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In clinical trials, harms (i.e., adverse events) are often reported by simply counting the number of people who
experienced each event. Reporting only frequencies ignores other dimensions of the data that are important for
stakeholders, including severity, seriousness, rate (recurrence), timing, and groups of related harms. Additionally,
application of selection criteria to harms prevents most from being reported. Visualization of data could
improve communication of multidimensional data. We replicated and compared the characteristics of 6 different
approaches for visualizing harms: dot plot, stacked bar chart, volcano plot, heat map, treemap, and tendril plot. We
considered binary events using individual participant data from a randomized trial of gabapentin for neuropathic
pain. We assessed their value using a heuristic approach and a group of content experts. We produced all
figures using R and share the open-source code on GitHub. Most original visualizations propose presenting
individual harms (e.g., dizziness, somnolence) alone or alongside higher level (e.g., by body systems) summaries
of harms, although they could be applied at either level. Visualizations can present different dimensions of all
harms observed in trials. Except for the tendril plot, all other plots do not require individual participant data. The
dot plot and volcano plot are favored as visualization approaches to present an overall summary of harms data.
Our value assessment found the dot plot and volcano plot were favored by content experts. Using visualizations
to report harms could improve communication. Trialists can use our provided code to easily implement these
approaches.

adverse events; controlled clinical trials; data visualization; drug-related side effects and adverse reactions;
harms; health communication; randomized controlled trials

Abbreviations: COSTART, Coding Symbols for a Thesaurus of Adverse Reaction Terms; ICE-T, Insight Confidence Essence
Timing; IPD, individual participant data; MedDRA, Medical Dictionary for Regulatory Activities; MUDS, Multiple Data Sources in
Systematic Reviews.

INTRODUCTION

Incomplete understanding of the potential harms of
interventions threaten public health (1–6). “Harms” is an
umbrella term endorsed by the Consolidated Standards of
Reporting Trials Statement for unwanted effects of inter-
ventions, which is preferred rather than euphemisms such
as adverse events, effects, reactions, risks, or complications
(7). Harms are often summarized using frequencies and
are presented in lengthy, often incomprehensible, tables.

Frequencies ignore the many other dimensions of the data
important for patients, such as the timing of harms, duration
of harms, whether harms may reoccur, and the severity
and seriousness of harms (8). Moreover, reporting the
occurrence of individual events (e.g., dizziness) neglects
to inform stakeholders about important effects on categories
or clusters of harms that can be observed when organized
for analysis, such as by body systems as in Medical Dic-
tionary for Regulatory Activities (MedDRA), a hierarchical
standardized system for classifying harms, which replaced
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Coding Symbols for a Thesaurus of Adverse Reaction Terms
(COSTART) in 1999 (9, 10).

Trialists and journal editors should consider using visual-
izations rather than tables to present a more complete picture
of the harms observed in trials. Patients and clinicians want
more information than just the risk of common harms, and
journal articles rarely provide the complete picture for evi-
dence users (11–22). Patients are as interested in all potential
harms as they are in potential benefits, and patients find it
difficult to choose a subset of harms that would match those
described in trial reports, picked in accordance with some
form of selection criteria (13, 21, 23).

Selection criteria are the rules that clinical trialists and
authors use to decide which harms will be presented in
any given report (24–26). In previous studies, researchers
have compared the individual participant data (IPD) from
internal company documents for trials of gabapentin with
the data presented in publications and found that although
hundreds of unique harms can be collected in a single trial,
less than a quarter of harms collected were ever reported in
the subsequent trial publications (25–28). Other research has
confirmed that this also occurs with serious harms (24–26,
29). Although manufacturers provide complete trial data to
regulatory agencies, public reports about drugs—from pub-
lications to Food and Drug Administration approval pack-
ages and drug labels—do not enumerate all harms recorded
in trials. For example, ClinicalTrials.gov includes tables
of harms data in the reported results; however, investiga-
tors are only required to post those harms occurring in
more than 5% of participants in trials of regulated products.
Reporting each of the hundreds of harms for each treatment
group might be overwhelming for patients and clinicians
(12, 15, 16, 18, 22). Typically, authors use selection criteria
based on numerical considerations, rather than importance,
to choose a subset of harms that are most common. Selec-
tion criteria are highly variable within and between trial
reports (24, 27). Because they are applied on the basis
of data collected and analyzed, selection criteria introduce
bias, and they dramatically affect the public’s ability to
identify and synthesize harms for interventions (27, 28,
30–34).

