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Aim: To determine if porcine urinary bladder matrix (UBM) treatment is associated with modulation
of wound inflammation in diabetic patients. Patients & methods: mRNA associated with M1 and M2
macrophages were measured in wounds of diabetic and nondiabetic patients pre- and post-treatment
with UBM and an M1:M2 score was calculated. Results: Wound tissue from diabetic subjects exhibited
elevated M1:M2 scores compared with nondiabetic patients, suggesting a greater pro-inflammatory state
prior to treatment. Post-treatment, there was significantly greater reduction in the magnitude of the
individual M1:M2 scores in the diabetic patients resulting in similar levels in both groups of patients. Con-
clusions: UBM may assist in diabetic wound healing by restoring an inflammatory state similar to that of
nondiabetic patients.
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Diabetes mellitus is a debilitating chronic disease that places a large financial burden on the US healthcare system. In
2012 alone, diabetes accounted for $176 billion in direct medical costs and $69 billion in reduced productivity [1].
One manner in which such costs are generated is through the management of chronic wounds that arise and persist
in diabetics due to impairment of the normal wound healing process.

Macrophages are key mediators of proper wound healing that exist in multiple phenotypes with diverse function-
ality [2]. Normal wound healing begins with an early inflammatory stage dominated by the pro-inflammatory M1
macrophage. This macrophage phenotype secretes pro-inflammatory cytokines and serves to clear pathogens and
damaged tissue. Over time, a phenotypic switch occurs toward the M2 phenotype that promotes wound healing
and decreases inflammation. Recently, Nassiri et al. reported that the relative level of inflammation of a wound can
be monitored by measuring a set of mRNA associated with the M1 (VEGF, CCR7, IL1β, CD80) and M2 (MRC1,
TIMP3, PDGF) macrophage phenotypes and calculating a M1:M2 score [3]. In diabetic subjects, the ratio of M1
(pro-inflammatory) to M2 (anti-inflammatory) macrophages is increased [4–7]. As a result, the proliferative phase is
impeded in diabetic subjects, delaying wound healing.

Urinary bladder matrix (UBM) is an extracellular matrix scaffold derived from the mucosa of porcine urinary
bladder that provides a structural scaffold for cell migration, adhesion and proliferation [8–10]. UBM has been
shown to foster a proportional increase in M2 macrophages both in vitro and in animal models [7,11,12]. As such,
macrophages in diabetic patients may reverse their abnormal phenotypic behavior, thereby promoting a normal
healing response.

The use of UBM for the management of chronic wounds in diabetic patients has been described in numerous
case reports and two prospective randomized trials with promising results [13–16]. The aim of this study was to test
the ability of UBM to affect macrophage phenotype-related gene expression and the resultant M1:M2 score in the
wounds of diabetic subjects compared to that observed in nondiabetic patients. Using wound debridement samples
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and the M1:M2 score, we examined M1:M2 content pre- and post-UBM application in diabetic and nondiabetic
patients. These data provide initial mechanistic insight underlying the ability of UBM to facilitate proper wound
healing in the diabetic setting.

Patients & methods
Patient population & wound debridement
This single center, prospective case–control study was conducted at University Medical Center New Orleans
(UMCNO) from November 2015 to April 2017. Wound measurement, debridement and UBM application were
performed by a single general surgeon physician. Included participants were English speaking consecutive patients
aged 18–65 years with open wounds that had not previously been treated with a biologically derived scaffold
referred to the UMCNO Wound Care Clinic for wound management after the study start date who consented to
receiving the UBM product. Exclusion criteria were clinically infected wounds (i.e., wounds demonstrating Galen’s
dolor, calor, tumor and rubor), concurrent hyperbaric therapy, non-English speaking patients, prior therapy of
the target wound with biologically derived products (i.e., UBM, Oasis, Primatrix, etc.) and patients <18 or >65
years. Informed consent was obtained from each patient and the study was approved by both the Louisiana State
University (LSU) Health New Orleans Health Sciences Center and the UMCNO Institutional Review Boards. All
patients provided written informed consent to participate in the study.

