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Abstract
Convulsive status epilepticus (CSE) is one of the most common pediatric neurological emergencies. Ongoing seizure activity 
is a dynamic process and may be associated with progressive impairment of gamma-aminobutyric acid (GABA)-mediated 
inhibition due to rapid internalization of GABAA receptors. Further hyperexcitability may be caused by AMPA (alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartic acid) receptors moving from subsynaptic 
sites to the synaptic membrane. Receptor trafficking during prolonged seizures may contribute to difficulties treating seizures 
of longer duration and may provide some of the pathophysiological underpinnings of established and refractory SE (RSE). 
Simultaneously, a practice change toward more rapid initiation of first-line benzodiazepine (BZD) treatment and faster esca-
lation to second-line non-BZD treatment for established SE is in progress. Early administration of the recommended BZD 
dose is suggested. For second-line treatment, non-BZD anti-seizure medications (ASMs) include valproate, fosphenytoin, 
or levetiracetam, among others, and at this point there is no clear evidence that any one of these options is better than the 
others. If seizures continue after second-line ASMs, RSE is manifested. RSE treatment consists of bolus doses and titration 
of continuous infusions under continuous electro-encephalography (EEG) guidance until electrographic seizure cessation or 
burst-suppression. Ultimately, etiological workup and related treatment of CSE, including broad spectrum immunotherapies 
as clinically indicated, is crucial. A potential therapeutic approach for future studies may entail consideration of interventions 
that may accelerate diagnosis and treatment of SE, as well as rational and early polytherapy based on synergism between 
ASMs by utilizing medications targeting different mechanisms of epileptogenesis and epileptogenicity.
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1 � Introduction: Incidence and Definitions

Convulsive status epilepticus (CSE) is one of the most 
common pediatric neurological emergencies with an inci-
dence of 17–23 episodes per 100,000 children per year [1]. 
CSE incidence is higher in children than adults, though the 
mortality attributed to CSE is lower in children. Increasing 
age was found to be a significant predictor of mortality, 
and etiology is the main determinant of long-term outcome 
[2, 3]. The classic definition described CSE as “a single 
clinical seizure lasting at least 30 min or repeated seizures 
over a period of more than 30 min without recovery of 
consciousness” [4–7]. This definition and the treatment 
guidelines have been subsequently revised due to advances 
in the understanding of CSE over the past decades. CSE 
is a dynamic state, and increased pharmacoresistance 
may at least partly be related to rapid internalization 
of gamma-aminobutyric acid (GABAA) receptors with 
ongoing seizure activity leading to progressive impair-
ment of GABA-mediated inhibition [8, 9]. Untreated or 
inadequately treated CSE may lead to ongoing convulsive 

Key Points 

Status epilepticus is a dynamic state with receptor traf-
ficking potentially contributing to increased benzodiaz-
epine resistance and further hyperexcitability over time.

Early initial benzodiazepine application of the recom-
mended dose with quick escalation to second-line non-
benzodiazepine anti-seizure medication is recommended.

Rational and early polytherapy by utilizing synergism 
between anti-seizure medications based on their pharma-
cokinetic and pharmacodynamic properties is a potential 
therapeutic target for future studies.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40263-019-00690-8&domain=pdf
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a median time interval of 28 min and the first non-BZD 
ASM was administered at a median of 69 min after CSE 
onset [19]. Furthermore, 58% of SE episodes were treated 
with more than two doses of BZD, and these patients were 
at greater risk of respiratory depression [20]. Additionally, 
patients who receive higher than suggested BZD doses 
may also be at risk for increased respiratory compromise 
[15]. Of note, in a multicenter study, 66% of refractory 
CSE patients received untimely first-line BZD treatment. 
In this study, patients who received first-line BZD later 
than 10 min were at greater risk for death, more likely to 
require continuous infusion, and had longer CSE duration 
compared with those who received first-line BZD within 
10 min of SE onset [21].

1.2 � Most Recent Guidelines Proposing 
a Timeline‑Based Algorithm

The 2016 AES guideline for SE treatment proposes a time-
line-based algorithm for the treatment of convulsive sei-
zures lasting ≥ 5 min in both pediatric and adult patients. 
The algorithm suggests four phases: (i) stabilization phase 
(0–5 min) with monitoring and management of vital signs 
in addition to laboratory testing; (ii) first-line therapy phase 
(5–20 min) with administration of BZDs; (iii) second-line 
therapy phase (20–40 min) with administration of a non-
BZD ASM when BZDs have failed; and (iv) third-line 
therapy phase (40–60 min), during which administration 
of a different second-line medication or general anesthetic 
drug is indicated [13]. The 2012 NCS guideline suggests 
even earlier treatment initiation, including administration 
of BZD within 5 min of seizure onset followed by a rapid 
escalation to second-line ASM if seizures persist for longer 
than 10 min [11].

