thinner RNFL
thickness appears at specific regions. Thus, interpretation of
the results requires experienced glaucoma specialists or highly
trained assessors who have good knowledge on both GON and
OCT limitations.

Deep learning (DL), composed of multiple processing layers,
allows computational models to learn representative features
with multiple levels of abstraction. These models showed promise
in pattern recognition and image analysis (12). Currently,
automated image analysis based on DL technology has been
developed to detect GON from different kinds of images, such
as fundus photographs (FP) and OCT images (13–20). We
previously developed a 3D DL model to detect GON from
SDOCT volumetric scans, which performed non-inferiorly to
glaucoma specialists (21). However, all these DL algorithms
only detected GON without learning features of Yes/No MF.
Previous studies showed an increased risk of glaucoma among
myopic eyes and high myopia is also a risk factor of GON
progression (22, 23). Besides, there is a lack of knowledge
whether MF affects DL model’s discriminative ability for GON
detection. Having additional information on yes/no MF may help
to evaluate subjects with glaucoma further. Multi-task learning is
a training paradigm to train DL models with data from multiple
tasks simultaneously, using shared representations to learn the
common features between a collection of related tasks (24). It has
been used in ultrasound, CT, and dermoscopic images (25–27),
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which showed potential advantages of integrating information
across domains and extracting more general features for different
tasks. Our previous work also applied multi-task technique
for detecting GON and predicting visual field (VF) metrics
(28), or detecting different kinds of retinal diseases (29, 30)
from OCT images.

In this study, we aimed to train and validate a multi-task
3D DL model to analyze SDOCT volumetric scans and identify
GON and MF simultaneously. We hypothesise that the model
with multi-task technique would extract common features and
achieve high generalizability for both tasks. Besides, the proposed
model could achieve better or comparable performance when
comparing with conventional RNFL thickness.

MATERIALS AND METHODS

This study was a multi-centred retrospective study. It was
approved by the Research Ethics Committee of the Hospital
Authority, Hong Kong (HK), the SingHealth Centralised
Institutional Review Board, Singapore, and Stanford University’s
Institutional Review Board/Ethics Committee, the United States
(US). The study adhered to the Declaration of Helsinki. As the
study involved only retrospective analysis using fully anonymized
SDOCT images, informed consent was exempted.

Training, Tuning, and Internal Validation
Dataset
The dataset for training, tuning, and internal validation was
inherited from our previous study (21). It was collected from
existing database of electronic medical and research records at
the Chinese University of Hong Kong (CUHK) Eye Centre and
the Hong Kong Eye Hospital (HKEH). The inclusion criteria
were (1) age equal to or older than 18 years old, (2) gradable
SDOCT optic disc scans and en face images, (3) reliable VF
tests, and (4) confirmed diagnosis of glaucoma or healthy
subjects. The exclusion criteria were (1) other ocular or systemic
diseases that may cause optic disc abnormalities or VF defect;
(2) missing data on VF, SDOCT optic disc scans, or en face
images. The non-glaucomatous subjects from the research centre
were volunteers from existing cohorts in CUHK Eye Centre. The
non-glaucomatous subjects from the eye clinics were subjects
who seek for opportunistic eye check-ups. All study subjects
underwent SDOCT imaging by Cirrus HD-OCT (Carl Zeiss
Meditec, Inc., Dublin, CA, United States) using the optic disc
cube scanning protocol, which generated the RNFL thickness
map (6 mm2

× 6 mm2) around the optic disc. The VF of each
study subject was determined by static automated white-on-white
threshold perimetry using the Humphrey Field Analyzer II (Carl
Zeiss Meditec, Inc., Dublin, CA, United States). For each feasible
eye, 3D SDOCT optic disc scan and 2D en face fundus image
could be extracted simultaneously.

External Testing Datasets
We used five independent datasets from other eye centres to
test the performance of the DL model: External testing 1, Prince

of Wales Hospital (PWH), HK; External testing 2, Tuen Mun
Eye Centre (TMEC), HK; External testing 3, Alice Ho Miu Ling
Nethersole Hospitals (AHNH), HK; External testing 4, Byers
Eye Institute, Stanford University (Stanford), United States; and
External testing 5, Singapore Eye Research Institute (SERI),
Singapore. The inclusion criteria, exclusion criteria, VF and OCT
device, and ground truth labelling for the external testing datasets
were the same as the development dataset.

Ground Truth Labelling
For the ground truth labelling, we first excluded ungradable
images and then classified GON and MF in each gradable images,
which was consistent with our previous studies (21, 31). The
criteria were as follow:

Ungradable SDOCT images was defined as signal strength (SS)
less than 5 or any artefacts influencing the measurement circle or
> 25% of the peripheral area (31). GON was defined as RNFL
thinning on gradable SDOCT images, with a structural defect
that correlated in position with the VF defect which fulfilled
the definition of glaucomatous VF defect (32). These eyes were
labelled as “Yes GON.” Eyes without GON were defined as
normal VF with no obvious glaucomatous optic disc cupping and
loss of neuro-retinal rim, and these eyes were labelled as “No
GON.”