Patients were referred to the UMCNO Wound Care Clinic from inpatient discharge referrals with initial accrual
of 20 patients (10 diabetic and 10 nondiabetic). Two patients, however, chose to withdraw and these data were not
included. Wound debridement samples along with appropriate medical history were obtained from nondiabetic
and diabetic patients, immediately prior to application of UBM. Upon completion of debridement, Cytal R© Wound
Matrix 1-Layer (single layer sheet, ACell, Inc., MD, USA), MicroMatrix R© (particulate, ACell, Inc.) or both UBM
products were applied throughout each wound according to depth and size, and they were covered with a water-
based lubricant, nonadherent dressing and final securing over dressing. A second wound debridement sample was
obtained 7–14 days after UBM application. The second sample was not obtained from two nondiabetic patients due
to failure to collect the sample and one diabetic patient due to wound healing. Wound area reduction was measured
at the time of the second debridement sample collection. Pretreatment wound area reduction was calculated from
data in the patients’ medical history. The rate of wound area reduction was calculated as the percent decrease
in wound size divided by the number of days between wound measurements. Hemoglobin A1c values measured
pretreatment and within 3 months of the end of treatment were obtained from the medical records of a subset of
the diabetic patients (n = 6).

RNA measurement
Debridement samples were stored in RNAlater solution until total RNA was isolated using the Qiagen MiniKit
(Qiagen, Hilden, Germany). Copies of mRNA associated with the M1 (VEGF, CCR7, IL1β, CD80) and M2
(MRC1, TIMP3, PDGF) macrophage phenotype were measured in the samples using droplet digital PCR (ddPCR).
A one-step PCR reaction was prepared using Qiagen primers (Supplementary Table 1) coupled with Superscript
reverse transcriptase (Qiagen) and the QX200 ddPCR EvaGreen Supermix (Bio-Rad, CA, USA). Reaction droplets
were prepared and read using the QX200 ddPCR system.

Data analysis
Using the methodology of Nassiri et al., we calculated an M1:M2 score that is higher for M1 macrophages and
lower for M2 macrophages, and that has been shown to increase in nonhealing wounds and decrease in healing
wounds [3,17]. Prior to calculating the M1:M2 score, the gene expression data were normalized to prevent bias due
to differing baseline gene expression. The copy numbers of each individual mRNA were normalized by dividing
them by the median of copy number for that mRNA. The M1:M2 score was calculated as the ratio of the sum of
the normalized values of M1 associated mRNAs to the sum of the normalized values for the M2 associated mRNA
using the following equation:
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Table 1. Demographic and clinical variables of study patients.
Characteristics All patients Nondiabetic (n = 9) Diabetic (n = 9) p-value

Age, years 51.8 ± 2.6 46.8 ± 4.7 55.8 ± 1.3 0.13

BMI, lb/in2 35.1 ± 1.8 32.5 ± 2.4 37.6 ± 2.6 0.18

Initial wound area, cm2 6.5 ± 1.7 3.8 ± 1.2 8.3 ± 2.9 0.25

Male sex 9 (50) 5 (56) 4 (44) 0.64

Smoker 13 (72) 7 (39) 6 (33) 1

where
X

copies of gene in sample

median of copies of the gene in all sampgene  lles

Statistical analysis
Comparison of continuous variable means between nondiabetic and diabetic patients was performed using paired
Student’s t-test. Differences in categorical variables were determined using χ2 analysis. A p < 0.05 was considered
statistically significant.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.