2 � Stabilization Phase (0–5 min)

This phase focusses on stabilizing the patient by ensuring 
and supporting adequate circulation, airway, and breathing. 
Assessment and supplementation of the patient’s oxygena-
tion and blood glucose is recommended. IV access as soon 
as possible is crucial. Furthermore, laboratory tests may ide-
ally be obtained at this point, including electrolytes, hema-
tological testing, toxicology screening, and ASM levels if 
applicable [13].

3 � First‑Line Therapy (0–10 min)

Benzodiazepines remain the first line of treatment for both 
adult and pediatric patients presenting with CSE [22]. 
However, the specific medication, dosage, and route of 

seizures and progressive changes in electro-encephalogra-
phy (EEG) patterns, conversion of overt to subtle, or even 
absent motor activity, increasing refractoriness to treat-
ment, and potentially neuronal injury and cell death [10, 
11]. Hence, several societies now recognize CSE within 
or after 5 min of seizure activity [11–13]. Specifically, a 
2015 report by the International League Against Epilepsy 
(ILAE) described an operational definition that proposed 
that treatment of CSE may ideally be initiated at around 
5 min because at this time point successive failure of the 
mechanisms responsible for seizure termination and initia-
tion of hyperexcitability mechanisms may become more 
prominent, leading to prolonged seizures [14]. Revised 
understanding of CSE has led to development of guide-
lines proposing rapid initiation and escalation of treat-
ment. The 2016 evidence-based American Epilepsy Soci-
ety (AES) guideline and the 2010 ILAE consensus report 
recommend treatment initiation at 5 min of CSE while the 
2012 Neurocritical Care Society (NCS) consensus guide-
line recommends initiation of first-line treatment within 
5 min of seizure onset [11, 13, 14].

1.1 � Variability in Treatment Protocols

Despite the recognition of CSE as a neurologic emergency, 
and despite the availability of evidence-based guidelines 
for its management, implementation of these findings into 
clinical practice has been lagging, and there continue to 
be disputes regarding the goals of therapy and pharmaco-
logic treatment of infants and children with CSE [13, 15, 
16]. A recent study assessed the differences between the 
recent AES guideline and current SE practice pathways 
used at ten hospitals in the US and found that one hos-
pital pathway matched the timeline while nine pathways 
recommended more rapid timings [17]. Most prominent 
treatment variations involve timing of treatment, anti-
seizure medication (ASM) dosages, and application of 
more than two benzodiazepine (BZD) doses instead of 
escalation of treatment to second-line therapy. A litera-
ture review on observed deviations from guidelines found 
that > 30-min time to first-line treatment was present in 
17–64% of patients, with the median time to first-line ther-
apy being 30–70 min. Timing to first-line ASM was best 
explained by a delay in calling paramedics, and difficulty 
with administering rectal medication; delay to second-line 
therapy was attributed to inability of emergency medical 
services (EMS) to administer intravenous (IV) fospheny-
toin; and variation in first-, second-, and third-line therapy 
may also be related to seizure detection and diagnostic 
difficulties [18]. Clinical assessment of pediatric SE treat-
ment times found that the first ASM was administered at 
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administration remain a matter of debate (Table 1). BZDs 
work by potentiating the neuroinhibitory effects of GABA, 
and three of the most commonly used BZDs are lorazepam, 
diazepam and midazolam, which differ in their pharmacoki-
netics [15].

3.1 � When Intravenous (IV) Access Has Been 
Established

IV lorazepam and IV diazepam are established as effica-
cious at stopping seizures lasting at least 5 min [13]. A 
randomized controlled trial (RCT) of 273 children (aged 
3 months to 18 years, PECARN study) assigned children to 
either diazepam 0.2 mg/kg (maximum dose 8 mg) or loraz-
epam 0.1 mg/kg (maximum dose 4 mg) treatment, with the 
option to repeat half of the initial dose if seizures persisted 
after 5 additional minutes. There was no difference between 
IV diazepam (72.1%) and IV lorazepam (72.9%) in termina-
tion of CSE by 10 min, without recurrence within 30 min 
[23]. A network meta-analysis of 16 RCTs including 1821 
patients compared the efficacy of midazolam, lorazepam, 
and diazepam in treating pediatric CSE. This analysis con-
cluded that non-IV midazolam and IV lorazepam were supe-
rior to IV or non-IV diazepam, and that IV lorazepam was at 
least as effective as non-IV midazolam in treating pediatric 
CSE [24].