Myopic features included presence of (1) PPA, chorioretinal
thinning and disruptive of the retinal pigment epithelium (RPE)
(33), (2) optic disc tilting, the ratio between the shortest and
longest metres (tilt ratio) less than 0.8 (34), and (3) fundus
tessellation, increased visibility of the large choroidal vessels
outside of the parapapillary area (8). Eyes with one or more of
these features were labelled as “Yes MF,” while eyes without any
features were labelled as “No MF” (Supplementary Figure 2).

Following the definitions, SDOCT scans and LSO en
face images were subjected to a tiered grading system by
trained assessors, ophthalmologists, and glaucoma specialists, for
assessing image quality, MF, and GON, respectively. Images were
labelled when two graders arrived at the same categorization
separately. For those cases on which the two graders did not arrive
at the same categorization in their independent evaluations, the
cases were reviewed and categorised by senior graders.

Data Pre-processing
We applied standardisation and normalisation for data pre-
processing. Specifically, standardisation was used to transfer data
to have zero mean and unit variance, and normalisation rescaled
the data to the range of 0–1. To alleviate the over-fitting issue,
during the training process, we used several data augmentation
techniques, including random cropping and random flipping
at three axes, to enrich training samples for the 3D SDOCT
volumetric data. Consequently, the final input size of the network
was 200 × 1000 × 200.

We implemented the DL model using Keras package and
python on a workstation equipped with 3.5 GHz Intel R© CoreTM

i7-5930K CPU and GPUs of Nvidia GeForce GTX Titan X. We
set the learning rate as 0.0001 and optimised the weights of the
networks with Adam stochastic gradient descent algorithm.
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Development of the Multi-Task Deep
Learning Model
The proposed network included three modules, (1) shared
feature extraction module, (2) GON classification module,
and (3) MF detection module, respectively. The constructed
network was similar to our previous study (21) with ResNet-
37 as the backbone. We used shortcut connections to perform
identity mapping and evade vanishing gradient problem during
backpropagation. We removed the fully connected layer from the
3D ResNet-37. This module acted as the shared feature extraction
module. In the GON classification module, a fully connected
layer with softmax activation accepted the feature from the first
module and output the classification probabilities for “Yes GON”
and “No GON.” Likewise, there was also a fully connected layer
with softmax activation in the MF detection module. Figure 1
displays the structure of the multi-task 3D DL model.

All gradable SDOCT volumetric scans collected from CUHK
Eye Center and HKEH were randomly divided for training (80%),
tuning (10%), and internal validation (10%) at the patient level.
In each set, the ratio of “Yes GON and Yes MF,” “Yes GON and
No MF,” “No GON and Yes MF,” and “No GON and No MF” was
similar, and multiple images from the same subjects were in the
same set to prevent leakage or performance overestimation. We
trained the multi-task DL model from scratch, and the tuning
dataset was used to select and modify the optimum model during
training. During the training, tuning, and internal validation,
we observed the training-validation curve to evaluate over-
fitting issue, which could also provide a further reference to the
generalizability of the models. Additionally, SDOCT volumetric
scans from PWH, TMEC, AHNH, Stanford, and SERI were used
for external testing.

Finally, we generated heatmaps for selected eyes by
class activation map (CAM) (35) to evaluate the model
performance qualitatively.

Development of Single-Task Models and
a 2D Model for Performance Comparison
We trained and tested two 3D single-task DL models using the
same split dataset as the proposed 3D multi-task model for GON
and MF detection, respectively. We also used segmentation-free
2D OCT B-scans as the input to train and test a 2D multi-task DL
model using the same split dataset as the proposed 3D multi-task
model. Each OCT volumetric scan contained 200 B-scans and the
mean predictions of these B-scans were used as the volume-level
prediction. All the models were tested on the same testing sets for
final performance comparison.

Statistical Analysis
The statistical analyses were performed by RStudio Version
1.1.463 (2009–2018 RStudio, Inc.). One-way ANOVA and chi-
square test were performed for numerical and categorical data,
respectively, to analyse demographic characteristics of all the
participants and data variances of different datasets. The area
under the receiver operating characteristic curve (AUROC)
with 95% confidence interval (CI), sensitivity, specificity,
and accuracy were calculated to evaluate the discriminative
performance (Yes/No GON and Yes/No MF) of the 3D
multi-task DL model, 3D single-task model, and 2D multi-
task DL model in all the datasets. For GON detection, we
further compared the performance of the proposed multi-
task 3D DL model to that of the average RNFL thickness
measurement generated from the SDOCT device. Delong test

FIGURE 1 | The structure of the three-dimensional (3D) multi-task deep learning model. The proposed network included three modules, (1) shared feature extraction
module, (2) glaucomatous optic neuropathy (GON) classification module, and (3) myopic features (MF) detection module, respectively. It was built based on
ResNet-37 network with 3D convolutional layers and global average pooling layer. The input was an OCT volumetric scan of size 200 × 1000 × 200 pixels after
image pre-processing and the output was Yes/No GON and Yes/No MF.
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TABLE 1 | Summary of the study subjects and data distribution.