Results
Patient population
A total of nine diabetic and nine nondiabetic patient samples were analyzed. Within this group, mean patient age
was 51.8 ± 2.6 years (range: 20–62) and 50% (n = 9) were male. Mean BMI was 35.1 ± 1.8 lb/in2. Hemoglobin
A1c values in the diabetic patients demonstrated improved glucose control during the treatment period compared
with prior to treatment with mean values of 8.0 ± 0.7 versus 10.3 ± 1.0, respectively. The average initial wound
area was 6.5 ± 1.7 cm2. More than 70% (n = 13) of the patients in this study were smokers. No significant
differences were found in age, BMI, initial wound area or smoking status between the diabetic and nondiabetic
groups (Table 1). The duration of wounds prior to treatment is listed in Table 2. Wounds were located on the foot
(n = 9), abdomen (n = 5), hand (n = 2), hip, head and thigh. Most wounds were those that developed after a patient
had undergone an operative procedure to treat a surgical condition (n = 12). Application of UBM was associated
with significant wound size reduction in both patient groups with a 35% ± 14% reduction in the diabetic and
a 43% ± 18% reduction in the nondiabetic patients (p < 0.05, Figure 1A), with all but one diabetic patient
exhibiting some magnitude of wound closure. A significant increase in the rate of wound area reduction compared
with pretreatment was also observed in both patient groups (Figure 1B; p < 0.05). One diabetic patient’s wound
fully healed prior to the follow-up visit and therefore only a pretreatment sample was obtained.

Macrophage phenotype associated mRNA
Wound healing is associated with a transition of macrophages from the M1 to M2 phenotype, and wounds
in diabetic patients are known to exhibit elevated levels of M1 macrophages compared with M2. To assess the
character of the inflammation in the wounds, we measured a set of mRNAs associated with the M1 (IL1β,
CD80, CCR7 and VEGF) and M2 (PDGF, MRC1 and TIMP3) phenotypes pre- and post-treatment. In the total
population, significant increases in VEGF, MRC1 and TIMP3 were observed following UBM treatment (Figure 2A).
Similar trends were observed in the diabetic and nondiabetic groups individually, although significance was only
found in TIMP3 in the nondiabetic population (Figure 2B) and VEGF in the diabetic population (Figure 2C).

M1:M2 scores
A score based on the ratio of the expression of the genes associated with the macrophage phenotypes (M1:M2
score) has been previously demonstrated to be indicative of wound healing and the character of the wound
inflammation [3,17]. The diabetic patients in this study exhibited a significantly higher M1:M2 score pretreatment
compared with post-treatment (4.42 ± 0.58 vs 2.075 ± 0.94; p < 0.05; Figure 3A). The M1:M2 score was reduced
to similar levels in both diabetic and nondiabetic patients following UBM treatment (2.06 ± 0.74 vs 1.67 ± 0.75;
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Table 2. Wound characteristics.
Patient Diabetic Etiology Location Duration prior to treatment

(days)

1 N Surgical Abdomen 58

2 Y Surgical Foot 63

3 N Surgical Hand 14

4 Y Diabetic foot ulcer Foot 219

5 N Surgical Foot 107

6 Y Surgical Foot 28

7 N Surgical Hip 12

8 Y Surgical Foot 59

9 N Venous stasis ulcer Foot 292

10 Y Surgical Abdomen 14

11 Y Surgical Abdomen 21

12 Y Surgical Abdomen 51

13 N Avulsion Foot 76

14 Y Traumatic amputation Hand 67

15 Y Diabetic foot ulcer Foot 636

16 N Surgical Back 16

17 N Laceration Head 45

18 N Surgical Thigh 35
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Figure 1. Comparison of wound area reduction in diabetic and nondiabetic patients. (A) Similar wound area reduction was observed in
the diabetic and nondiabetic patient groups. (B) UBM was associated with a significant increase in the rate of wound area closure
compared with pretreatment in both the diabetic and nondiabetic patient groups. Bar indicates p < 0.05.
UBM: Urinary bladder matrix.

p = 0.36). This represents a significantly greater decrease in the magnitude of change in the individual M1:M2 scores
in the diabetic versus nondiabetic patients (2.89 ± 0.68 vs 0.66 ± 0.53; p < 0.05). Additionally, the magnitude
of the decrease in the M1:M2 score correlated with the magnitude of the rate of wound area reduction (R2 = 0.36;
p = 0.04; Figure 3B). These data suggest UBM treatment is effective at restoring the state of inflammation in the
wounds of diabetic patients to that of nondiabetic patients.