3.2 � When IV Access is Not Yet Available

A network meta-analysis found that intramuscular (IM) 
midazolam was the most efficacious non-IV medication for 
time to seizure termination after administration and time to 
initiate treatment. Additionally, in this analysis, intranasal 
(IN) midazolam was the most efficacious non-IV medication 
for seizure cessation within 10 min of administration and 
persistent seizure cessation for at least 1 h [25]. The results 
of this meta-analysis propose a practice change towards 
wider use of IM and IN midazolam when IV access has not 
yet been established (Fig. 1).

3.3 � Is IV Access for Initial Pharmacotherapy Always 
Needed?

A double-blind, randomized, non-inferiority trial (RAM-
PART trial) compared the efficacy of IM midazolam with 
that of IV lorazepam for children and adults in CSE treated 
by paramedics. Patients with seizures lasting more than 
5 min who were seizing when paramedics arrived were ran-
domized to either IM midazolam or IV lorazepam (n = 60 
for each study group). Children with an estimated weight 
of > 40 kg received either midazolam 10 mg IM followed 
by IV placebo, or IM placebo followed by lorazepam 4 mg 
IV. Children with estimated weights of 13–40 kg received 

midazolam 5 mg IM or lorazepam 2 mg IV. This study found 
no difference in efficacy between IM midazolam (68.3%) and 
IV lorazepam (71.7%), and concluded that IM midazolam is 
at least as safe and effective as IV lorazepam during prehos-
pital seizure treatment [26]. Of note, time to initiate treat-
ment was shorter for children who received IM midazolam 
due to the faster administration time, and safety profiles were 
similar for both treatment options [27].

A randomized open-label study enrolled 141 consecu-
tive children aged 6–14 years who presented with ongoing 
seizures to the emergency room and received either IV or 
IN lorazepam (0.1 mg/kg, maximum 4 mg). Eighty percent 
of the IV group versus 83% of the IN group experienced 
seizure remission within 10 min of administration, conclud-
ing that IN lorazepam is not inferior to IV administration for 
clinical seizure cessation [28].

3.4 � Initial Benzodiazepine Dosing

Administration of the entire recommended BZD dose within 
a given initial treatment interval may be more efficacious, 
and while fractional doses may help with BZD titration, 
multiple smaller doses may facilitate under-dosing [29]. 
Additionally, more than two doses is associated with side 
effects without a substantial increase in efficacy [13]. The 
potency of BZDs may decrease 20-fold over 30 min of SE. 
This may partly be explained by receptor trafficking of the 
GABAA receptors that move from the synaptic membrane 
into the cytoplasm where they are thought to be function-
ally inactive [9, 10]. This reduces the number of GABAA 
receptors available on the synaptic surface to bind BZD, and 
in turn leads to the tendency of single seizures to become 
self-sustaining SE and a time-dependent pharmacoresistance 
to BZDs [8, 30]. Simultaneously, AMPA (alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA 
(N-methyl-d-aspartic acid) receptors increasingly move from 
subsynaptic sites to the synaptic membrane. This causes 
further hyperexcitability and may possibly explain the pre-
served sensitivity to NMDA blockers like ketamine late in 
the course of SE [30, 31].

According to a review of 17 studies to assess divergences 
from recommended guidelines, 29–61% of patients were 
not following guidelines regarding drug choice, dosage, or 
sequence. In 23–49% of pediatric patients, there were more 
than two administrations of BZDs rather than the recom-
mended escalation to a second-line drug, which may be asso-
ciated with greater risk of respiratory depression [18]. Review 
of these studies shows that initial BZD dose was suboptimal in 
19–68% of patients [32, 33]. Irrespective of initial BZD dose, 
respiratory depression after more than two doses of BZD was 
reported in the North London CSE in Childhood Surveillance 
Study [34]. In a retrospective cohort study that analyzed 126 
SE events, guideline deviation was associated with more than 
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2-fold increased risk of intubation (relative risk 2.4) and 1.5-
fold increased risk of admission to the ICU (relative risk 1.65) 
[32]. Patients who received higher than suggested BZD doses 
had increased respiratory compromise [15]. In a study that 
evaluated 47 admissions with CSE to a tertiary pediatric hos-
pital, the risk of respiratory compromise was as high as 43% 
when pediatric patients received more than two doses of BZDs 
compared with 13% when they received two or fewer doses. 
In this study, administration of a third dose of BZD resulted in 
seizure termination in only 13% of patients (3/23) [35].