Total yes GON and yes MF no GON and yes MF yes GON and no MF no GON and no MF p-value

Training dataset

No. of SDOCT scans 3,919 1,679 890 629 721 \

No. of patients 951 390 216 166 179 \

Gender (male/female) 402/549 183/207 83/133 72/94 64/115 0.047

Age, years (mean ± SD) 65.6 ± 12.6 67.3 ± 12.9 64.7 ± 12.3 66.6 ± 11.7 62.4 ± 12.2 < 0.001

No. of eyes 1,196 495 280 192 229 \

Eye (right/left) 579/617 242/253 142/138 90/102 105/124 0.70

Tuning dataset

No. of SDOCT scans 460 195 163 32 70 \

No. of patients 132 56 43 13 20 \

Gender (male/female) 52/80 22/34 16/27 8/5 6/14 0.32

Age, years (mean ± SD) 64.7 ± 12.7 66.3 ± 13.2 64.0 ± 13.0 63.8 ± 13.0 66.6 ± 10.3 0.66

No. of eyes 180 83 51 17 29 \

Eye (right/left) 89/91 39/44 27/24 8/9 15/14 0.91

Internal validation dataset

No. of SDOCT scans 454 205 114 36 99 \

No. of patients 143 63 38 19 23 \

Gender (male/female) 71/72 32/31 17/21 9/10 13/10 0.83

Age, years (mean ± SD) 67.0 ± 12.2 68.9 ± 12.6 63.3 ± 13.4 70.6 ± 11.1 65.1 ± 7.7 0.06

No. of eyes 196 96 44 22 34 \

Eye (right/left) 103/93 51/45 25/19 9/13 18/16 0.68

External testing dataset 1

No. of SDOCT scans 545 215 125 79 126 \

No. of patients 307 114 79 47 67 \

Gender (male/female) 133/174 55/59 35/44 19/28 24/43 0.42

Age, years (mean ± SD) 68.6 ± 11.6 70.4 ± 11.8 67.3 ± 11.6 72.6 ± 10.6 64.2 ± 10.4 < 0.001

No. of eyes 417 156 104 63 94 \

Eye (right/left) 211/206 80/76 55/49 28/35 48/46 0.75

External testing dataset 2

No. of SDOCT scans 267 74 61 69 63 \

No. of patients 193 52 48 51 42 \

Gender (male/female) 97/96 30/22 23/25 23/28 21/21 0.62

Age, years (mean ± SD) 60.5 ± 12.4 66.6 ± 7.1 55.6 ± 16.8 62.0 ± 9.6 56.5 ± 11.3 < 0.001

No. of eyes 261 70 61 69 61 \

Eye (right/left) 137/124 39/31 33/28 31/38 34/27 0.53

External testing dataset 3

No. of SDOCT scans 515 296 101 66 52 \

No. of patients 294 156 66 41 31 \

Gender (male/female) 168/126 95/61 37/29 22/19 14/17 0.40

Age, years (mean ± SD) 62.8 ± 12.5 64.2 ± 10.9 60.4 ± 14.0 65.9 ± 10.8 57.2 ± 16.4 0.004

No. of eyes 428 243 86 54 45 \

Eye (right/left) 213/215 121/122 44/42 26/28 22/23 0.99

External testing dataset 4

No. of SDOCT scans 933 477 57 241 158 \

No. of patients 249 108 19 58 64 \

Gender (male/female) 109/136 53/54 11/8 22/35 23/39 0.40

Age, years (mean ± SD) 66.0 ± 14.9 70.2 ± 13.6 64.5 ± 11.8 67.0 ± 16.6 58.5 ± 13.3 < 0.001

No. of eyes 399 187 25 92 95 \

Eye (right/left) 205/194 96/91 13/12 48/44 48/47 0.99

External testing dataset 5

No. of SDOCT scans 1058 287 171 222 378 \

No. of patients 272 65 56 53 98 \

Gender (male/female) 155/117 43/22 32/24 35/18 45/53 0.02

Age, years (mean ± SD) 68.6 ± 8.5 67.5 ± 8.9 70.6 ± 8.4 69.2 ± 8.3 67.9 ± 8.4 0.17

No. of eyes 532 126 88 119 199 \

Eye (right/left) 263/269 61/65 56/32 52/67 94/105 0.80

GON, glaucomatous optic neuropathy; MF, myopic features.
Training, Tuning, and Internal validation: CUHK Eye Centre and Hong Kong Eye Hospital (HKEH), Hong Kong SAR.
External testing dataset 1: Prince of Wales Hospital (PWH), Hong Kong SAR.
External testing dataset 2: Tuen Mun Eye Centre (TMEC), Hong Kong SAR.
External testing dataset 3: Alice Ho Miu Ling Nethersole Hospital (AHNH), Hong Kong SAR.
External testing dataset 4: Byers Eye Institute, Stanford University (Stanford), the United States.
External testing dataset 5: Singapore Eye Research Institute (SERI), Singapore.
One-way ANOVA and χ2 test were used for numerical and categorical data, respectively for comparison between “yes GON and yes MF,” “yes GON and no MF,” “no
GON and yes MF,” and “no GON and no MF” groups. p-values in bold were AUROC values with significant difference.
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was used to compare the AUROCs of different methods. To
investigate whether MF can affect the model’s performance
on GON detection, we also conducted subgroup analyses in
groups stratified by Yes/No MF. All the hypotheses tested were
two-sided, and a p-value of less than 0.05 were considered
statistically significant.

