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Abstract: Following the outbreak of the COVID-19 pandemic, the continued emergence of major
variant viruses has caused enormous damage worldwide by generating social and economic ripple
effects, and the importance of PHSMs (Public Health and Social Measures) is being highlighted to cope
with this severe situation. Accordingly, there has also been an increase in research related to a decision
support system based on simulation approaches used as a basis for PHSMs. However, previous
studies showed limitations impeding utilization as a decision support system for policy establishment
and implementation, such as the failure to reflect changes in the effectiveness of PHSMs and the
restriction to short-term forecasts. Therefore, this study proposes an LSTM-Autoencoder-based
decision support system for establishing and implementing PHSMs. To overcome the limitations of
existing studies, the proposed decision support system used a methodology for predicting the number
of daily confirmed cases over multiple periods based on multiple output strategies and a methodology
for rapidly identifying varies in policy effects based on anomaly detection. It was confirmed that
the proposed decision support system demonstrated excellent performance compared to models
used for time series analysis such as statistical models and deep learning models. In addition, we
endeavored to increase the usability of the proposed decision support system by suggesting a transfer
learning-based methodology that can efficiently reflect variations in policy effects. Finally, the decision
support system proposed in this study provides a methodology that provides multi-period forecasts,
identifying variations in policy effects, and efficiently reflects the effects of variation policies. It was
intended to provide reasonable and realistic information for the establishment and implementation
of PHSMs and, through this, to yield information expected to be highly useful, which had not been
provided in the decision support systems presented in previous studies.

Keywords: decision support system; public health and social measures (PHSMs); deep learning;
LSTM-Autoencoder; COVID-19

1. Introduction

The COVID-19 pandemic poses a critical threat to the world. COVID-19, which
first appeared in Wuhan, Hubei Province, China, in December 2019, has rapidly spread
worldwide [1], and the World Health Organization (WHO) declared a pandemic in March
2020. As of 31 December 2021, the cumulative number of confirmed COVID-19 cases
worldwide was 288,707,020, and the cumulative number of deaths was 5,440,149, and in
the Republic of Korea (hereinafter South Korea), the totals were 635,353 and 5625 during
the same period [2]. Due to the COVID-19 epidemic, the global economy has contracted
significantly. In the case of South Korea, the annual GDP growth rate decreased by 3%
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and the private consumption growth rate decreased by more than 7% in 2020 compared to
2019. This was analyzed to be the second largest economic recession since the economic
crisis in 1998 [3]. In addition, the number of critically ill patients worldwide increased
significantly, posing a major threat to public health systems around the world. In addition,
there is a significant increase in the number of cases of critical illness worldwide, posing a
great threat to the global public health system. In the case of South Korea, due to the rapid
spread of the COVID-19 epidemic in the metropolitan area, as of 21 December 2021, the
utilization rate of intensive care beds increased to 85.7%, and the number of people waiting
to be assigned to intensive care beds increased significantly to 420 [4].

To overcome this threat, each country responded to the spread of COVID-19 by imple-
menting various Public Health and Social Measures (PHSMs), such as Non-Pharmaceutical
Interventions (NPIs) in the early stage of COVID-19 epidemic and pharmacological meth-
ods such as COVID-19 vaccines from 2021. To maximize the effectiveness of these PHSMs,
it is necessary to quickly review the suitability of policies and plan the establishment of
additional policies, considering various factors such as social and economic ripple effects
from the implementation of PHSMs. However, it is not easy to review the suitability of
currently implemented policies when factors that can change the effectiveness of a policy
suddenly emerge or when several factors interact in a complex way. Therefore, this study
proposes a decision support system for establishing and implementing PHSMs based on
deep learning. The proposed decision support system performed deep learning-based
anomaly detection and multi-step prediction on confirmed COVID-19 cases to overcome
the limitations of the existing methods of policy suitability review mentioned above. This
proposed decision support system is intended to provide various types of information. The
main contributions of this study can be summarized as follows:

• The proposed decision support system has superior training capacity in multi-period
time series prediction.

• The proposed decision support system can quickly identify variability in the effective-
ness of PHSMs.

• The proposed decision support system can efficiently train the change effect when the
effect of PHSMs is changed.

• The proposed decision support system provides various information as described
above, helping establish and implement PHSMs.

The composition of this study is as follows. Section 2 introduces previous studies
related to the current status of PHSMs and the decision support system for policy estab-
lishment. Section 3 introduces the background of the methodologies applied in this study.
Section 4 introduces the dataset and algorithm structure used in this study. Section 5 intro-
duces the experimental and verification results of the proposed model. Section 6 derives
the implications of the decision support system proposed in this study. Finally, Section 7
presents a summary of this study and discusses suggestions for further studies.

2. Related Research
2.1. Public Health and Social Measures (PHSMs)

Since the global spread of COVID-19, many efforts have been made internationally
to contain COVID-19. Specifically, PHSMs such as NPIs and pharmacological methods
effectively controlled COVID-19 infections. Among them, NPIs, implemented by many
countries from the beginning of the COVID-19 pandemic to the present, are policies to stem
the epidemic by minimizing personal contact, and many countries are implementing social
distancing measures as NPI.

NPIs can be classified into two strategies: suppression and mitigation. Suppression
refers to a strategy to prevent interpersonal transmission by reducing the reproductive
number of infectious diseases to one or less by minimizing contact between individuals
by using policies such as city lockdowns [5]. Mitigation, on the other hand, is a strategy
that does not completely prevent the epidemic but protects specific individuals who may
develop a serious disease due to an epidemic. This aims to minimize the health threat
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caused by infectious diseases, reduce the peak demand for medical services, and ultimately
reduce the number of confirmed cases and reproductive numbers of an epidemic through
herd immunity [5]. Although there are some differences across countries, these NPIs are
generally implemented according to national policy, consisting of school and workplace
closures, cancellation of public events, restrictions on private gatherings, closure of public
transportation, staying at home, and restrictions on movement inside and outside the
country [6]. It is the first time since the H1N1 influenza epidemic in 1918 that the world has
used NPIs to respond to a new epidemic on the scale of the current COVID-19 pandemic.
Cities that performed NPIs in the early stages during the H1N1 influenza pandemic showed
a great effect in controlling the spread of infectious diseases, such as reducing the number
of confirmed cases and maintaining low mortality [5]. Based on these cases, many countries
are implementing NPIs, and these have showed a significant effect in controlling the spread
of COVID-19 [7–11]. It has been confirmed that social distancing implemented in South
Korea also had a significant effect, such as reducing the reproductive number (R) to 1 or
less [12].