In an individual trial report, visualization of data may
best meet the needs of patients and clinicians and help to
overcome the limitation of selection criteria, which will
improve public understanding of harms (35, 36). Tabulated
numbers facilitate regulatory decisions, meta-analyses, and
clinical guidelines, but the tables that appear in most journal
articles are of limited value for these purposes; on the
other hand, large tables that would be useful for those
purposes are not effective for knowledge dissemination (35,
37–39). Neither tables reporting the frequency of hundreds
of potential harms nor tables reporting just a few harms
would capture what patients and clinicians need to know
when they select an intervention (40, 41). In addition, to
make these data more comprehensible, visualizations are
useful when presenting multidimensional data, because most
current approaches apply less restrictive selection criteria
than tables, or they collapse potentially related events into
higher-order categories of harms (e.g., MedDRA mid-level
body systems) (36, 37, 42, 43).

In this study, we assessed the value of 6 visualizations of
harms (41–43). Value describes a visualization’s ability to
communicate a complete picture and holistic understanding
of the data (44–46). Value, in this context, goes beyond
utility and can be assessed using 4 components: the time
savings a visualization provides, the insights and insightful
questions it spurs, the overall essence of the data it conveys,
and the confidence about the data it inspires (44–46).

We generated 6 types of visualizations using patient-
level data from a randomized controlled trial of gabapentin
for neuropathic pain. A group of experts comprising the
study authors and faculty and students of the Johns Hopkins
Center for Clinical Trials and Evidence Synthesis compared
the characteristics and value of these different approaches.
Our objective was to review and assess these approaches
from the perspective of content experts and to provide a
reference toolbox for trialists to encourage easier and wider
implementation of these approaches.

METHODS

Visualizations

From a recent scoping review (47) we selected 5 unique
visualizations—stacked bar chart (48), dot plot (49), volcano
plot (50), heat map (51), and tendril plot (52)—for present-
ing harms data. We also identified 1 additional visualization
as a subtype of the heat map for evaluation—treemap—
which has been used to present hierarchical medical data and
summaries of harms (53–55).

In theory, any visualizations could present data on harms
at any level; a visualization we produced with preferred
terms (i.e., the lowest standardized terms for specific harms)
could be used to present data on aggregated harms at a
higher-order term. However, we have chosen to recreate
these visualizations as presented in their source material.
Consequently, our descriptions of the visualizations and
methods to produce them, outlined in the following list,
reflect the original versions.

• Bar chart: A bar chart in this context is a standard
bar graph that depicts the relative occurrence of harms
experienced across higher-order classifications of harms
(e.g., mid-level or body-level systems). Specifically, the
bars present the frequency of participants experiencing a
harm to provide direct comparison of observed occur-
rence in a study. For additional information, the bars
are broken down into different colors to present the
occurrence by severity classification (i.e., mild, moder-
ate, severe) to replicate the source material (49). This
additional information, added by incorporating severity,
technically makes this a stacked bar chart; however, in
keeping with the source material, we have chosen to refer
to this as a bar chart throughout this article.

• Dot plot: A dot plot is a 2-panel display of harms at
the preferred-term level. The primary purpose of this
visualization is to highlight potential signals by provid-
ing an estimate of the treatment effect and its precision.
The first panel presents the incidence of each unique
harm by treatment group, and the second panel presents
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a summary measure of effect for each event and its
corresponding 95% confidence interval. We created our
dot plot with the relative risk as the summary measure to
replicate the source material (50).

• Volcano plot: A volcano plot is a type of bubble plot
that summarizes several characteristics of harms at the
preferred-term level. Standard data elements represented
in a volcano plot include the total frequency of each harm
experienced in the trial (i.e., the total bubble area), the
treatment arm with which there is a greater association
(indicated by color and at the side of the figure), the
statistical significance of the association (indicated by
color saturation and position on the vertical axis), and
the magnitude of effect (indicated by position on the
horizontal axis). We created our volcano plot using the
risk difference as the summary measure to replicate the
source material (51).

• Heat map: A heat map presents data about the expected
standardized effect for harms overall and across sev-
eral selected subsets or subgroups of harms. The sub-
groups can be any that are available, but they should
be distinct such that each “column” in the heat map
shows a different set of harms that may be of interest
to evidence users. A standardized effect is important
in heat maps, because the risks can be variable across
subgroups because of differences in denominators within
subgroups, but the degree of uncertainty is difficult to
show in a 2-dimensional field, thus the standardiza-
tion aims to temper the lack of presentation of preci-
sion regarding estimates. The method of organization
selected for the harms in a heat map is also important
because it will change which inferences can be made
more easily by looking at the figure. For example, when
harms are arranged according to higher-order body sys-
tems, readers can see which specific events and body
systems are most likely affected by the intervention. We
created our heat map using a standardized risk differ-
ence, represented by color, and arranged our preferred
terms by mid-level classifications, organized from most
to least events in gabapentin, to replicate the source
material (52).

• Treemap: A treemap is a subtype of heat map that
presents data about the expected standardized effect
for harms at the level of the preferred term in boxes,
organized by their mid-level classification. As with the
heat map, we used color to represent the standardized
effect; however, unlike the heat map, the size of the
box for each event also presents a dimension of data,
which we chose to be the absolute count for events occur-
ring in the intervention arm. The size of the preferred-
term boxes also affects the size of the corresponding
mid-level classifications, indicating which body systems
are more commonly involved when gabapentin is used
(55–57).