RESULTS

Table 1 displays the characteristics of all the datasets. We
investigated 2,541 subjects, including 1,452 glaucoma patients
and 1,089 non-glaucomatous subjects. In the total of 8,151
SDOCT volumetric scans from 3,609 eyes were collected. To
develop the multi-task DL model, we used 3,919 scans from
1,196 eyes for training, 460 scans from 180 eyes for tuning,
and 454 scans from 196 eyes for internal validation. For
the external testing, we collected five independent datasets
from different eye centres and used 545, 267, 515, 933, and
1,058 SDOCT volumetric scans, from 417, 261, 428, 399,
and 532 eyes, respectively. There was no significant difference
in age, gender (male vs. female), and eye (right vs. left)
of subjects among all the groups in tuning and internal
validation set. For training set, age and gender had a significant
difference.

Table 2 demonstrates the performance of the 3D multi-
task DL model for GON identification and the comparison
to average RNFL thickness, a 3D single-task DL model, and
a 2D multi-task model. In the internal validation dataset, the
proposed model had significantly higher AUROC (0.949 vs.
0.913, p < 0.001) than that of RNFL thickness. In the five
external testing datasets, the two methods (DL model vs. RNFL
thickness) had comparable AUROC values (0.890 vs. 0.890, 0.903
vs. 0.915, 0.906 vs. 0.913, 0.950 vs. 0.950, and 0.930 vs. 0.921,
respectively). Figures 2A,B shows the ROC curves and AUROC
values using the 3D multi-task DL model and RNFL thickness
to identify GON in internal validation and external testing. The
proposed 3D multi-task model also achieved generally better
performance than a 3D single-task model and a 2D multi-task
model.

In the sub-analysis stratified by Yes/No MF, there was no
significant difference in internal validation (0.938 vs. 0.952,
p-value = 0.65) and External testing 1 (0.884 vs. 0.896,
p-value = 0.67), External testing 2 (0.926 vs. 0.900, p-value = 0.47),
External testing 4 (0.941 vs. 0.940, p-value = 0.95), and External
testing 5 (0.923 vs. 0.925, p-value = 0.93). In External testing 3, the
multi-task DL model performed significantly better in the group
of “no MF” (0.883 vs. 0.965, p-value < 0.001) (Table 3).

Table 4 and Supplementary Figure 3 illustrate the DL model’s
performance to detect MF. It was generalizable in internal
validation and five external testing datasets, with the AUROC
values of 0.892 (95% CI, 0.860–0.924), 0.885 (95% CI, 0.855–
0.915), 0.855 (95% CI, 0.811–0.899), 0.886 (95% CI, 0.856–0.916),
0.866 (95% CI, 0.843–0.888), and 0.875 (95% CI, 0.854–0.896),
respectively. When comparing with a 3D single-task model and a
2D multi-task model, the proposed 3D multi-task showed better
performance with higher generalizability in external testing.

The training-tuning curve (Supplementary Figure 4) showed
that the multi-task 3D DL model converged approximately
around the 30th epoch and kept stable without significant
oscillation after the 50th epoch. This finding, combined with the
discriminative performance results in all the datasets, suggested
that the multi-task 3D DL model had learned general knowledge
to identify both GON and MF, and was not overfitted.

On the heatmaps (Figure 3), the red-orange-coloured area has
the most discriminatory power to detect MF. The optic disc and
PPA areas were red-orange-coloured in the truly detected eye
with PPA. It demonstrated that the 3D multi-task DL model could
discriminate MF around the ONH. While for the truly detected
SDOCT scans as “no MF,” the heatmaps showed that only the
optic disc area was red-orange-coloured.

DISCUSSION

To the best of our knowledge, the proposed multi-task 3D
DL model is the first reported attempt to automatically detect
GON and MF from SDOCT volumetric data simultaneously. The
results showed a generalised performance for both tasks among
the datasets and the presence of MF did not significantly affect
DL model’s ability to identify GON.