As such, PHSMs are known to have a significant benefit in controlling the spread of
COVID-19, but in practice, it is necessary to consider that the effectiveness of these policies
may change continuously. This can be confirmed in the case of the South Korea, where as
time passed, the time until the detection of an effect and the time for the maximum effect
increased gradually, but the duration of the maximum effect appeared to decrease [13]. This
means that the effect of the policy varied due to various causes, and these can be classified
into two types of causes. First, the effect of the policy itself changes. Social distancing, a
type of NPI, is being implemented in several countries to control the spread of COVID-19,
but it is known that the effectiveness of NPIs decreases if the public’s compliance with
the policy is low [14]. Second, there are cases where the effect of a policy changes due to
external factors. The spread of highly contagious variants of the COVID-19 virus is known
to significantly lower the infection prevention rate and the severe disease prevention rate
of existing vaccines [15], and the effectiveness of NPIs can also be relatively reduced.

2.2. Decision Support System for PHSMs

A representative simulation model for predicting the spread of an infectious dis-
ease is the mathematical modelling of infectious disease. The mathematical modeling of
infectious disease is a model that subdivides the entire population into mutually exclu-
sive categories using ordinary differential equations [16]. The mathematical modeling of
infectious disease generally uses the Susceptible-Infectious-Recovered (SIR) [17] model,
and modeling is performed by adding assumptions to the SIR model according to the
characteristics of the infectious disease. Cooper et al. [18] performed an analysis of the
COVID-19 epidemic in various countries using the SIR model. As a result of the study,
the proposed SIR model showed excellent performance and provided information related
to the spread of the virus over time that could not be obtained with data alone. Bas-
narkov [19] proposed a Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR)
model. The proposed SEAIR is a model that adds a symptom compartment to the SEIR
model, and the infection characteristics of COVID-19 were analyzed. Zhan et al. [20]
proposed a Susceptible-Exposed-Infectious-Confirmed-Recovered (SEICR) model. The
proposed model is a model that adds a Confirm compartment to the Susceptible-Exposed-
Infectious-Recovered (SEIR) model, and as a result of the experiment, it successfully pre-
dicted the spread of COVID-19 in various countries and emphasized the risk of unconfirmed
COVID-19 patients. Zou et al. [21] proposed the SEIR model and Susceptible-Exposed-
Infectious-Quarantine-Recovered-Vaccination (SEIQRV) model that considers population
movement between cities. As a result of analyzing the CFS rush period, the reproduc-
tive number decreased in the province with large-scale emigration, and the reproductive
number increased in the province with large-scale immigration.

In addition, a study combining a mathematical modelling of infectious disease and a
machine learning model has been proposed. Shweta et al. [22] proposed an ensemble model
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that combines a mathematical modelling of infectious disease and a machine learning model.
The infection rate was calculated using the Susceptible-Exposed-Recovered-Fatalities (SIRF)
model, and the end of the pandemic was predicted using the Naïve Bayes Classifier.
Amaral et al. [23] proposed a Susceptible-Infectious-Recovered-Deceased (SIRD) model
and used ANN as a methodology for rationally estimating β, which means effective
transmission rate. Vega et al. [24] proposed an SIMLR model that combines the SIR model
and the machine learning model. The proposed SIMLR model uses NN-CPD to estimate
the change in policy and reflects this in the SIR model to predict the number of COVID-19
confirmed cases. Furthermore, it can be confirmed that many studies have combined
machine learning with infectious disease mathematical models [25–27].

As a result of a review of previous studies on the mathematical modelling of infectious
disease, it was confirmed that various models, including the SIR model, are widely used.
However, it was confirmed that the more complex the characteristics of the infectious
disease, the more complex the mathematical modeling of infectious disease. A complex
infectious disease mathematical models is more realistic than a simple model by integrat-
ing the biological and epidemiologic information of an infectious disease, but there is a
limitation in that the number of parameters to be estimated increases accordingly, increas-
ing the uncertainty of the model [28]. To this end, research related to simulation models
using machine learning and deep learning with high predictive performance instead of
mathematical models with high uncertainty are increasing.

Alabdulrazzaq et al. [29] reviewed whether the Autoregressive Integrated Moving
Average (ARIMA) model is suitable in a complex and dynamic situation such as COVID-19.
As an experimental result, they confirmed its excellent performance. Ballı [30] predicted
the number of short-term cumulative confirmed cases of COVID-19 in the world, Germany,
and the United States by using various machine learning techniques, and Support Vector
Machine (SVM) showed the best performance. Lounis et al. [31] predicted the number
of confirmed, deaths, and recovery COVID-19 cases over 6 months using SVM and Deci-
sion Tree. Masum et al. [32] compared the prediction performance of the mathematical
modeling of infectious disease, ARIMA, Long-Short Term Memory (LSTM), Bidirectional
Recurrent Neural Network (Bidirectional RNN), and Gate Recurrent Unit (GRU) model
to predict the cumulative confirmed cases of COVID-19. As a result of the experiment,
the Bidirectional RNN showed the best performance but pointed out that there is a limit
to the interpretation. Arora et al. [33] compared and analyzed the performance of Deep
LSTM, Convolution LSTM, and Bidirectional LSTM models using data on the number of
confirmed COVID-19 cases by state in India in a short period of time. Each model was
constructed in the form of predicting the number of confirmed cases the next day, and
the performance of the Bidirectional LSTM was shown to be the best among the proposed
models. Dairi et al. [34] compared the prediction performance of a traditional machine
learning model, a deep learning model, and a hybrid deep learning model using short-term
COVID-19 statistics data from seven countries. Among the models for predicting the
number of confirmed cases the next day, the hybrid model LSTM-CNN exhibited the best
performance. Maaliw et al. [35] predicted the number of COVID-19 cases and deaths in the
Philippines, the United States, India, and Brazil by ensembles in the ARIMA model and the
Stacked LSTM model. Furthermore, it can be confirmed that many studies have utilized
statistical models, machine learning, and deep learning [36–40].