4 � Second‑Line Therapy (Established Status 
Epilepticus [SE])

According to the AES guideline, administration of a non-
BZD ASM is indicated when initial BZD treatment has 
failed, and the seizure duration reaches 20 min, though 
other guidelines argue that initiation of second-line ther-
apy should occur sooner, ideally after 10 min of seizure 

onset [11, 13, 16]. This SE phase is also known as estab-
lished SE and is seen in approximately 40% of patients 
with generalized CSE [12]. Failure of initial treatment 
has been described as continuous ongoing convulsions 
or intermittent seizures without regaining consciousness 
between seizures [36]. Recommended drugs include val-
proate, fosphenytoin, or levetiracetam, but at this point 
there is no clear evidence that any one of these options is 
better than the others [13] (Table 1). Phenobarbital may 
also be a reasonable second-line alternative, in particular 
if none of the above drugs are readily available. A recent 
meta-analysis reviewed evidence relating to the efficacy 
of lacosamide, levetiracetam, valproate, phenytoin, and 
phenobarbital in the treatment of BZD-resistant SE. The 
mean efficacy (cessation of seizure activity) in this meta-
analysis was highest for valproate at 75.7%, followed by 
phenobarbital (73.6%), levetiracetam (68.5%), and lowest 
for phenytoin (50.2%). There was insufficient evidence 
regarding lacosamide usage, especially in pediatric SE 
[37]. The number of IV soluble ASM continues to grow 

Early SE
(within 10 min of seizure onset)

•If no IV access available -
•midazolam (IM 0.2 mg/kg OR IN 0.2 mg/kg OR Buccal 0.2–0.5 mg/kg; maximum 10 mg)
•OR rectal diazepam (0.2-0.5 mg/kg; maximum 20 mg)

• If IV access is available-
•IV lorazepam 0.1 mg/kg (maximum 4 mg, can repeat once)
•OR IV diazepam 0.15-0.2 mg/kg (maximum 10 mg, can repeat once)

Established SE
(10-30 min of seizure)

•IV fosphenytoin 20 mg PE/kg (maximum 1500 PE mg, can repeat 5-10 mgPE/kg if needed)
•OR IV leve�racetam 30-60 mg/kg (maximum 4500 mg, can repeat 30 mg/kg if needed)
•OR IV valproic acid 20 mg/kg (maximum 3000 mg, can repeat 20 mg/kg if needed, cau�on in pa�ents with 

mitochondrial disease (POLG muta�on))
•OR IV phenobarbital 20 mg/kg (may repeat addi�onal boluses of 5-10 mg/kg if needed)

•can repeat the ASM above (as indicated in brackets) or give a different one if seizure persists

Refractory SE
(if seizure persists for >30 min 
or refractory to BZD  & 1 first-

line therapy)

•midazolam (load with 0.2 mg/kg at 2 mg/min infusion, �trate with EEG, maximum 2 mg/kg/h)
•OR pentobarbital (load with 5 mg/kg at 50 mg/min, �trate with EEG, maximum 5 mg/kg/h)
•OR thiopental (load with 2–7 mg/kg at 50 mg/min, �trate with EEG, maximum 5 mg/kg/h )
•OR propofol (load with 1-2 mg/kg at 20 mcg/kg/min, cau�on with doses >65 mcg/kg/min and prolonged 

applica�on due to propofol infusion syndrome)
•OR ketamine (load with 1–3 mg/kg, max 4.5 mg/kg, �trate with EEG, maximum 100 mcg/kg/min)

Fig. 1   Pediatric status epilepticus treatment algorithm combining 
current guidelines. This approach combines the timeline-based algo-
rithm from current guidelines by Neurocritical Care Society [11], 
International League Against Epilepsy [14], the American Epilepsy 
Society [13], and information from institutional guidelines. See 
Tables 1 and 2 for further detailed dosing recommendations. Notably, 

the above are recommendations that should be customized for each 
patient based on individual case and seizure characteristics and insti-
tutional medication availability. ASM Anti-seizure medication, BZD 
benzodiazepine, EEG electro-encephalography, IM intramuscular, 
IN intranasal, IV intravenous, PE phenytoin-equivalent, POLG  DNA 
polymerase gamma, SE status epilepticus
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with several recent additions; however, evidence regarding 
the use of IV brivaracetam or carbamazepine for pediatric 
status epilepticus is lacking [36, 38].