Compared with a single task model, a multi-task model
learned shared features from multiple tasks simultaneously.
These shared features can potentially increase data efficiency
and yield faster learning speed for related or down-stream
tasks, which may alleviate DL’s weakness of requiring large-
scale data and computation power (24). The proposed 3D
DL multi-task model showed higher generalizability to detect
GON when comparing with our previous single task model
(21). When tested on two newly collected unseen datasets from
HK (External testing 3) and Singapore (External testing 5), it
achieved AUROC values of 0.906 and 0.930, respectively. To
be more precise, we also trained single-task models with the
exact same split data as the multi-task model. We found that
the multi-task model had generally better performance for GON
detection. The sub-analysis also reflected that except External
testing 3, the presence or absence of MF did not influence the
discriminative performance of the proposed multi-task DL model
for GON detection in internal validation and external testing,
which proved that during the training process, the multi-task
model learned effective features to identify GON in eyes with
or without MF, so that when testing on unseen datasets, the
performance of GON detection will not be influenced by presence
or absence of MF. Hence, after applying the multi-task learning
strategy and providing additional information of Yes/No MF
during the training process, the proposed multi-task 3D DL
model learned more general features and demonstrated a robust
discriminative ability in the task of identifying GON when tested
on different datasets.

Compared with conventional method, i.e., RNFL thickness
measurement, the DL model performed better in internal
validation and comparable in five external testing datasets for
GON identification. In addition to the good performance, this
automated DL model can provide a straightforward classification
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result, i.e., Yes or No GON, which was more advantageous than
current discriminative capability based on RNFL thickness and
built-in normative databases as the RNFL thickness is affected
by various factors including axial length, myopia, age, optic disc
size, and SS (36–41). Experienced ophthalmologists are needed
to interpret and classify GON based on a series of outputs from
the SDOCT report. Therefore, the proposed multi-task model
can potentially be applied in primary settings without glaucoma
specialists or even ophthalmologists on site, which may help
primary care clinicians to identify GON simply from the binary
output of the DL model, and then refer to ophthalmologists.

In addition, the multi-task DL model also offered an output
of “Yes/No MF” for each image with good and consistent
performance in internal and external datasets. Myopia is one
of the risk factors for glaucoma (23, 42–44) and the ONH
deformations in myopic eyes may predispose toward glaucoma
(45). Features observed on areas around ONH on the fundus,
such as the location of principal RNFL bundles, optic disc

tilting, and optic disc torsion, were also related to spherical
error and glaucoma severity (7, 46). Our multi-task 3D DL
model can detect the presence or absence of these features and
give clinicians more information. The heatmaps also proved
that for MF discrimination, the 3D multi-task DL model paid
more attention on the ONH and the surrounding areas. Besides,
the multi-task model showed significantly higher generalizability
when comparing with single-task model for MF detection. Thus,
it further proved aforementioned advantage of the multi-task
model that learning both GON and MF features during training
could potentially improve the model’s generalizability for both
tasks when testing on unseen datasets.

Our study has several strengths. First, we collected our datasets
from different eye centres from different countries and regions
including different ethnic backgrounds. It performed consistently
well in all the datasets. The training-tuning curves also illustrated
that the proposed DL model was not overfitted. Thus, our
multi-task 3D DL model could potentially be applied on other

TABLE 2 | The discriminative performance of the multi-task 3D deep learning model for detecting glaucomatous optic neuropathy and the comparison to average retinal
nerve fibre layer thickness, a single-task 3D deep learning model, and a multi-task 2D deep learning model in all datasets.

AUROC (95% CI) p-value Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

Accuracy, %
(95% CI)

PPV, % (95% CI) NPV, % (95% CI)

Internal validation

3D multi-task DL 0.949 (0.930–0.969) \ 88.0 (80.9–95.9) 91.6 (81.7–97.2) 89.4 (86.6–92.1) 92.2 (85.5–97.0) 87.1 (81.3–94.7)

Average RNFL thickness 0.913 (0.888–0.939) < 0.001 80.1 (72.2–88.4) 92.5 (84.0–97.2) 85.5 (82.2–88.6) 92.0 (85.7–96.9) 80.5 (75.0–86.7)

3D single-task DL 0.941 (0.920–0.961) 0.53 86.3 (73.4–95.0) 88.3 (78.4–98.6) 87.0 (84.1–90.1) 89.4 (82.8–98.4) 85.2 (76.4–93.5)

2D multi-task DL 0.940 (0.919–0.961) 0.53 84.7 (78.4–92.1) 92.5 (84.0–97.2) 88.3 (85.5–91.0) 92.6 (86.2–97.0) 84.4 (79.4–90.7)

External testing 1

3D multi-task DL 0.890 (0.864–0.917) \ 78.9 (70.4–86.4) 86.1 (77.3–92.8) 82.0 (78.7–85.1) 86.9 (81.4–92.4) 77.7 (72.1–83.3)

Average RNFL thickness 0.890 (0.864–0.916) 0.96 69.9 (63.7–76.7) 94.8 (89.2–98.0) 81.2 (78.3–84.2) 94.0 (88.7–97.5) 73.0 (69.5–77.3)

3D single-task DL 0.893 (0.867–0.919) 0.88 82.3 (70.1–89.8) 81.7 (72.9–92.0) 81.8 (78.7–85.0) 84.2 (79.2–91.6) 79.7. (72.0–86.2)