Recently, research to predict COVID-19 using complex deep learning models has been
proposed. Kim et al. [41] proposed a Hi-COVIDNet that predicts the risk of COVID-19
transmission in a target country by reflecting the complex relationship between countries.
The proposed Hi-COVIDNet predicts the number of multi-period COVID-19 confirmed
cases in the target country by hierarchically constructing Country-Level encoder and
Continent-Level encoder using the collected Intra-Country dataset and Inter-Country
dataset. Gao et al. [42] proposed Spatio-Temporal Attention Network (STAN) for predicting
the COVID-19 pandemic. The proposed STAN model combines Graph Attention Network
(GAT) and GRU and performs multi-period prediction using dynamic and static data as
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input. Zhou et al. [43] proposed an Interpretable Temporal Attention Network (ITANet)
to overcome the limitations of the existing deep learning-based COVID-19 prediction.
The proposed ITANet consists of an encoder–decoder structure model and a Covariate
Forecasting Network (CFN) model to reflect covariates. In particular, it was shown that
the importance of covariates such as government intervention can be revealed through the
temporal covariate interpreter.

In reviewing these previous studies, we are able to confirm the appropriateness of
a decision support system based on COVID-19 simulation using a mathematical model,
machine learning, and deep learning. However, most previous studies have limitations in
that they constructed a simulation-based decision support system without considering the
variations in the effects of PHSMs. Most studies fail to account for the fact that the effects
of PHSMs can continuously change and that the effects of policies cannot be sufficiently
assumed or trained with short-term data and applied a simulation model that only assumes
and performs training based on the effects of past policies. In addition, in a simulation
model that assumes only the effects of past policies and trains on that basis, if the effects of
policies change due to external factors, these changes cannot be reflected in the results. The
information generated from such a decision support system is inappropriate to use as a
basis for policy establishment and enforcement, and there is a risk of making an incorrect
decision by referring to it. In addition, previous studies using machine learning and deep
learning are decision support systems that predict the number of COVID-19 cases in a short
period of time. This decision support system has limitations in usability from the point of
view of a country that needs to establish and implement PHSMs by examining relatively
long-term epidemic trends. Therefore, this study proposes a decision support system
that supplements the limitations of previous studies by performing deep learning-based
anomaly detection and multi-step prediction.

3. Background
3.1. Anomaly Detection in Time Series Data

Anomaly detection refers to the task of finding a pattern in data that is statistically
different from data with normal characteristics [44]. The importance of abnormal data
detected using anomaly detection is that it can consist of information that had not been
previously discovered and can often be used as actionable information [45]. Anomaly
detection is being used in various fields, such as the detection of aircraft engine rotation
coupling, the detection of defects in manufacturing facilities, and the fraudulent use of
credit cards [46].

Anomaly detection is mainly performed using time series data. Abnormal data in time
series data can be defined by a difference from past trends or patterns over time. Previous
studies related to anomaly detection in time series data were conducted based on traditional
time series analysis models such as ARIMA. Recently, research is being actively conducted
to perform anomaly detection using machine learning. Machine learning-based anomaly
detection research can be broadly classified into three categories: supervised anomaly
detection, semi-supervised anomaly detection, and unsupervised anomaly detection.

Supervised anomaly detection performs anomaly detection using a supervised learning-
based machine learning algorithm when normal and abnormal samples are labeled in given
time series data [45]. However, supervised anomaly detection can require a lot of time to
collect abnormal samples. In addition, since the number of abnormal samples is generally
smaller than that of normal samples, a class imbalance problem occurs, which renders
training difficult.

Semi-supervised anomaly detection is a method designed to solve the problem of
the high levels of time and expense required due to abnormal sample collection and the
problem of the class imbalance that may occur in supervised anomaly detection. Semi-
supervised anomaly detection generates a discriminative boundary by training with only
normal samples and discriminates all samples outside the boundary as abnormal [45].
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Representative algorithms that implement semi-supervised anomaly detection include One-
Class SVM proposed by Manevitz et al. [47] and Deep SVDD proposed by Ruff et al. [48].

Unlike the above two methodologies, unsupervised anomaly detection performs
anomaly detection on unlabeled data [45]. Supervised and semi-supervised anomaly de-
tection methodologies require labeled data. However, data that are not actually labeled or
cannot be labeled comprise the majority, and even if labeling is performed on data, this
necessitates the expenditure of a lot of time and money. To this end, unsupervised anomaly
detection, which performs anomaly detection on unlabeled data, has been proposed. In
general, autoencoder models such as Autoencoder, Variational Autoencoder [49], Adver-
sarial Autoencoder [50], and LSTM-Autoencoder [51] are used to perform unsupervised
anomaly detection. Autoencoder is a special model that reconstructs input data. Through
this process, the important characteristics of the input data are learned. Anomaly detection
using an autoencoder learns important characteristics of normal samples by learning under
the assumption that most of the data used for training are normal samples. In addition, the
loss function-based threshold is calculated [52–55], and if there is a loss function value that
exceeds the threshold, the corresponding data are determined as abnormal data:

Anomaly detection =

{ ∣∣Xt − X̂t
∣∣ > threshold, data is abnormal∣∣Xt − X̂t
∣∣ ≤ threshold, data is normal

(1)

where Xt is input data and X̂t is reconstruct input data.