In a retrospective review of pediatric patients (aged 
1 month to 19 years) treated with valproate for SE or acute 
repetitive seizures, a loading dose of 25 mg/kg was suc-
cessful in seizure termination for 100% of SE patients and 
95% of patients with acute repetitive seizures [39]. In an 
RCT comparing efficacy of valproate and phenobarbital in 
60 children with CSE and acute prolonged seizures, 20 mg/
kg valproate was successful in termination of all convulsive 
activity within 20 min in 90% of patients as compared with 
20 mg/kg of phenobarbital, which led to seizure termination 
in 77% of the patients (p = 0.189). However, more patients 
in the phenobarbital group experienced clinically signifi-
cant adverse effects (74%) as compared with the valproate 
group (24%, p < 0.001). The adverse effects experienced by 
the patients who received phenobarbital included lethargy 
(17/30), vomiting (4/30), and respiratory depression (1/30) 
[40]. Despite high efficacy of valproic acid, caution may be 
warranted in patients with POLG1 mutations due to reports 
of acute liver failure in these patients after valproate expo-
sure [41]. An RCT in 150 patients aged 15–65 years com-
pared the efficacy of treatment with IV lorazepam (0.1 mg/
kg) followed by one of the three non-BZD ASMs: phenytoin 
(20 mg/kg), valproate (30 mg/kg), or levetiracetam (25 mg/
kg). Those who remained uncontrolled with the first non-
BZD ASM received the other two sequentially. The study 
found no statistically significant difference between the 
subgroups (p = 0.44). With the sequential treatment model, 
lorazepam and first, second, and third non-BZD ASM con-
trolled seizures in 71%, 87%, and 92% of patients, respec-
tively [42].

Due to lack of clear evidence favoring a particular sec-
ond-line agent, several clinical trials have recently been 
conducted to identify optimal second-line therapy for BZD-
resistant SE. The levetiracetam versus phenytoin for sec-
ond-line treatment of pediatric convulsive status epilepticus 
(EcLIPSE) was an open-label, randomized trial comparing 
40 mg/kg of levetiracetam over 5 min versus 20 mg/kg of 
phenytoin given over 20 min as the second-line agent in CSE 
in 286 children. While not found to be significantly superior, 
levetiracetam was associated with higher (70% vs 64%) and 
faster rates (mean 35 vs 45 min) of seizure termination com-
pared with phenytoin. One participant receiving phenytoin 
experienced a serious adverse event. The authors conclude 
that levetiracetam may serve as an alternative for first-choice 
in second-line pediatric CSE treatment [43].

Similarly, in the levetiracetam versus phenytoin for sec-
ond-line treatment of convulsive status epilepticus in chil-
dren (ConSEPT) trial in New Zealand and Australia, leveti-
racetam was also found not to be superior to phenytoin, but 

with a treatment trend in the opposite direction compared 
with the EcLIPSE trial. ConSEPT randomized 233 children 
to receive 40 mg/kg of levetiracetam over 5 min or 20 mg/
kg of phenytoin over 20 min. Seizure cessation within 5 min 
of infusion end was 60% in the phenytoin arm versus 50% 
after treatment with levetiracetam. There was one death in 
the phenytoin arm not clearly attributable to the drug [44].

Thus, levetiracetam is not superior to phenytoin, with 
overall similar side effect rates, and medication choice may 
be informed by individual patient characteristics and center 
availability. Results of the ESETT (Established Status Epi-
lepticus Treatment Trial) have been released at the time of 
writing: ESETT randomized patients > 2 years of age to fos-
phenytoin 20 mg/kg, valproate 40 mg/kg, and levetiracetam 
60 mg/kg [22]. Primary endpoint was absence of clinically 
evident seizures and improved responsiveness at 60 min. 
No significant difference regarding efficacy or safety were 
seen, including similar response to levetiracetam (47%), 
fosphenytoin (45%), and valproic acid (46%) [138]. These 
results corroborate further, that there are no major differ-
ences between these three medications during the second 
line therapy phase.