• Tendril plot: A tendril plot is a method of visually
summarizing the timing, directionality, and magnitude
of associations for harms. Each “tendril” represents a
preferred term for a harm, with the coloring of each
point indicating false-discovery rate–corrected P values
(Pearson’s χ2 test for the hypothesis that the treatment

arms have the same proportion of events up to that event)
and the size of each point being proportional to the total
number of events for that preferred term. The path fol-
lowed by the tendril contains the information pertaining
to event timing and direction of association (i.e., inter-
vention or comparator). The time since randomization
runs along each branch with the magnitude (or length)
between points being proportional to the timing between
each event. The center of the figure represents the start of
the study and all tendrils begin moving directly upward,
with each event shifting the direction of the tendril—
clockwise for events in the placebo arm or counterclock-
wise for events in the active arm—by some degree. The
degree can be configured for optimal presentation and
does not need to be the same for both arms: setting the
degrees as proportional to the number of participants in
each arm may be preferable with unbalanced treatment
allocation (53).

Details about the production of each visualization,
including how the data should be set up and the code
to produce each figure, are provided in the supplemental
R Markdown files (Web Appendices 1–5) (available at
https://doi.org/10.1093/aje/mxac005) and a public GitHub
repository (https://github.com/rquresh/HarmsVisualization).
Table 1 presents the algorithms that underly the creation of
each visualization.

Comparing visualizations

We created all visualizations in R (version 4.0.4, 2020; R
Core Team, R Foundation for Statistical Computing, Vienna,
Austria) using the same color palette and graphic options
(e.g., font) so that all visualizations would be compared
only on their content and not on our choices of elements to
represent the data.

Comparing visualization characteristics. We compared
the requirements for visualization generation according
to how the data need to be set up, such as formatting
and arrangement of the data set and the level of data
(i.e., individual participant or aggregate). We extracted the
characteristics of the visualizations according to how they
organize the harms data (i.e., preferred term or higher-order
terms) and the dimensions of the harms data they present.
Dimensions of harms data include absolute occurrence
(i.e., count), effect (e.g., risk) by treatment group, measure
of effect (e.g., relative risk, risk difference), confidence
intervals for estimates, significance test, severity of harms,
and timing of harms. We recorded which dimensions are
present in a visualization and which visualization elements
are used in their presentation. We considered visualization
elements to be the attributes of the data points in the figure,
such as size, shape, position, color hue, and color saturation.
If a dimension was not clearly presented through 1 of
these attributes, we considered and discussed whether it
was implicitly present (i.e., incorporated into an element
presenting a different dimension), whether it could be
included through a simple change (i.e., label or through
1 of the visualization elements), whether including it would
necessitate a complicated change (i.e., restructuring the
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Table 1. Steps to Produce Each Visualization

Visualization Steps to Produce Figure

Bar chart A. For all (or a selection of) harms occurring over the trial and classify them according to a higher-order term of
choice (e.g., either mid-level or body-level system)

B. Code all harms by severity (as determined by trial investigators).

C. Count the number of times each event and severity combination occurs for each arm in the trial.

D. Generate the bar chart on the basis of the counts for all harms, grouped according to their higher-order term and
colored according to severity, paneling the figure by the arm to compare between intervention and comparator.

Dot plot A. For all (or a selection of) preferred terms for harms occurring in the trial and to calculate the incidence in each
arm, followed by the desired summary measure of effect

B. Sort the harms by the magnitude of effect.

C. For all harms (y-axis), plot the incidence in each arm (x-axis) as 1 figure.

D. For all harms (y-axis), plot the measure of effect and 95% confidence interval as a second figure.

E. Join the figures into the resulting dot plot.

Volcano plot A. For all (or a selection of) preferred terms for harms occurring in the trial and to calculate the desired measure of
effect and corresponding P value (unadjusted or adjusted for multiple testing using a method like false
discovery rate)

B. Compute –log10(raw P value) for the y-axis.

C. Plot the harms with the –log10(P value) as the y-axis (i.e., higher on the figure corresponds to greater statistical
significance) and the measure of effect as the x-axis (i.e., estimates to the right of null are more common in
the intervention arm and estimates to the left are more common in the control arm).