3.2. LSTM-Autoencoder

Autoencoder is a representative example of unsupervised learning that can efficiently
learn the characteristics of input data. The Autoencoder consists of the encoder and decoder.
The encoder generates latent variables using input data, and the decoder reconstructs the
input data using latent vectors [56]. The structure of autoencoder is shown in Figure 1.
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Since the autoencoder is a model that reconstructs the input data, the output of the
autoencoder is referred to as the reconstructed data. The purpose of the autoencoder is
to reconstruct input data and to prevent the input data from being output as is; various
constraints such as the size limit of the latent vector are added to construct the model.
The autoencoder model is trained in the direction of minimizing the reconstruction loss,
which means the difference between the reconstruction data and the input data, as shown
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in Equation (2), and learns the most important characteristics from the input data to
reconstruct the latent vector generated through the encoder with the decoder:

LAE =
1
n

n

∑
i
|X(i)− G(F(X(i)))| (2)

where X(i) is input data, F is encoder operation of autoencoder and G is decoder operation
of autoencoder.

Due to these characteristics, autoencoders are being used in various fields such as
dimensionality reduction, feature extraction, and anomaly detection. However, in general,
autoencoders are composed of multi-layered perceptron; thus, it is difficult to apply them
to data with characteristics such as images and time series data.

To overcome this limitation, studies are being conducted to change the models consti-
tuting the encoder and decoder of the autoencoder to suit the characteristics of the data.
In particular, the LSTM-Autoencoder [51] proposed by Srivastava et al. configures the
encoder and decoder of the autoencoder with LSTM, a type of recurrent neural network,
and reconstructs the time series data by reflecting the characteristics of the time series data.
The structure of LSTM-Autoencoder is shown in Figure 2.
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The LSTM-Autoencoder consists of the encoder, reconstruction decoder, and predic-
tion decoder. The encoder creates latent vectors by compressing time series data, the
reconstruction decoder reconstructs them in reverse order, and the prediction decoder
predicts future values from latent vectors. Unlike a general decoder, the reconstruction de-
coder reconstructs the input time series data in the reverse order. This is because low-range
correlation is considered by reconstructing input time series data in reverse order, which
makes optimization easier [51]. The LSTM-Autoencoder consists of one encoder and two
decoders and has a structure different from that of general autoencoders. This is to over-
come the limitations that may occur when the reconstruction decoder and the prediction
decoder are trained [51]. If only the reconstruction decoder is trained, one limitation will
be that overfitting may occur by preserving even trivial information from the time series
data to generate a latent vector. In addition, when only the prediction decoder is trained,
learning proceeds using only the latest information of the time series data, which may pose
a problem since information from the past cannot be utilized. The LSTM-Autoencoder
induces the model to store important information in the latent vector by simultaneously
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learning the reconstruction decoder and the prediction decoder and induces learning of
information at all points in time series data.

3.3. Transfer Learning

Transfer learning is a methodology applied to similar fields by using a model trained
in a specific field and is mainly used for efficient training of deep learning models. A
deep learning model is a methodology of predicting the future by modeling a pattern from
training data, which is past data, and has been used in various fields with sufficient training
data and generally demonstrated excellent performance [57]. However, one limitation of
this methodology is that it yields poor performance when high-quality training data are
not sufficiently collected, because it is difficult to model the complex pattern of the training
data if high-quality training data are insufficient. To overcome these limitations, some
recent studies have used transfer learning. The transfer learning methodology is shown
in Figure 3.
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Figure 3. Example of Transfer Learning.

The process of transfer learning is as follows. First, the deep learning model is trained
using training data from other fields that show similar characteristics to a field in which it
is difficult to collect training data. Second, it combines a part of the pre-trained model with
a new deep learning model. In this case, since the high weight of the new deep learning
model may disturb the weight of the pre-trained model, the weight of the pre-trained
model is frozen. Third, learning is performed using a transfer learning model that consists
of small-scale training data in areas where it is difficult to collect training data. Finally, if
necessary, the weight freeze of the transfer learning model is released, and finetuning is
performed using a small learning rate.

4. Materials and Methods
4.1. Dataset

This study used data on the daily number of confirmed COVID-19 cases by city and
province provided by the Ministry of Health and Welfare of the Republic of Korea [58].
Among these data, Seoul was selected as the target city for analysis to perform modeling.
It was judged that the data from Seoul were representative since Seoul is the capital of the
South Korea and its commercial and residential districts are dense, with a large floating
population vulnerable to infectious diseases, and the number of confirmed cases in Seoul
has been increasing recently. Figure 4 shows the visualization of the number of confirmed
COVID-19 cases from 24 January 2020, when the first confirmed case occurred in Seoul, to
31 October 2021.
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Accordingly, the first analysis was conducted using a visualization of the number of
confirmed COVID-19 cases from 24 January 2020, the date of the first confirmed case in
Seoul, to 31 October 2021, and the following characteristics were identified. First, there
is a pattern of a sharp drop in the number of confirmed COVID-19 cases on weekends or
holidays. Regarding this pattern, it is judged that the number of confirmed cases is lower
on weekends or holidays than on weekdays because the number of tests is reduced; thus,
the pattern does not reflect the actual number of confirmed cases [59]. Second, it can be
confirmed that despite the two surges in COVID-19 infections in 2020, the epidemic was
successfully controlled. This is because South Korea implemented a social distancing policy,
a type of NPI, to control the epidemic of COVID-19. As shown in Table 1, South Korea
adopted social distancing measures as part of the effort to control the COVID-19 pandemic
and ensured that the public health system does not collapse, and when the rapid surge
in COVID-19 cases began, stronger social distancing measures such as “Social Distancing
Level 2.5” were implemented.

Table 1. Changes in the status of social distancing levels by period in the South Korea.