Discussion
In this study, we use a score to characterize the inflammation of wounds before and after treatment with UBM.
Prior to treatment, the wounds of diabetic patients exhibited a significantly higher M1:M2 score, suggesting greater
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Figure 2. Expression of genes associated with macrophage phenotype in pre- and post-treatment wound
debridement samples. (A) All patients; (B) nondiabetic patients; (C) diabetic patients. Bar indicates p < 0.05.
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Figure 3. Comparison of M1:M2 score between groups and to the rate of wound area reduction. (A) The M1:M2 score in wound
debridement samples of diabetic patients is reduced to levels similar to that of nondiabetic patients following treatment with UBM. Bar
indicates p < 0.05. (B) The M1:M2 score correlates with the rate of wound area reduction. Dotted line indicates the 95% CI. Open symbols
indicate nonsurgical wounds.
UBM: Urinary bladder matrix.

pro-inflammatory activity. Wounds in diabetic animal models exhibit a prolonged expression of M1 macrophage
markers and suppression of M2 macrophage recruitment compare to nondiabetic animal models [18,19]. Multiple
mechanisms likely play a role in the increase in M1 macrophage polarization in diabetic patients, including diabetes-
induced changes in histone methylation within bone marrow progenitor cells, loss of vascular endothelial growth
factor receptor Type 1 signaling, and advanced glycation end-product activation of autophagy [20–22]. More recently,
research suggests that the hyperglycemic/diabetic wound environment induces the expression of certain miRNA
molecules to favor the inflammatory phenotype in macrophages [23]. Management of wounds with UBM achieved
similar macrophage-related gene expression and M1:M2 score in both diabetic and nondiabetic patients despite
the diabetic patients initially having a significantly higher M1:M2 score. Therapies that promote increased M2 or
inhibit M1 macrophage polarization in the later stages of wound healing are effective at enhancing wound healing
in diabetic animal models [24–26]. Similarly, decreases in the M1:M2 score are associated with appropriate wound
healing [3,17]. Thus, our data suggest that treatment of diabetic wounds with UBM is associated with a modulation
of the inflammation within the wound that enables wound healing.

The mechanism through which UBM facilitates modulation of wound inflammation is likely multifaceted and
needs further investigation. Separation of UBM into its soluble and structural fractions identified that the structural
components promoted a reduction in macrophage phagocytic activity and an M2-like phenotype [27]. Seeding of
macrophages onto UBM results in M2 polarization through activation of peroxisome proliferator activated receptor
gamma signaling [28]. Dearth et al. demonstrated that inhibition of cyclooxygenases 1 and 2 reduced M2 polarization
and inhibited the accelerated wound healing associated with UBM treatment [29]. A better understanding of these
mechanisms and which ones predominate in the diabetic setting will allow for a better design of therapies to
promote diabetic wound healing.

Diabetic patients are at high risk for chronic wounds, especially diabetic foot ulcers which have a worldwide
prevalence of 6.3% [30]. In addition to a predilection for developing DFUs, diabetic patients are prone to developing
other types of wounds that, due to impaired cellular responses to healing, can develop into chronic conditions,
increasing costs. For example, Martin et al. demonstrated in a systematic review that diabetic patients have an
associated higher risk of developing surgical site infections [31]. We designed this study to examine whether
treatment with UBM would be associated with a restoration of the normal (nondiabetic) state of inflammation in
the variety of wounds prone to poor healing in the diabetic population. UBM is a medical device that falls into the
skin substitute category from an outpatient reimbursement perspective. To date, applications of UBM in the clinical
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domain are wide ranging, including management of burns, coverage of fasciocutaneous donor sites and as a scaffold
for management of full-thickness traumatic wounds with exposed tendons or open fractures [32–37]. Most recently, a
randomized controlled trial compared its use in treatment of DFU with standard therapy, suggesting it might have
benefit in time-to-healing and reduction in recurrence [13]. Our study provides additional evidence that following
treatment with UBM wounds exhibit a reduction in the level of inflammation in the wound, exhibited here by
a normalization of the M1:M2 score, thereby resetting the wound environment to the ‘wild-type’ nondiabetic
phenotype.