D. Size the bubbles according to total events.

E. Color and saturate according to the magnitude and significance of treatment effect.

F. Add a reference line for statistical significance (i.e., –log10(0.05) data for unadjusted for multiple testing and
–log10(α) for data adjusted for multiple testing)

Heat map A. For all (or a selection of) preferred terms for harms occurring in the trial and to compute the standardized
difference for all events “overall” with the following formula: (p_t – p_c) / (sqrt(p_t × (1 – p_t) / n_t + p_c × (1
– p_c) / n_c)

B. Select subgroups of interest or by availability and keep only the events meeting those criteria, then calculate the
standardized difference for events in each of these subgroups. Subgroup examples include:

i. Sex: female, male

ii. Seriousness: serious harms, nonserious harms

iii. Severity: moderate and severe harms, severe harms

iv. Recurrence: single-episode harms, multiple-episode harms

v. Relatedness to intervention: likely related, possibly related, definitely related

C. Plot the specific harms on the y-axis with the different subgroups on the x-axis.

Treemap A. For all (or a selection of) preferred terms for harms occurring in the trial and to compute the standardized
difference for all events “overall” with the following formula: (p_t – p_c) / (sqrt(p_t × (1– p_t) / n_t + p_c × (1–
p_c) / n_c)

B. Plot the specific harms grouped according to their corresponding mid-level terms using the Treemap function.

C. Size the boxes according to number of events in the intervention arm.

Tendril plot A. For all (or a selection of) preferred terms for harms occurring at least 2 times in the trial (i.e., the minimum to
create a single vector, or whatever the desired threshold of occurrence may be): sort all events by time (i.e.,
days since randomization).

B. Calculate the length for each vector as the time between subsequent events. Vector length = 0 for an event
reported on the same day as the previous event.

C. Calculate the angle for each vector. The angle is the cumulative sum of all angles up to that event: the angle
rotates clockwise for events on the placebo arm and counterclockwise for events on the active arm. Vectors of
zero length still contribute to angular changes.

D. Add the vectors together cumulatively for each harm (i.e., each subsequent vector begins where the previous
vector ends), starting from X = 0, Y = 0. The resulting sequence of vectors creates the tendril for that harm.

Abbreviations: n_c = number of participants in control arm; n_t = number of participants in treated arm; p_c = proportion with event in control
arm; p_t = proportion with event in treated arm.
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visualization), or whether it would be impossible to include
in the visualization given the current visualization design.

Comparing visualization value. We compared the value of
visualizations using a modified ICE-T framework, a method-
ology that uses a heuristic approach to evaluating the value
of multiple visualizations (45). The ICE-T methodology is
meant to complement other methods for evaluating usability
and value by providing a high-level, value-driven assess-
ment (45, 46). The ICE-T framework comprises multiple
statements that are assessed on a Likert scale of agreement
and fall under 4 components: insight, time, essence, and
confidence. Respectively, these components capture whether
each visualization 1) supports insights, 2) supports faster
and more efficient understanding of the data, 3) communi-
cates the overall essence of the data set, and 4) gives the
user confidence in their understanding of the data (45, 46).
The original ICE-T approach was designed to be used by
visualization experts, who serve as evaluators. We modified
the original approach by removing heuristics that did not
apply to our visualizations (e.g., we excluded heuristics for
assessing interactive features, because our visualizations are
static representations), and we rephrased the wording of
some of the heuristics to make them more applicable and
accessible to evaluators who had clinical trials expertise.
Web Appendix 6 is our revised ICE-T survey form.

We distributed the modified ICE-T survey form to all
members of our author team (n = 12) and to faculty and
students of the Center for Clinical Trials and Evidence Syn-
thesis at Johns Hopkins University who attended a presen-
tation on the research (n = 20). Our author team comprises
experts in the field brought together by common research
interests in the analysis and reporting of harms in trials.
We collected responses anonymously and thus were unable
to separate responses from authors and nonauthors. All
invited respondents are content experts and include clinical
trialists, trial biostatisticians, biomedical data visualization,
and pharmaco-epidemiologists. We asked all respondents
to complete the modified ICE-T survey for each of the 6
visualizations. We ordered the presentation of visualizations
on the basis of when the source materials were chronolog-
ically published. Each visualization was accompanied by
a background paragraph describing its components. This
research was determined to be nonhuman subjects research
by the Johns Hopkins Bloomberg School of Public Health
Institutional Review Board.

We aggregated scores using the method described by Wall
et al. (44)—averaging the scores for individual heuristics by
domain for each respondent—and we tabulated the results to
show the overall strength of each visualization with respect
to each of the 4 components (45). The ICE-T survey uses
a 7-point Likert scale, and a higher score reflects greater
value (45).

Data

The data used in this methodologic study are the IPD
from a randomized controlled trial randomly selected from
6 randomized controlled trials of gabapentin obtained as
part of a review from the Multiple Data Sources in System-

atic Reviews (MUDS) Study (completed in 2017) (23, 25,
26, 56–59). MUDS was a methodological project funded
by the Patient-Centered Outcomes Research Institute, and
members of our team (E.M.W. and T.L.) were investigators
on the MUDS study. Briefly, in 2008, internal company
documents including IPD from 6 trials, email correspon-
dence, memoranda, study protocols, and reports were made
public after litigation was brought and won against Pfizer
for the intentional misreporting of randomized controlled
trials of gabapentin to promote off-label use (56–58). Data
from these trials have primarily been explored with regard to
efficacy outcomes. The research on harms from these trials,
however, has only ever been reanalyzed with regard to those
which were ever or never reported in publications (25, 26).