Period Levels of Social Distancing Remarks

22 March 2020–5 May 2020 Enhancement Social Distancing -
6 May 2020–15 August 2020 Distancing in Daily Life

16 August 2020–29 August 2020 Social Distancing Level 2
Four levels of

social distancing
30 August 2020–13 September 2020 Social Distancing Level 2.5
14 September 2020–11 October 2020 Social Distancing Level 2
12 October 2020–6 November 2020 Social Distancing Level 1

7 November 2020–18 November 2020 Social Distancing Level 1

Five levels of
social distancing

19 November 2020–23 November 2020 Social Distancing Level 1.5
24 November 2020–7 December 2020 Social Distancing Level 2
8 December 2020–23 December 2020 Social Distancing Level 2.5

24 December 2020–3 January 2021 Social Distancing Level 2.5 1

3 January 2021–14 February 2021 Social Distancing Level 2.5
15 February 2021–28 February 2021 Social Distancing Level 2

1 Social distancing protocols are reinforced beyond Social Distancing Level 2.5, such as prohibiting private
gatherings of 5 or more people.
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In this study, the number of daily confirmed COVID-19 cases in Seoul was converted
into a 7-day moving average based on the results of the primary analysis. This was
performed to correct for the phenomenon that the number of confirmed cases becomes
smaller due to a decrease in the number of testers on weekends or public holidays.

4.2. Method

In this study, anomaly detection and multi-step prediction were performed on the
7-day moving average of the number of confirmed COVID-19 cases in Seoul using the
LSTM-Autoencoder model to study a decision support system for establishing and imple-
menting PHSMs. The input of the LSTM-Autoencoder to be used in this study is the 7-day
moving average of the number of confirmed COVID-19 cases for k days (Xt−k, . . . , Xt−1),
and the output is composed of the reconstruction decoder output and the prediction de-
coder output. In addition, based on these, when the effect of PHSMs varies, we propose a
methodology that can efficiently learn it using transfer learning.

4.2.1. Reconstruction Decoder

The reconstruction decoder generates output by reconstructing the 7-day moving aver-
age of the number of confirmed COVID-19 cases for k days in reverse order (Xt−1, . . . , Xt−k).
The encoder and reconstruction decoder of the LSTM-Autoencoder have similar structures
with general autoencoders such as reconstructing input data, and these structures can be
used in processes such as outlier detection.

As mentioned above, abnormal data in time series data refer to data that differ from
past trends or patterns over time. The reconstruction decoder of the LSTM-Autoencoder
proposed in this study is a model that trains using past trends or patterns by reflecting
time-series characteristics and reconstructs input data. In this study, we intend to perform
unsupervised anomaly detection on the COVID-19 epidemic at a specific time by utilizing
the characteristics of the reconstruction decoder. When training using data on the COVID-
19 epidemic at a specific time, the data on the effect of PHSMs implemented at that time
are also included in the training. Performing anomaly detection using this reconstruction
decoder can be seen as comparing the effect of PHSMs implemented at a specific time with
the current effect of PHSMs. In this study, anomaly detection was used to compare and
analyze the effects of PHSMs performed by period. In this case, the threshold, which is
the criterion for determining abnormal data, was used as the maximum value of the loss
function used in several previous studies:

Anomaly detection =

{ ∣∣Xt − X̂t
∣∣ > Lossmax

Recon, date is abnormal∣∣Xt − X̂t
∣∣ ≤ Lossmax

Recon, date is normal
(3)

where Xt is input data and X̂t is output of reconstruction decoder.

4.2.2. Prediction Decoder

The prediction decoder predicts the 7-day moving average of the number of COVID-
19-confirmed cases for the next k days (Xt, Xt+1, . . . , Xt+k−1) using a multi-step time series
prediction strategy. There are various strategies for performing multi-step time series
forecasting, but in general, the recursive multi-step forecast strategy and multiple output
strategy are mainly used to perform multi-step time series forecasting.

The recursive multi-step forecast strategy is designed to perform multi-step time series
forecasting by predicting the current step by receiving the step-forecast value from the
previous k time as an input to the model after constructing a model that predicts one step
and repeating it.

X̂t = model(Xt−k, , . . . , Xt−1)
...

X̂t+k−1 = model
(
X̂t+k−2, X̂t+k−3, . . . , Xt−1

) (4)
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Unlike the recursive multi-step forecast strategy that constructs a model that predicts
one step, the multiple output strategy is a strategy that constructs a model that predicts
multiples steps.

X̂t, . . . , X̂t+k−1 = model(Xt−k, , . . . , Xt−1) (5)

Since the recursive multi-step forecast strategy constructs a model that predicts only
one step, model training is performed smoothly. However, as in Equation (4), multi-
step time series prediction operates recursively, so prediction errors accumulate, and the
accuracy decreases as time series prediction is performed for a long period of time. On the
other hand, the multiple output strategy performs stable multi-step time series prediction
because the model predicts multiple steps at once without a recursive process. This study
intends to perform stable multi-step time series prediction using a multiple output strategy.