2D multi-task DL 0.900 (0.876–0.925) 0.58 82.7 (75.5–91.8) 82.1 (70.5–88.8) 82.3 (78.9–85.3) 84.3 (78.4–89.2) 80.2 (74.7–88.2)

External testing 2

3D multi-task DL 0.903 (0.867–0.939) \ 77.6 (67.1–86.7) 91.9 (83.1–98.4) 84.3 (80.2–88.4) 92.1 (85.0–98.2) 78.4 (72.0–85.4)

Average RNFL thickness 0.915 (0.881–0.949) 0.38 85.3 (78.3–93.7) 88.7 (77.4–93.6) 86.5 (82.4–90.3) 89.4 (82.5–94.1) 83.7 (77.9–91.6)

3D single-task DL 0.883 (0.841–0.925) 0.48 83.9 (69.2–93.7) 83.1 (70.2–94.4) 83.2 (79.0–87.3) 85.2 (78.1–94.1) 81.8. (72.1–90.8)

2D multi-task DL 0.882 (0.843–0.922) 0.45 81.1 (67.1–89.5) 83.1 (73.4–93.6) 82.0 (77.5–86.2) 84.9 (78.5–92.8) 79.3 (70.8–86.8)

External testing 3

3D multi-task DL 0.906 (0.880–0.933) \ 79.7 (68.5–88.1) 88.9 (79.1–96.7) 82.1 (76.5–86.6) 94.4 (90.5–98.2) 64.9 (56.2–74.7)

Average RNFL thickness 0.913 (0.885–0.941) 0.53 84.8 (80.4–90.9) 88.9 (81.1–94.1) 86.2 (82.9–89.3) 94.8 (91.7–97.1) 71.4 (65.6–79.3)

3D single-task DL 0.898 (0.868–0.928) 0.70 87.1 (78.0–92.5) 79.9 (70.5–88.5) 84.5 (79.4–88.2) 90.6 (87.4–94.3) 72.8 (62.2–81.4)

2D multi-task DL 0.903 (0.876–0.931) 0.89 82.4 (68.2–89.0) 84.9 (76.3–95.7) 82.9 (76.4–86.9) 92.7 (89.2–97.4) 67.6 (56.6–76.4)

External testing 4

3D multi-task DL 0.950 (0.936–0.963) \ 85.2 (79.0–92.5) 94.0 (86.5–98.1) 87.3 (83.2–91.1) 97.9 (95.8–99.3) 65.6 (58.1–77.4)

Average RNFL thickness 0.950 (0.937–0.963) 0.85 87.0 (79.5–90.5) 90.6 (85.9–96.2) 87.9 (83.5–90.3) 96.9 (95.5–98.7) 67.5 (58.4–73.5)

3D single-task DL 0.929 (0.911–0.947) 0.08 83.3 (74.1–92.9) 87.4 (77.2–95.4) 84.5 (78.8–89.6) 95.7 (93.0–98.1) 61.2 (52.3–76.8)

2D multi-task DL 0.939 (0.923–0.955) 0.31 88.0 (76.3–93.2) 84.7 (77.7–94.9) 87.1 (80.1–90.4) 95.1 (93.2–98.0) 67.8 (54.0–77.8)

External testing 5

3D multi-task DL 0.930 (0.915–0.946) \ 83.9 (80.4–87.2) 92.2 (89.6–94.7) 88.2 (86.3–90.0) 90.9 (88.2–93.6) 86.1 (83.6–88.6)

Average RNFL thickness 0.921 (0.905–0.937) 0.15 80.2 (73.1–90.2) 89.1 (78.1–94.5) 84.5 (82.5–86.6) 87.2 (79.1–92.9) 83.1 (78.9–89.7)

3D single-task DL 0.936 (0.922–0.951) 0.31 84.1 (80.8–88.8) 92.4 (87.1–94.9) 88.3 (86.3–90.2) 91.1 (86.2–93.8) 86.2 (83.8–89.5)

2D multi-task DL 0.938 (0.924–0.953) 0.45 84.1 (80.2–88.2) 93.8 (89.6–96.4) 89.0 (87.2–90.8) 92.5 (88.6–95.4) 86.4 (83.7–89.4)

AUROC, area under the receiver operator characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; DL, deep learning;
RNFL, retinal nerve fibre layer. p-values in bold were AUROC values with significant difference.
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FIGURE 2 | The area under the receiver operating characteristic (ROC) curve (AUROC) values of (A) the multi-task deep learning model and (B) retinal nerve fibre
layer thickness in internal validation and external testing for glaucomatous optic neuropathy detection.

TABLE 3 | Subgroup analysis for detecting glaucomatous optic neuropathy in groups stratified by yes/no myopic features.