We have analyzed these data in their entirety in fulfillment
of a grant from the Restoring Invisible and Abandoned
Trials initiative. These harms were coded by the original trial
investigators in a hierarchy—from common terminology to
standardized preferred terms and associated higher-order
terms—using COSTART. Details of our methods for analy-
ses of these trials can be found in the published protocol (60).

RESULTS

Web Figure 1 presents the visualizations produced and
compared for trial 945–210.

Evaluation—modified ICE-T

From the 32 invited experts, we collected a total of 17
responses to our modified ICE-T survey, exploring the value
of the 6 visualizations. Web Figure 2 presents the mean
scores for each domain of each visualization by respondent,
organized in descending overall average score, with 4 being
the middle and higher scores indicating greater value and
lower scores indicating less value. In general, respondents
rated the dot plot and volcano plot highly overall, with
particularly high scores for both time and ability to convey
the essence of the data. The treemap also had an overall score
above 4 and scored high on insights about the data but scored
low in terms of the confidence in the underlying data. The
bar chart and heat map were rated average overall, although
the bar chart had more scores around 4, whereas the heat map
scored high for insight but low for time and confidence. The
tendril plot was rated the lowest of all visualizations across
all domains, suggesting relatively poor comprehensibility,
even among experts.

The last question of our survey asked respondents to
rank the visualizations from most preferred to least pre-
ferred approach for presenting summary data on harms.
Figure 1 and Table 2 present the rankings of each visual-
ization, ordered from most preferred to least preferred by
mean rank. In Figure 1, dark blue and dark red correspond
with a ranking of 1 and 6, respectively, with 1 being the
most preferred. The results were consistent with the ICE-
T scores, with the dot plot and volcano plot ranked most
preferred and the tendril plot ranked least preferred type of
visualization. Overall, participants did not indicate strong
preferences among the treemap, bar chart, and heat map.
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Figure 1. Proportion of survey respondents (n = 17) ranking each visualization in order of preference for presenting summary harms data
collected in a trial. Lower numbers correspond to a higher rank and greater preference, with 1 being the most preferred.

Comments on visualizations

As part of our value assessment, we included a free-text
question to capture any comments respondents had about
each visualization. Comments about the dot plot (n = 6)
focused on the readability of the visualization, given the
number of harms and amount of data fit into the space.
One responder wrote, “There are a lot of values and it’s
difficult to interpret so many effects.” The comments on
the bar chart (n = 6) suggested that a way of representing
the difference between the groups such as through better
bar arrangement would be helpful to better understand the
comparison. Comments on the volcano plot (n = 5) did
not have any common themes, but it was noted that there
was duplication of information, with multiple visualization
elements representing the same dimension, and that harms

Table 2. Mean and Median Ranking Scores of 6 Visualizations
From Most (1) to Least (6) Preferred

Visualization Mean (SD) Median (IQR)

Dot plot 1.7 (1.2, 2.2) 1 (1, 2)

Volcano plot 1.8 (1.3, 2.2) 2 (1, 2)

Treemap 3.8 (3.1, 4.5) 4 (3, 4)

Bar chart 3.9 (3.3, 4.6) 4 (3, 5)

Heat map 4.2 (3.7, 4.7) 4 (3, 5)

Tendril plot 5.6 (5.3, 6.0) 6 (6, 6)

Abbreviations: IQR, interquartile range; SD, standard deviation.

with the same set of data overlapped and “disappeared”
from the visualization (i.e., 2 harms with the same number
of events in both groups would occupy the same space on
the figure). The comments on the heat map (n = 7) noted
a lack of clarity in the direction of treatment effect (e.g.,
“Was not clear what color favored which arm”) and the
information conveyed, suggesting that there may be too
much information presented in 1 visualization (e.g., “I find
this very cluttered and challenging to read and interpret”).
The comments on the treemap (n = 2) described it as a good
holistic assessment of terms and groups of terms but lacking
in precision and clarity in exact details. Last, the comments
on the tendril plot (n = 10) focused on the need for labels
for harms and the challenge in interpretation. One responder
wrote, “I find this way too challenging. Maybe a way to look
at a few focused questions, but a terrible starting point.”

Generation of data visualizations

To generate different visualizations, investigators need to
set up data in different ways, which might be “wide” or
“long” formatting and might be at the level of the individual
participant or all participants assigned to the same group.
All visualizations make use of IPD from the trials to ensure
the completeness of the data (i.e., that all collected harms
are available). However, the tendril plot is the only visual-
ization that requires IPD as the input data for generation;
all the other visualizations are created using aggregated
data. Aggregated data are the summary counts, risks, and
estimates of effect for every captured harm.