4.2.3. Transfer Learning

As discussed above, in this study, anomaly detection is performed using the recon-
struction decoder of the LSTM-Autoencoder, and multi-step prediction is performed using
the prediction decoder to study the decision support system for the establishment and
implementation of PHSMs. However, the effectiveness of PHSMs can vary in response
to internal or external factors. Furthermore, when the effect of the policy thus varies, the
effectiveness of the proposed decision support system that learned the previous COVID-19
spread trend may be reduced depending on the policy direction of the country in which the
variability occurs. To address this issue, we intend to improve the utility of the proposed
decision support system by performing efficient training including the new epidemic trends
by using the transfer learning methodology. The transfer learning methodology proposed
in this study is shown in Figure 5.
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The transfer learning process proposed in this study is as follows. First, the encoder
part of the pre-trained LSTM-Autoencoder is combined with the reconstruction decoder
and prediction decoder of the new LSTM-Autoencoder. Second, the transfer learning model
is trained. Finally, if necessary, fine-tuning shall be performed. If transfer learning is thus
used, training can be conducted more efficiently than training a new LSTM-Autoencoder,
and its utility as a decision support system can be expected to increase.
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4.2.4. Summary of the Proposed Methodology

The LSTM-Autoencoder-based deep learning model proposed in this study receives
the 7-day moving average value of the number of confirmed COVID-19 cases for 7 days
as input and reconstructs it in reverse order, and then it predicts the number of confirmed
COVID-19 cases for the upcoming 7 days. It is configured as shown in Figure 6 to predict
the moving average value.
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In addition, the LSTM-Autoencoder proposed in this study performed learning and
evaluation of the basic model and the transfer learning model using data on the number
of confirmed COVID-19 cases in a specific period to model the change in trend due to the
effect of the policy. As mentioned above, the data on the number of confirmed COVID-
19 cases in Seoul used in this study reflects the effects of PHSMs implemented in South
Korea. A time-series deep learning model using these data also learns the effect of a policy
implemented at a specific time during the learning process. Finally, we propose a basic
model and transfer learning model that reflects the effects of PHSMs at a specific time by
conducting the learning of the proposed LSTM-Autoencoder using the data on the number
of confirmed COVID-19 cases in Seoul. The configuration of data used for training and
testing by model is shown in Table 2.

Table 2. Configuration of data used for training and testing by model.

Model Data Period

Base model
Training data 24 January 2020–31 December 2020

Test data 1 January 2021–25 February 2021

Transfer Learning model Training data 26 February 2021–Abnormal Datat+1M
Test data Abnormal Datat+1M–Abnormal Datat+2M

The basic model was defined in this study as a model that trained the epidemic trend
when only NPIs were used, among the various possible PHSMs. For this purpose, data
from 24 January 2020 to 31 December 2020 were used as training data for the basic model,
and from 1 January 2021 to 25 February 2021, they were used as test data for the basic
model. In addition, the transfer learning model defined in this study is a model that trains
the epidemic trend when the effect of PHSMs is varied due to various factors. For this
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purpose, data from 26 February 2021 to one month after the variation in the effect of PHSMs
(Abnormal Datat+1M) were used as training data. In addition, data from one month after
the variation in the effect of PHSMs (Abnormal Datat+1M) to two months after the variation
in the effect of PHSMs (Abnormal Datat+2M) were used as test data.

5. Results
5.1. Result of the Base Model

In this study, a decision support system for the establishment and implementation of
LSTM-Autoencoder-based PHSMs was proposed. The experiment of the proposed decision
support system was conducted in the Python 3.8 environment, and TensorFlow 2.3, a
representative deep learning framework, was used to construct the deep learning model.
LSTM-Autoencoder is a deep learning model and, in general, in order to ensure optimal
performance of a deep learning model, a hyperparameter search must be performed and
overfitting must be prevented. The hyperparameter search was performed to ensure the
optimal performance of the LSTM-Autoencoder used in the proposed decision support
system. In addition, to prevent overfitting, L1 and L2 weight regularizations and LSTM
dropout [60] proposed by Gal et al., Layer normalization [61] proposed by Ba et al., and
Early Stopping were applied. L1 and L2 weight regularization is a representative technique
for prevent overfitting in machine learning. It prevents overfitting by adding a specific
layer of weight regularization term to the loss function. The loss function to which the
weight regularization term is added is shown in Equation (6):

Lossregularization = Loss0 + λL1

∣∣∣Wlayer

∣∣∣+ λL2

(
Wlayer

)2
(6)

where Loss0 is loss function, Wlayer is weight vector for a specific layer, λL1 is hyperparame-
ter of L1 regularization and λL2 is hyperparameter of L2 regularization.

The deep learning model is trained in the direction of minimizing the loss function.
In this process, it may have a large weight by sensitively responding to noise, which may
cause overfitting. To solve this problem, weight regularization prevents overfitting by
adding a weight regularization term using the concepts of L1 norm and L2 norm to the loss
function. The results of model optimization are shown in Table 3.

Table 3. Results of model optimization.

Hyperparameter Layers Value Remark

LSTM Unit

Encoder 1 512 -
Encoder 2 256 -

Reconstruction Decoder 1 256 -
Reconstruction Decoder 2 512 -

Prediction Decoder 1 256 -
Prediction Decoder 2 512 -

Weight regularization
Reconstruction Output layer

0.001 L1
0.001 L2

Prediction Output layer
0.05 L1
0.005 L2

Dropout

Encoder 1
Encoder 2 0.2 -

Reconstruction Decoder 1
Reconstruction Decoder 2 0.6 -

Prediction Decoder 1
Prediction Decoder 2 0.4 -
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Table 3. Cont.

Hyperparameter Layers Value Remark

Layer normalization

Encoder 1
Encoder 2

Reconstruction Decoder 1
Reconstruction Decoder 2

Prediction Decoder 1
Prediction Decoder 2

apply -

Early Stopping 50 Patience

Learning rate - 5 × 10−5 -

Batch size 8 -

Loss function - MAE
(Mean Absolute Error) -

Optimizer - Adam -

Figure 7 shows the loss of training data and verification data for each decoder of the
LSTM-Autoencoder to which the hyperparameter was applied. After about 800 epochs,
validation loss converges, and it can be observed that both the reconstruction decoder and
the prediction decoder trained stably.
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Table 4 shows the detailed evaluation of the performance of the prediction decoder for
predicting the 7 future days among the LSTM-Autoencoders proposed in this study. For the
performance evaluation of the prediction decoder, Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) evaluation indicators
were used. In addition, in order to verify the superiority of the proposed prediction
decoder compared to other models, statistical models ARIMA and ETS and deep learning
models LSTM, DARNN [62] and TCN [63] were trained using the same data, and then
the results were compared and verified. The results of the performance evaluation of the
proposed LSTM-Autoencoder model confirmed that the prediction decoder of the LSTM-
Autoencoder demonstrated superior performance compared to other models. This can be
observed as the outcome of modeling long-term information as well by simultaneously
learning the reconstruction decoder during the LSTM-Autoencoders prediction decoder
learning process.
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Table 4. Evaluation of the proposed model.