AUROC (95% CI) *p-value Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

Accuracy, %
(95% CI)

PPV, % (95% CI) NPV, % (95% CI)

Internal validation

yes MF 0.938 (0.913–0.962) 0.65 85.4 (77.6–93.7) 90.4 (79.8–95.6) 87.2 (82.8–90.6) 94.0 (89.3–97.2) 77.3 (69.9–87.6)

no MF 0.952 (0.896–1) \ 94.4 (83.3–100) 95.0 (87.9–100) 94.1 (88.9–97.8) 86.8 (73.9–100) 97.8 (94.1–100)

External testing 1

yes MF 0.884 (0.849–0.918) 0.67 78.1 (67.0–85.6) 88.8 (80.8–96.8) 81.8 (76.8–86.2) 92.1 (87.8–97.2) 70.1 (62.6–77.6)

no MF 0.896 (0.851–0.941) \ 83.5 (68.4–93.7) 83.3 (72.2–94.4) 83.4 (77.6–88.3) 75.8 (66.4–89.6) 88.8 (82.4–94.9)

External testing 2

yes MF 0.926 (0.879–0.972) 0.47 87.8 (75.7–97.3) 90.2 (78.7–98.4) 88.9 (83.7–93.3) 91.8 (84.3–98.5) 86.6 (76.3–96.2)

no MF 0.900 (0.849–0.951) \ 79.7 (62.3–95.7) 90.5 (68.3–100) 83.3 (78.0–88.6) 90.0 (75.9–100) 80.3 (70.0–94.8)

External testing 3

yes MF 0.883 (0.847–0.919) < 0.001 74.7 (64.9–86.8) 90.1 (76.2–97.0) 78.6 (72.3–85.4) 95.5 (91.2–98.6) 54.8 (47.7–67.5)

no MF 0.965 (0.937–0.992) \ 90.9 (78.8–98.5) 94.2 (82.7–100) 91.5 (86.4–95.8) 94.7 (87.5–100) 89.3 (78.1–98.0)

External testing 4

yes MF 0.941 (0.916–0.966) 0.95 85.7 (79.9–91.2) 94.7 (87.7–100) 86.7 (81.7–91.2) 99.3 (98.3–100) 44.4 (36.3–55.4)

no MF 0.940 (0.918–0.962) \ 84.7 (77.2–90.9) 91.8 (85.4–97.5) 87.5 (84.0–90.7) 94.1 (90.2–97.9) 79.8 (73.1–86.4)

External testing 5

yes MF 0.923 (0.897–0.949) 0.93 87.8 (78.1–92.3) 88.3 (81.3–95.3) 87.6 (83.4–90.6) 92.5 (88.9–96.6) 80.8 (71.5–87.1)

no MF 0.925 (0.902–0.947) \ 78.8 (73.0–84.2) 95.5 (92.6–97.6) 89.2 (86.7–91.5) 91.2 (86.0–95.2) 88.4 (85.8–91.0)

*Z-test was used to compare the AUROC values between yes/no myopic features groups. p-values in bold were AUROC values with significant difference.

unseen datasets, even among different populations. Second, we
used multi-task technique to provide additional information
on MF without influencing GON identification. Current model
could detect two kinds of abnormalities simultaneously and will
potentially assist clinicians with less experience in classifying
glaucoma. Third, the multi-task DL model can generate
straightforward output of Yes/No GON and MF and can
be incorporated with our previously developed image quality
assessment model in the future (31), which will further strengthen

SDOCT as a screening tool in settings without sufficient
ophthalmologists on site. Fourth, we developed a 3D multi-task
model which could use of all the information in the volumetric
scan and showed generally better performance than 2D model
trained with B-scans for both tasks. It will provide volume-
level output which would be more straightforward for physicians
(non-ophthalmologists) and could also save manpower or
computation power to deal with large number of B-scans. One
of the limitations was that we used SDOCT paired en face
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TABLE 4 | The discriminative performance of the multi-task 3D deep learning model for detecting myopic feature and the comparison to a single-task 3D deep learning
model in all datasets.

AUROC (95% CI) p-value Sensitivity, % (95%
CI)

Specificity, % (95%
CI)

Accuracy, % (95%
CI)

PPV, % (95% CI) NPV, % (95% CI)

Internal validation

3D multi-task DL 0.892 (0.860–0.924) \ 79.6 (71.8–92.2) 86.7 (72.6–94.1) 81.9 (77.1–87.4) 93.3 (88.6–96.7) 64.6 (57.5–80.2)

3D single-task DL 0.873 (0.839–0.906) 0.39 79.6 (74.0–88.1) 83.7 (73.3–89.6) 80.8 (76.9–84.8) 91.8 (88.2–94.7) 63.4. (57.7–72.6)

2D multi-task DL 0.861 (0.823–0.900) 0.22 81.4 (74.9–88.4) 83.7 (74.8–90.4) 81.9 (78.0–85.9) 92.1 (88.9–94.9) 65.5 (59.0–73.9)

External testing 1

3D multi-task DL 0.885 (0.855–0.915) \ 83.8 (74.4–93.8) 81.5 (69.3–90.2) 83.1 (79.1–86.6) 88.2 (83.2–92.9) 75.5 (67.3–87.5)