Once the corresponding data have been aggregated for
all the harms in the trial, it is easy to select the appropriate
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Visualization

Organization of 
Harms Characteristics of Harms Data Visualized

Preferred 
Terms

Higher-
Order 
Terms

Absolute 
Occurrence 
of Harm

Estimate 
by 
Treatment 
Group

Measure 
of Effect

Precision 
of 
Estimates

Significance 
Test

Severity Timing 

Definition

Dot plot + + | – + + + + + + | – – – + + Present and clear

Bar chart – + + + + | – – – + + – + Present but implied

Volcano plot + + | + + – – + + – + + – – – | Could easily be 
added

Heat map + + + + – – – + + + | + + – – Difficult to add
(requires change)

Treemap + + + + – – – + + + | – – – – – Not possible with 
graphic

Tendril plot + + | + + – – | – + + – – + +

Figure 2. Presence or absence of data characteristics in 6 visualizations of harms collected in trials. Characteristics of harms data may be
clearly present in a graphic (blue + +), not possible to include with the current design (red – –), or somewhere in between.

variables for the desired visualization. The supplemental R
Markdown files provide an example data structure including
all necessary columns to produce each figure (Web Appen-
dices 1–5).

Generating each visualization is easy in R using existing
packages, so we did not create any new packages. Four
of the 6 visualizations—dot plot, bar chart, volcano plot,
and heat map—can be produced using standard graphical
commands for common plots within the ggplot2 package
(e.g., geom_point, geom_tile). The treemap and tendril plot
require the Treemapify and Tendril packages, respectively
(61, 62).

DISCUSSION

We compared the characteristics of 6 different visualiza-
tions and found that data visualization is a valuable way to
present multiple dimensions of harms data simultaneously
and to summarize the overall profile of harms for an inter-
vention. Our assessment of value by content experts found
the dot plot and volcano plot were valued the most highly
of the visualizations we assessed, although there are several
different approaches that can meet the needs of investigators
and trialists. The dot plot and volcano plot scored very
highly overall, although researchers should explore ways of
improving the confidence about the data that they impart
(i.e., trust about the data, its value, and context), because this
was the lowest scoring domain. The treemap, bar chart, and
heat map were rated more modestly by the respondents and
could be worth exploring further by trialists as approaches to
communicating overall summaries of harms by patients and
clinicians. The tendril plot was the least favored of all the
visualizations. Respondents found it difficult to understand,
although multiple respondents suggested it could be valuable
for detailed exploration of specific harms.

Our study is complementary to previous research on visu-
alizing harms. In particular, we assessed value from the
perspectives of trialists and biostatisticians who are most
familiar with trial data and who are the people typically
responsible for producing these plots and communicating

interpretation to the trial team. This study thus serves as
a reference and guide for investigators who want to know
which visualization best suits their needs. We have supplied
the R code to produce these visualizations so trialists can
easily implement these approaches using their own data.
Whereas early assessments and reviews of data visualization
techniques focused largely on describing different ways
of representing statistical aspects of the data or detailed
assessments of a few harms of interest, more recent research
has focused on comparing visualizations with tables as a
method to present harms and developing consensus from
trialists on the use of visualizations (40, 48, 49, 63–65). Our
discussion of characteristics and the value assessment by
content experts is a logical precursor to working with end
users of the visualizations, such as patients and clinicians.
This research will be used to support the development of
consensus guidelines from trialists as well as the full-scale
evaluation of value by other stakeholders.

Characteristics of data visualizations

Here, we discuss the characteristics or dimensions of
harms data apparent in each visualization as we have repro-
duced them from their source material, and we discuss
how we believe they could be modified to include other
characteristics as presented in Figure 2. The colors and
symbols in Figure 2 correspond with whether we considered
the characteristic to be clearly present in the visualization
(blue + +), not possible in the graphic without drastically
changing the structure (red – –) or something in between.

Organization of harms. Preferred terms and higher-order
terms respectively refer to the lowest standardized term for
a specific harm and the mid to upper levels of a hierarchical
system such as COSTART or MedDRA into which the
preferred terms can be categorized (e.g., organ or body
system). Five of 6 visualizations propose presenting data
for harms at the preferred-term level and 1 presents data for
harms at the level of higher-order terms. The heat map and
treemap present data on harms at the preferred-term level
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but are organized according to higher-order terms to help
identify patterns in affected body systems. This organization
by higher-order terms could be incorporated into the dot plot,
the volcano plot, or the tendril plot by grouping the preferred
terms (y-axis), coloring the bubbles, or changing the sym-
bol for each tendril, respectively, according to higher-order
terms. For the bar chart, including data on a secondary level
of harms would require additional visualization elements or
changing the structure of the visualization.