Model MAE RMSE MAPE

Proposed Model
(LSTM-Autoencoder) Prediction Decoder 17.172 25.368 10.960%

Statistical Models

ARIMA
(Recursive Multi-step

Forecast Strategy)
254.099 262.531 179.771%

ETS
(Multiple Output Strategy) 249.494 258.400 170.997%

Deep learning Models

LSTM
(Multiple Output Strategy) 102.463 103.352 68.275%

DARNN
(Recursive Multi-step

Forecast Strategy)
51.203 71.283 34.985%

TCN
(Multiple Output Strategy) 36.429 44.864 24.223%

Figure 8 shows the results of anomaly detection using the reconstruction decoder
of the LSTM-Autoencoder model proposed in this study. As for the threshold, which is
a measure to distinguish normal data from abnormal data, the maximum loss value of
training data was used as in Equation (3). This can be interpreted as part of the effect
of PHSMs, which the proposed LSTM-Autoencoder could not model when training the
COVID-19 spread trend that reflected the effect of PHSMs. In this study, it is assumed that
the effect of PHSMs varied when a larger error occurs compared to the threshold.
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As the result of anomaly detection, up to July 2021, the reconstruction decoder was
able to reconstruct the input data well, confirming that the number of confirmed COVID-19
cases in Seoul is within the threshold. However, after 8 July 2021, the reconstruction decoder
did not reconstruct the input data well, such as convergence to a specific value, so it can be
confirmed that the number of confirmed COVID-19 cases in Seoul is out of the threshold.
This means that the trend in the COVID-19 epidemic after 8 July 2021 differs from that in
2020 and it suggests that the effect of PHSMs after 8 July 2021 differed compared to that of
PHSMs in 2020 due to various factors.

5.2. Result of the Tranfer Learning Model

In Section 5.1 above, the results of anomaly detection of the base model verified that
the effect of PHSMs changed after 8 July 2021. In this section, we tried to efficiently learn
the effects of changed policies by using the data of the period determined by the base model
as abnormal data as learning data and using transfer learning.

The composition of the transfer learning model proposed in this study combines the
encoder pre-trained in the base model and the new reconstruction decoder and prediction
decoder. At this time, the weights of the pre-trained models were frozen because the high
weights of the new reconstruction decoder and prediction decoder may disturb the weights
of the pre-trained encoders. Figure 9 shows the loss of training data and verification data
for each decoder of the transfer learning model. After about 200 epochs, the validation
loss converges, and it is observed that both the reconstruction decoder and the prediction
decoder are training stably.
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Table 5 shows the detailed evaluation of the performance of the prediction decoder
for predicting the future 7 days in the transfer learning model proposed in this study. For
the performance evaluation of the prediction decoder, MAE, RMSE, and MAPE evaluation
indicators were used. In addition, to verify the efficiency and strong performance of
the proposed transfer learning model, it was compared and verified with the LSTM-
Autoencoder model learned using the entire data set. This performance evaluation of the
proposed transfer learning model confirmed that the prediction decoder of the transfer
learning model performed better than the prediction decoder of the LSTM-Autoencoder
trained using the entire data set. In addition, the loss converges in a relatively small number
of epochs compared to the LSTM-Autoencoder of the proposed transfer learning model,
and through this, the efficiency of the proposed model can be confirmed. However, we can
identify that the MAE and RMSE values of the proposed transfer learning model are higher
than that of the base model of Table 4. This is due to the fact that the scale of the epidemic
during the period used for the learning of the transfer learning model is larger than the
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scale of the epidemic in the period used for the learning of the base model. This can be
confirmed by comparing the MAPE values. The MAPE of the base model and the MAPE of
the transfer learning model are similar, which indicates that the performance difference
between the two models is not large.

Table 5. Evaluation of proposed model.

Model Period Used for
Training and Evaluations MAE RMSE MAPE Epoch

Proposed model
(Transfer Learning Model) Prediction Decoder 26 February 2021–9 September 2021 52.160 57.166 9.896% 416

LSTM-Autoencoder Prediction Decoder 24 January 2020–9 September 2021 177.776 179.254 34.238% 1571

6. Discussion

The COVID-19 pandemic is causing problems worldwide from a social, economic, and
public health standpoint, and many countries have implemented PHSMs to overcome it.
Since the establishment and implementation of these policies must be based on reasonable
grounds, evidence-based studies applying a simulation approach are being conducted.
However, most of these prior simulation-based studies had limitations in their utility as a
decision support system for the establishment and implementation of PHSMs, such as a
failure to reflect variations in policy effects and the short-term period of the simulations.

Therefore, this study proposed a decision support system based on LSTM-Autoencoder.
The proposed decision support system attempted to overcome the limitations of models of
the existing autoencoder by training the reconstruction decoder and prediction decoder
at the same time. As a result of the experiment, it showed superior performance than
the existing statistical models and deep learning models. It can also be interpreted as
overcoming the limitations of the existing autoencoder as it shows superior performance
relative to DARNN and TCN, which show high performance among time-series deep
learning models.

The proposed decision support system predicted the moving average number of
confirmed cases for the next 7 days when a policy was maintained. In addition, it was
configured to provide information for policy re-establishment and implementation by
comparing the effectiveness of the policies implemented during the two periods. And
when the effect of PHSMs changed, transfer learning was performed to construct a model
that can efficiently reflect the effect of the changed policy compared to the newly constructed
simulation model. This is a factor that shows the superiority of the proposed decision
support system compared to other simulation model-based decision support systems.
Through this, we tried to increase the usability as a decision support system for policy
establishment and implementation.