This study was designed to test whether treatment with UBM was associated with a restoration of a normal
inflammatory state in diabetic wounds, and we acknowledge the limitations of this study. Although UBM treatment
was associated with a decrease in the M1:M2 score, without longitudinal M1:M2 score data from untreated patients,
we cannot rule out that the standard of care would result in a decrease in the M1:M2 score as well. Patients were
not randomized nor controlled when selected for this study. We therefore cannot exclude the possibility of bias. No
significant differences, however, were found in age, BMI, initial wound area or smoking status between the diabetic
and nondiabetic groups, which are all known to be factors that affect wound healing. This study aimed to examine
UBM treatment in the multiple types of wounds that exhibit poor healing in the diabetic population and thus
included a variety of wound types. The heterogeneity of patients in this study and the variety of treatments (some
required different graft sizes) inherent to wound healing studies could have had an influence on results; however,
no association between the results and the etiology of the wound were observed. Thus, future studies are needed to
examine UBM treatment in specific wound types. It is important to note that other cells in the wound environment
may also express these genes, and so the M1:M2 score is more likely an indicator of the character of inflammation
as opposed to macrophage phenotype per se. Finally, the small sample size of both groups (nine patients in each)
is a limitation, as results could be skewed in one direction. Thus, further work with larger sample sizes, extended
treatment times and comparisons to additional treatments are needed in order to fully elucidate the effects of UBM
in the diabetic setting.

Conclusion
UBM has the potential to restore an appropriate inflammatory state in the wounds of diabetic patients, which may
facilitate a normal healing response. Treatment with UBM decreased M1:M2 scores, achieving a statistically similar
score between diabetic and nondiabetic subjects post-treatment. With modifiable risk factors addressed, this study
suggests that UBM may decrease time to healing in diabetic patients by allowing for mitigation of the inflammatory
effects of the disease. Future studies in a large, randomized controlled trial may better clarify the abilities of UBM
and its efficacy in wound healing and wound care management, especially in the setting of diabetic wounds.

Translational perspective
Impaired wound healing is common in diabetic patients, increasing the costs associated with the treatment of
chronic wounds in this population. Several clinical studies report the use of UBM for the management of chronic
wounds in diabetic patients has the potential to improve the time to healing and rates of recurrence [13–16]. Whether
this represents a general effect of exposure to UBM common to all patients or represents a specific advantage
of the use of UBM in the diabetic population remains unclear. This report demonstrates for the first time that
although the wounds of diabetic patients exhibit an elevated M1:M2 score prior to treatment, application of UBM
is associated with a restoration of an M1:M2 score similar to that of nondiabetic patients. Such insight provides
a scientific basis for the use of UBM in the diabetic population. Future studies are needed to elucidate potential
advantages in specific wound types and the effects of long-term application.
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Executive summary

• Application of urinary bladder matrix (UBM) was associated with significant wound size reduction in both
diabetic and nondiabetic patients. UBM application was associated with significant increases in the expression of
genes associated with the M1 macrophage phenotype, VEGF and the M2 macrophage phenotype, MRC1 and
TIMP3.

• A M1:M2 score was calculated based on a set of mRNAs associated with the M1 (IL1β, CD80, CCR7 and VEGF) and
M2 (PDGF, MRC1 and TIMP3) phenotypes.

• Increased rates of wound closure during treatment correlated with decreases in the M1:M2 score pre- versus
post-treatment.

• The diabetic patients in this study exhibited a significantly higher M1:M2 score than nondiabetic patients prior to
treatment.

• Following treatment with UBM, the M1:M2 scores in the diabetic patients was similar to that of the nondiabetic
patients.

• These data suggest that application of UBM is associated with restoration of an appropriate immune response in
the wounds of diabetic patients, which may facilitate a normal healing response.
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