5 � Third‑Line Therapy Phase (40–60 min, 
Refractory and Super‑Refractory SE)

When patients continue to have persistent seizure activ-
ity after second-line treatment, SE is often considered 
refractory, with reported mortality of 16–43.5% [45–47], 
though some recent case series also report lower mortality 
of 17% [48] in pediatric patients. Refractory SE (RSE) is 
seen in 23–44% of patients with CSE and there is no clear 
evidence to direct therapy in this phase [13, 49]. Phar-
macotherapy includes additional boluses of second-line 
medications (e.g., fosphenytoin, levetiracetam, valproate, 
and phenobarbital, among others) and consideration of 
medically induced coma with IV continuous infusions of 
anesthetic agents (e.g., midazolam, propofol, barbiturates) 
with critical care treatment and EEG monitoring [50] (see 
Table 2 and Fig. 1). Some patients benefit from further 
second-line ASM boluses while others require quick 
infusions, and no clear patient characteristics exist at this 
point that can guide therapy selection between these two 
choices.

Due to lack of evidence to support a standardized 
regimen for the intensity and duration of therapy in this 
phase, treatment is guided by continuous EEG with the 
goal to titrate continuous infusions until electrographic 
seizure cessation, or until burst suppression is achieved. 
Burst suppression or electrographic seizure cessation is 
typically maintained for at least 24–48 h before gradual 
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withdrawal of the continuous infusion agents [11, 50]. If 
there is recurrence of RSE during the weaning period or 
when SE persists for 24 h or more after administration 
of anesthesia, patients are said to be in super-refractory 
SE (super-RSE). At this point, further trials of continu-
ous infusion(s) and the addition of loading oral ASMs 
not available in IV formulations until seizure cessation or 
burst suppression is re-attained for an additional 24–48 h 
may be helpful. There is a paucity of data describing speed 
of titration and ‘number of trials’ or cycles of serial anes-
thetic therapy after which pharmacotherapy is considered 
futile for electrographic seizure control [11, 51].

Midazolam, which enhances the action of GABA on the 
GABAA receptors, is preferred because it is fast-acting and 
has a short duration of action. In a study of 27 children with 
RSE, 0.2 mg/kg of midazolam was given as a bolus dose 
followed by 1–5 µg/kg/min of continuous midazolam infu-
sion. In this study, complete seizure cessation was achieved 
in 96% of children within 65 min, and adverse effects of 
hypotension and bradycardia were not present during mida-
zolam infusion [52].

Another 2-year prospective observational study that eval-
uated RSE patients aged 1 month to 21 years found that up 
to four ‘cycles’ of serial anesthetic therapy were needed. 
In patients who did not respond to midazolam alone, a 
second agent was used after a median of 1 day, which led 
to seizure termination in up to 94% of total RSE patients. 
In this study, the most frequently used first-line anesthetic 
agent was midazolam (78%) followed by pentobarbital use 
as a second-line agent after midazolam failure (82%) [53]. 
Pentobarbital also acts by activation of GABA receptors but 
additionally inhibits NMDA receptors and alters conduc-
tion in several ion channels. In a study of 23 children with 
RSE, pentobarbital was given as a loading dose of 5 mg/
kg followed by a maintenance infusion of 1–3 mg/kg/h. In 
this case series, 52% of patients had seizure cessation with 
pentobarbital, 22% relapsed after pentobarbital was discon-
tinued, and 26% were unresponsive to pentobarbital therapy. 
Among the relapsed and non-responder groups, there was 
90.9% mortality. Among the survivors, 61.5% developed 
permanent neurologic sequelae [47].

Another upcoming therapy for RSE is ketamine, which 
acts as a noncompetitive antagonist of the NMDA receptor 
and decreases glutamate-mediated neurotoxicity. A multi-
center retrospective review representing 60 episodes of RSE 
found that ketamine may have led to permanent SE control 
in 32% of patients. This included 12% in which ketamine 
was the last ASM to be introduced [54]. A multicenter, ran-
domized, controlled, sequentially designed study is planned 
to assess the efficacy of ketamine in the treatment of RSE 
in children aged 1 month to 18 years of age (KETASER01). 
This study will randomize patients to either a control arm 

receiving 12 µg/kg/min of midazolam or an experimental 
arm receiving 100 µg/kg/min of ketamine [55].

As a last resort, inhalational anesthesia has been tried for 
RSE treatment, with isoflurane being the most commonly 
used agent in children. Two clinical series, one involving five 
children and another with two children, have demonstrated 
that isoflurane led to seizure cessation in 100% of patients 
[56, 57]. A systematic review that identified 18 pediatric 
patients treated with modern inhalational anesthetics found 
94% seizure control with this treatment [58]. However, the 
effect of the inhalational anesthetics is transient with high 
risk for relapse. These are therefore considered a temporary 
measure while exploring additional therapeutic options and 
awaiting diagnostic testing for etiology of SE [56, 58].