Dimensions of harm data. The absolute occurrence (i.e.,
count) of harms can be seen in 5 of the 6 visualizations: the
heights of the bars in the bar chart, the size of the points in
both the volcano plot and tendril plot, a higher position on
the y-axis of the heat map for the mid-level groupings, and
the size of the boxes in the treemap. The dot plot could be
modified to include the absolute occurrence of harms by the
addition of a data table or a label with this information to
each row on the y-axis. An estimate for the effect of harms
(e.g., risk) by treatment is only presented in the dot plot,
although the bar chart presents the count of harms data by
treatment group, which could be modified to instead present
an estimate of effect.

An estimate for the measure of effect (i.e., any between
arm treatment effect such as a relative measure for inter-
vention vs. control, including odds ratio, risk ratio, hazard
ratio, and risk difference) is presented through visualization
elements in the dot plot (position of points along the x-axis
on the right side of the figure), the volcano plot (position
of points along the x-axis), and the heat map and treemap
(the color of each tile). The tendril plot could incorporate
a measure of effect by coloring each tendril according to
its estimate; however, this would replace the current use of
color to represent the P value. Alternatively, the tendril plot
could be modified to include a label for the overall measure
of effect of each tendril, an approach that could also be used
in the bar chart.

The precision of the relative effect estimate (i.e., any
method of accounting for the precision in the estimate,
whether using a confidence interval or through standardiza-
tion of the effect size) between treatment groups is directly
represented only in 1 visualization: the width of the bars
around each estimate in the dot plot. The heat map and
treemap present a standardized effect size (i.e., measure of
effect divided by the standard error) and thus the precision
is incorporated into the tile color, but precision is not rep-
resented with its own visualization element. The volcano
plot and tendril plot could both potentially incorporate the
precision of estimates using the visualization element of
color intensity or shade of a point, but this would not be
directly interpretable as in the dot plot; using color this way
would replace the use of color to represent the P value. As
with the estimated measures of effect, the bar chart presents
data by treatment group, and we did not identify an element
that could be modified or added to represent the precision of
estimates without adding another feature.

The statistical significance of an estimate (specifically,
the P value) is directly presented in both the volcano plot
and the tendril plot. A label could be added to each row on
the y-axis for both the dot plot and the heat map to indicate

the associated P value. Although the bar chart presents only
counts for higher-order classifications of harms and does not
present any measures of effect, it would also be possible
to add an indicator to each column on the x-axis (e.g., a
symbol or highlight of the axis text) for those where there
is a significant effect.

The severity of harms is presented directly in the bar chart
as the number of times that harms are mild, moderate, or
severe and in the heat map as a subset of harms such that
the standardized effects are shown for only harms reported
as moderate or Severe. We did not identify a way that the
other 4 visualizations could incorporate severity; harms can
have varying degrees of severity and could be represented
categorically, but other visualizations present each preferred
term only once.

The timing of harms is incorporated as a direct element
for only the tendril plot, represented by the length of the
vectors between each event. Although none of the other
visualizations include an element to represent timing, timing
could be included by paneling the visualizations by time
periods. That is, paneling would creating a separate instance
of a visualization for harms occurring within time periods of
interest (e.g., weeks 1–4, weeks 5–8, weeks 9–12, and weeks
13–16). Paneling could create a series of visualizations that
give insight into which harms are more frequent earlier or
later after randomization.

Important considerations when creating visualizations

In assessing the characteristics of these visualizations and
their value, we identified several important considerations
and decisions that must be made by investigators. These
aspects should also be considered by journal editors who
influence how trialists present data. These include decisions
regarding analyses and interpretation of harms results, tar-
get audience for visualizations, the inclusion of supporting
materials, and whether to present all harms collected in a
trial or a subset meeting some criteria.

A major challenge in analyzing harms arises because
some trials are not designed to assess harms, and many
harms occur infrequently in trials designed to assess poten-
tial benefits. Low statistical power and multiple hypothesis
testing might lead to both false-positive and false-negative
results in individual trials (8, 41, 47). Drug trials frequently
focus on potential benefits, and journal articles typically
provide only abbreviated data on harms; tables in jour-
nal articles are usually inadequate for determining whether
harms are causally related to the drug’s use. When conduct-
ing analyses, investigators need to consider whether to use
some adjustment for multiple testing, such as a Bonferroni
correction or false discovery rate (41, 66–68). Similarly,
when creating a visualization to present harms data and the P
value is 1 of the dimensions being presented, it is important
to consider which values are presented, because visualizing
the P value or confidence intervals may lead to overinter-
pretation of the results for harms (40, 41, 47, 50, 51, 65).
Unless a harm is prespecified and systematically assessed
in a trial, its analysis should be considered exploratory and
should not be interpreted under standard hypothesis-testing
assumptions (8, 40, 41, 50, 51, 68).
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Investigators and editors should also consider the target
audience for each visualization. Depending on whether the
investigators are trying to communicate harms to patients,
clinicians, or other stakeholders, different levels of health
literacy and numeracy might be expected (40, 44, 69–71).
To effectively communicate harms, a visualization must be
understood by the target audience (36, 40, 44, 70, 71). For
example, the dot plot and volcano plot scored high on the
time and essence domains and were ranked as the most
preferred visualizations in our value assessment by content
experts. Compared with the tendril plot, which was ranked
last and had low scores for all 4 domains, the dot plot and
volcano plot are easier to understand and likely would better
serve a nontechnical audience (40, 65).