3D single-task DL 0.851 (0.818–0.884) 0.13 81.5 (67.7–87.4) 78.1 (70.7–89.8) 80.0 (75.1–83.3) 86.0. (82.6–91.6) 71.6 (62.1–78.0)

2D multi-task DL 0.818 (0.781–0.855) 0.006 83.5 (73.8–92.9) 67.3 (54.6–76.6) 77.3 (72.8–80.9) 80.7 (76.8–84.9) 71.0 (62.6–83.1)

External testing 2

3D multi-task DL 0.855 (0.811–0.899) \ 83.7 (68.9–91.9) 76.5 (66.7–87.9) 79.8 (74.9–84.6) 78.3 (72.5–86.5) 81.8 (72.9–89.5)

3D single-task DL 0.806 (0.755–0.858) 0.16 65.2 (45.9–83.0) 86.4 (67.4–99.2) 74.9 (70.4–79.4) 82.8 (71.2–98.4) 70.8 (63.7–80.3)

2D multi-task DL 0.799 (0.747–0.852) 0.12 69.6 (54.1–87.4) 81.1 (60.6–92.4) 74.9 (70.0–79.4) 78.5 (68.1–89.0) 72.3 (65.6–83.3)

External testing 3

3D multi-task DL 0.886 (0.856–0.916) \ 78.3 (72.8–84.6) 88.1 (79.7–94.1) 80.6 (76.3–84.7) 95.6 (93.0–97.8) 54.7 (49.1–61.9)

3D single-task DL 0.831 (0.795–0.868) 0.03 65.8 (60.4–72.4) 95.3 (89.6–99.1) 72.7 (68.5–77.0) 97.9 (95.6–99.6) 45.7 (42.1–50.3)

2D multi-task DL 0.850 (0.812–0.887) 0.15 72.4 (64.1–81.2) 88.7 (78.3–95.3) 76.2 (70.5–81.4) 95.4 (92.1–97.9) 49.2 (43.4–56.8)

External testing 4

3D multi-task DL 0.866 (0.843–0.888) \ 68.4 (62.9–77.0) 95.0 (86.2–97.7) 79.5 (77.1–82.0) 94.7 (88.0–97.6) 69.1 (66.0–74.0)

3D single-task DL 0.849 (0.825–0.873) 0.34 70.6 (62.6–79.8) 84.7 (74.9–91.2) 76.5 (73.6–79.2) 85.9 (80.6–90.7) 68.3 (64.1–74.0)

2D multi-task DL 0.859 (0.836–0.883) 0.70 72.8 (66.1–86.2) 85.5 (70.9–90.7) 78.2 (75.5–81.1) 86.8 (79.7–90.7) 70.2 (66.3–79.7)

External testing 5

3D multi-task DL 0.875 (0.854–0.896) \ 84.1 (70.7–90.2) 76.5 (69.3–88.3) 79.8 (77.0–82.2) 73.2 (68.7–82.4) 86.2 (79.6–90.4)

3D single-task DL 0.886 (0.866–0.907) 0.18 83.2 (78.0–88.9) 83.8 (77.5–88.3) 83.4 (80.9–85.6) 79.6 (74.6–84.1) 86.7 (83.7–90.3)

2D multi-task DL 0.862 (0.840–0.884) 0.39 85.2 (69.0–90.4) 72.3 (65.5–87.2) 78.1 (75.4–80.7) 70.3 (66.3–80.9) 86.3 (78.4–90.3)

p-values in bold were AUROC values with significant difference.

FIGURE 3 | Examples of truly detected eyes by the multi-task 3D DL model. From left to right were heatmaps, raw images, and the corresponding en face fundus
images. The red–orange-coloured area on heatmaps has the most discriminatory power to detect MF. The heatmaps shows in panel (A) an eye with myopic features
(peripapillary atrophy, PPA), the optic disc area and the areas with PPA is red-orange-coloured. In panel (B) an eye without myopic features, only optic disc was
red-orange-coloured.
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photographs instead of colour FP to label MF due to the lack
of unpaired OCT and FP in most patients. Besides, we only
labelled the Yes/No MF instead of Yes/No myopia as the data
of spherical error and AL for most of the patients was lacking
due to the nature of retrospective study. However, information of
anatomical features could be more useful when detecting GON in
myopic eyes. In future, we may obtain a small dataset with paired
OCT, FP, spherical error, or AL, for data annotation and apply
advanced DL techniques, such as generative adversarial network
(GAN) (47) or semi-supervised learning (28), to generate pseudo-
labels for other data, which will further refine our model and
enhance its feasibility to detect GON in high myopic eyes. We
also intend to investigate whether increase the number of related
tasks will further enhance the DL model’s discriminative ability
and data-efficiency for GON detection.

In conclusion, with multi-task learning technique, the
proposed 3D DL model demonstrated high generalizability in
all the datasets to detect GON and MF simultaneously. It would
potentially enhance clinicians’ capability to identify GON in eyes
with MF and be applied in primary settings without sufficient
specialists on site.
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