The decision support system proposed in this study has various advantages. First,
the proposed decision support system is expected to be universally utilizable due to the
characteristics of the data applied to training. The decision support system proposed in this
study utilized the 7-day moving average number of COVID-19 cases in Seoul, South Korea,
and these data are provided for public purposes in most countries. Therefore, it is expected
that the proposed decision support system can be easily applied to other countries as well.
In particular, it is judged that it can be easily applied to countries that have difficulties
in establishing and implementing PHSMs because there is insufficient data to utilize the
simulation approach. Therefore, the proposed decision support system is expected to have
high usability.

Second, the proposed decision support system can provide a variety of information
by quickly detecting changes in policy effects. As a result of anomaly detection of the
decision support system proposed in this study, it was confirmed that the effect of PHSMs
varied after July 8, 2021. During this period, the Delta variant was spreading in the Seoul
metropolitan area, with the detection rate of the Delta variant significantly increasing from
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4.5% to 12.7% compared to June [64]. In fact, the Delta variant (B.1.617.2) is known to have
significantly higher infectivity and mortality compared to the existing COVID-19 [65]. The
decision support system proposed in this study can be interpreted as quickly identifying
the effect of PHSMs varies in response to the characteristics of the Delta variant. It is
expected that the proposed decision support system will be able to provide a variety of
information on variations in the effectiveness of policies quickly.

Finally, the proposed decision support system can be used flexibly according to policy
directions. PHSMs can be strengthened or weakened depending on the policy direction
of a given country. First, policy strengthening means restoring the effect of the varied
policy by strengthening the policy when the effect of the PHSMs varies. In this case, it can
be verified whether the effectiveness of the policy is restored through anomaly detection
of the base model among the proposed decision support systems. On the other hand,
weakening policies mean maintaining the effect of varied policies when the effect of PHSMs
varies, which can be the course adopted when it is practically impossible to strengthen
the policy due to social and economic factors. In this case, the effect of the varied policy
can be efficiently trained by using the transfer learning model of the proposed decision
support system. The decision support system proposed in this study can be used flexibly
according to the policy direction and is expected to contribute to policy re-establishment
and implementation.

7. Conclusions

Along with the rapid dissemination of COVID-19, the continuous emergence of major
variants of the virus with high infectivity and lethality, such as the Alpha and Delta variants,
and the consequent social and economic ripple effects are straining global resources. PHSMs
are critically important for addressing such a severe situation, and research related to
decision support systems to establish and implement PHSMs is also increasing. However,
previous studies had limitations as a decision support system for policy establishment and
implementation, due to their failure to reflect changes in the effectiveness of PHSMs and
the short-term nature of their forecasts.

Therefore, this study proposed an enhanced decision support system for the establish-
ment and implementation of PHSMs. The proposed decision support system focused on
providing a reasonable basis for the establishment and implementation of PHSMs, such as
promptly providing realistic information and information for maintaining policy continuity.
Our experiment result confirmed that the loss of the LSTM-Autoencoder model proposed
in this study was 1345.938% lower than that of the statistical model and 269.002% lower
than that of the deep learning model. In particular, the 155.160% lower loss on average
than DARNN and TCN, which show high performance among time series deep learning
models, shows that the LSTM-Autoencoder proposed in this study trained the COVID-19
spread trend by reflecting the effect of PHSMs. In addition, the proposed transfer learning
model has 240.828% lower loss with fewer epochs than the LSTM-Autoencoder trained
over the entire period, confirming the efficiency and excellent performance of the proposed
transfer learning model.

It is judged that the decision support system proposed in this study can be used for
various purposes other than the reasonable establishment and implementation of PHSMs.
First, the proposed decision support system is judged to be applicable to new infectious
diseases. This applicability can be confirmed from the experimental results of the transfer
learning method, which can efficiently learn the effect of a changed policy, as proposed in
this study. Even after the current COVID-19 pandemic is over, a new epidemic of infectious
disease may emerge, causing enormous social, economic, and public health damage as
we have experienced during the COVID-19 pandemic. In the event of a new infectious
disease epidemic, PHSMs will be used just as in the current COVID-19 pandemic, and if
the decision support system proposed in this study is used, it is expected that reasonable
establishment and implementation of PHSMs will be feasible at an early stage.
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Second, it is judged that various policies other than PHSMs can be preemptively
established by using the information generated from the proposed decision support system.
Through the experimental results of the proposed decision support system, we confirmed
that various information for decision making can be generated and changes in the effective-
ness of PHSMs can be quickly identified. Such information can be used to preemptively
establish various policies. As underscored above, the COVID-19 epidemic poses a signifi-
cant threat to public health. The proposed decision support system is expected to be able
to establish preemptive policies to maintain public health, such as the increase in beds for
critically ill patients, by quickly detecting changes in the effects of PHSMs. Moreover, as
mentioned above, the effectiveness of PHSMs may vary depending on the people’s com-
pliance with policies. By disclosing the information generated by the proposed decision
support system to the public, it will be possible to reduce the changes in the effectiveness
of PHSMs by increasing the public’s policy compliance.

The decision support system proposed in this study offers various advantages, such as
universal applicability, provision of rational and realistic information by quickly detecting
changes in policy effects, and flexibility in the model for incorporating new policy directions.
This confirms the superiority of the proposed decision support system. However, there are
some limitations in relation to the analysis of changes in policy effects. First, it is possible
to quickly identify variations in the effect of a policy, but there is a limit in identifying the
cause of the change in the effect. Next, there is a limit in analyzing the degree to which
the effect of a policy changes when such changes occur. These limitations are due to the
fact that the LSTM-Autoencoder model used in this study is a deep learning-based model,
and although these models show high prediction performance, they pose difficulties in
analyzing a specific causal relationship. This shortcoming can be overcome by conducting
additional research, such as research related to explainable artificial intelligence (XAI) and
the design of quasi-experiments.
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