Regardless of the target audience, investigators must also
decide whether to include supplemental materials to accom-
pany visualizations (40, 41, 65). Although visualizations are
good for communicating an essence and overall summary of
data, tables are better for presenting precise information (35,
37, 39, 40). If investigators choose to present the harms using
visualizations in trial publications, they could also include
supplemental tables with all the data informing the visual-
ization so systematic reviewers and guideline developers can
reuse the data (40, 41, 65).

An additional and important consideration for any visu-
alization is whether to present data on all harms collected
in the trial or to present a subset of harms and report all
harms in supplementary tables. Patients and health care
providers want to know more about harms than journal
articles report; however, some visualizations may become
overcrowded and difficult to read if there are too many harms
or dimensions being presented (40, 65). Several comments
from respondents in our study noted that visualizations were
cluttered when they presented data on all harms. Ideally, as
technology and visualization approaches evolve, interactive
online visualizations might become common, allowing users
to apply their own filter(s) so they have access to all data but
are not overwhelmed and can focus on harms of personal
interest (72, 73). The specifics of how to select harms to
present is an area of research that requires more work. Harms
could be selected for reporting by prespecifying those that
might be expected (e.g., based on preclinical studies or
studies of similar drugs) or harms of greatest importance to
patients (e.g., serious harms, harms that led to discontinu-
ation of treatment, harms identified in core harm-outcome
sets developed by consensus) (74). Patient involvement is
crucial in making these selections.

Future research directions

In addition to identifying considerations for creating visu-
alizations, our evaluation of these visualizations revealed
many opportunities for future research. There have been
several reviews of different approaches to presenting harms
data, but, to our knowledge, ours is the first that explicitly
compares the characteristics of harms data and the respec-
tive value of these visualizations (40, 48, 49, 63–65). We
included study authors in our sample for assessing the value
of visualizations, because all are content experts and fit our
target audience; however, further studies are needed to deter-

mine whether these results generalize to other researchers,
and whether clinicians and patients have similar or different
preferences.

Our study is an important first step toward increasing the
use of visualizations in trial publications and improving the
communication of harms to evidence users by providing a
reference for trialists and those who will be creating visu-
alizations. Consensus methods involving multiple rounds
of surveys and interviews with clinicians and clinical trial-
ists could be used to develop recommendations about how
and when specific visualizations should be used in journal
articles. Such a consensus would also provide guidance on
which visualizations may be best used for identifying harms
associated with administration of a drug versus adverse
events occurring in the background. Efforts are underway to
create a consensus on specific visualization uses and presen-
tation of results in journal articles from these stakeholders
(65). Additionally, although we did not include important
targeted stakeholder groups such as patients and clinicians
in our assessment, now that we better understand the char-
acteristics of these visualizations and have a measure of their
comparative value from experts, we will direct efforts toward
evaluating the utility of these visualizations to meet their
needs. Researchers could explore visualizations and other
solutions for presenting relationships between harms (e.g.,
co-occurrence) and multiple arms (e.g., trials with more than
2 arms).

Additional evaluation of visualization approaches should
also include a feedback loop to improve them, for example
by asking stakeholders how they would change the visu-
alizations. The ability to interact with a visualization and
select harms that meet one’s own criteria of interest may
be considered valuable and worth incorporating in future
visualizations (37, 38, 44, 72, 73). Similarly, if there is a
dimension that has not been visualized but would be valuable
to stakeholders, such as the duration of harms or which
harms are likely to co-occur, it would be worth exploring
how best to incorporate such information with stakeholders
to ensure their needs are met. Another aspect that should
be assessed in future evaluation is whether stakeholders can
identify key harms that have been established as important
by expert consensus.

CONCLUSIONS

Data visualization has the potential to reduce bias in
the reporting of harms and to present a more holistic pic-
ture of harms, compared with current methods. Of the 6
approaches we evaluated for visualizing harms observed in
clinical trials, we found a strong preference for 2 (i.e., dot
plot and volcano plot) and dislike for 1 (i.e., tendril plot).
Clinical trialists should use visualizations to present data on
multiple dimensions for harms. Systematic reviewers could
apply similar approaches to summarizing harms results from
meta-analyses, depending on the data they have available
from primary studies. Journals should consider making such
visualizations standard recommended components for trials.
Researchers could focus on the evidence user’s perspective
to ensure that visualizations used in practice will communi-
cate harms appropriately and adequately to stakeholders.
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