6 � Other Therapeutic Options Including 
Experimental Therapy

6.1 � Immunomodulatory Therapies

There has been a growing interest over the last decade in the 
role of inflammation in epilepsy, specifically in epileptogen-
esis. Seizures in the setting of autoimmune encephalitis are 
becoming increasingly recognized, and those with cell sur-
face anti-neuronal antibodies (e.g., NMDA, leucine-rich gli-
oma-inactivated 1 [LGI1], GABAA) tend to be immunother-
apy-responsive [59, 60]. Additionally, animal models have 
demonstrated seizure generation and propagation via several 
other pro-inflammatory pathways, such as interleukin-1 β 
(IL-1β), and evidence of similar inflammatory modulators 
has been seen in the human brain [61]. Current paradigms 
suggest that an initial injury triggers epileptogenic inflam-
matory cascades, with seizures themselves further activating 
this pathway in a self-propagating cycle as seen in RSE [61].

Case series suggest some efficacy of broad-spectrum 
immunotherapy treatments in super-RSE, including IV 
steroids, IV immunoglobulin (IVIg), and plasmapheresis. 
In general, however, these first-line immunotherapies have 
relatively low response rates. When considering new-onset 
refractory status epilepticus (NORSE), a better response 
has been reported in cryptogenic NORSE (30–40%) when 
compared with febrile infection-related epilepsy syndrome 
(FIRES) (5–17%), a subcategory of NORSE with preced-
ing fever [62]. Additionally, a systematic review of 37 chil-
dren with RSE who received plasmapheresis found that 
24% (9/37) of patients responded to plasmapheresis; seven 
(19%) with seizure resolution and two (5%) with partial 
reduction. However, given that a minority of patients 
responded, it was concluded that plasmapheresis incurs 
little to no benefit in RSE [63].

Considering more targeted neurosteroids, animal mod-
els showed that an analog of allopregnanolone, a positive 
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allosteric modulator of GABAA, was effective in seizure 
cessation, even in the setting of BZD resistance [64]. 
Subsequently, allopregnanolone was successfully used 
in humans with super-RSE, including two children who 
could be weaned from anesthetic infusions [65]. This led 
to a phase I/II open-label trial of brexanolone, an aqueous 
formulation of allopregnanolone, which had promising 
results, allowing 70% of patients to be weaned from anes-
thetic infusions [66]. However, a press release revealed 
that the primary endpoint of the stage III trial (weaning 
from third-line infusions) was not statistically different 
between brexanolone versus placebo [67].

Immunotherapy targeting specific cytokines or inflam-
matory mediators in an etiology-specific manner may be 
helpful, as is being pursued in FIRES. As above, FIRES is 
a syndrome marked by super-RSE that onsets in previously 
healthy school-aged children, and tends to be refractory to 
broad spectrum, first-line immunotherapies [62, 68]. Again 
stemming from animal models, interleukin-1 β (IL-1β) has 
been shown to increase in the setting of seizures or infec-
tious triggers, and an IL-1 receptor antagonist, anakinra, 
terminated seizures and prevented their recurrence in a 
rodent model [69]. Translating from this, anakinra was tri-
aled in a pediatric patient with FIRES, resulting in seizure 
cessation and normalized levels of two pro-inflammatory 
cytokines [70]. The initial case is promising, but further 
experience with controlled trials is needed. Additionally, 
an IL-6 receptor antagonist, tocilizumab, was successful in 
CSE termination in a small series of adults with NORSE, 
albeit with serious infection in 2 patients, and further trials 
and use in children may offer another novel therapy [71].

Some authors suggest that a trial of high-dose ster-
oids can be considered even in the absence of a primary 
autoimmune/inflammatory etiology for SE. Multiple time 
points in RSE management have been considered without 
a clear consensus regarding the best point for a steroid 
trial. Once a steroid trial is initiated and it is ineffective 
within 2–3 days, IVIg or plasma exchange may be consid-
ered. If there is cessation of SE, ongoing immunotherapy 
may be considered depending on the clinical scenario and 
underlying etiology [49, 51, 72–75]. While steroids and 
immunotherapy may be considered a last resort treatment 
option, we usually reserve this approach for patients with 
suggestions of an underlying inflammatory or autoimmune 
etiology.

6.2 � Ketogenic Diet

Ketogenic diet is a high-fat, low-carbohydrate, adequate pro-
tein diet that mimics the fasting state, induces ketosis, and 
has been shown to have therapeutic benefit in some patients 
with intractable epilepsy. A recent pediatric study described 
14 patients (median age of 4.7 years) who were started on 

a ketogenic diet after a median of 13 days following the 
onset of RSE. Most of these patients received the diet at a 
4:1 ratio, reaching ketosis within a median of 2 days and 
electrographic seizure cessation within 7 days in 71% of 
patients. Additionally, 79% of patients could be weaned off 
continuous infusions within 2 weeks of starting a ketogenic 
diet [76]. In another pediatric case series, ketogenic diet 
led to resolution of super-RSE in nine of ten patients in a 
median of 7 days after diet initiation. In this study, eight of 
nine patients could be weaned off anesthesia within 1 day of 
achieving ketonuria [77]. The diet was found to be effective 
in 19/35 patients with FIRES in a recent review, perhaps 
at least in part due to the diet’s anti-inflammatory effects 
through the IL-1β pathway [62, 78].

6.3 � Therapeutic Hypothermia and Other 
Non‑Pharmacologic Therapies

Animal studies have demonstrated that therapeutic hypo-
thermia has neuroprotective and antiepileptic properties. 
In a rat model of SE, deep hypothermia (20 °C) of 30 min 
duration terminated RSE within 12 min of initiation of 
hypothermia and eliminated SE-induced neuronal injury 
in most animals [79]. A case series of five children with 
RSE who were treated with mild hypothermia (32–35 °C) 
demonstrated reduction in seizure burden during and after 
hypothermia treatment without relapse after hypothermia 
[80]. In a recent multicenter RCT assessing the efficacy of 
therapeutic hypothermia (HIBERNATUS trial), 270 patients 
older than 18 years who were receiving mechanical ventila-
tion for SE were enrolled. In this study, the rate of progres-
sion to EEG-confirmed SE on the first day was lower in the 
hypothermia group than in the control group (p = 0.009), but 
this was not associated with significantly better 90-day out-
comes than standard care alone. The study also found more 
frequent adverse events in the hypothermia group (85%) than 
in the control group (77%) [81]. Another adult study recently 
described successful treatment of refractory nonconvulsive 
SE with therapeutic hypothermia [82].

There is also anecdotal evidence that other adjunctive 
non-pharmacological treatments including epilepsy surgery, 
vagus nerve stimulation, responsive neurostimulation, and 
electroconvulsive therapy lead to cessation of RSE [83–87].

7 � Neonatal SE

Neonatal seizures pose unique challenges in both diag-
nosis and treatment [88]. The NCS 2012 and ILAE 2015 
definitions mentioned in this article do not apply to neo-
nates < 30 days of age, where neonatal SE is defined to 
occur when the summed duration of seizures comprises 
more than 50% of an arbitrarily defined 1-h epoch [89]. 
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Among neonates with electrographic seizures, up to 43% 
have seizure burden high enough to be classified as elec-
trographic SE [90]. Electromechanical dissociation occurs 
more frequently in neonatal seizures, with 80–90% of 
electrographic seizures being EEG-only seizures without 
a clinical correlate [88, 91]. The majority of neonatal sei-
zures are provoked, typically caused by hypoxic ischemia, 
infection, trauma, stroke, or metabolic disturbances [92]. 
Additionally, animal studies have shown that GABAergic 
drugs can have excitatory effects and aggravate seizures, 
which may explain why conventional ASMs are relatively 
ineffective [93, 94]. Despite this, levetiracetam and phe-
nobarbital remain the preferred drugs of choice for acute 
treatment of neonatal seizures, with second-line treatment 
being phenytoin, topiramate [95], as well as midazolam 
infusions. In animal models of neonatal hypoxia-induced 
seizures, bumetanide (NKCC1 inhibitor) in combination 
with phenobarbital was significantly more effective than 
phenobarbital alone [96]. However, bumetanide failed to 
treat acute seizures in newborn babies and was found to 
be associated with hearing loss in an open-label Euro-
pean trial [97]. A double-blind RCT on bumetanide for 
refractory neonatal seizures with dose-escalation design 
(ClinicalTrials.gov identifier NCT00830531) has recently 
completed enrollment and results of this study are awaited 
[98].

8 � Synergistic Pharmacotherapy and Future 
Directions

Pharmacokinetic interactions of ASMs include changes in 
absorption, metabolism, protein binding, and excretion in 
the presence of other ASMs. Such interactions can impact 
efficacy as well as increase the risk of side effects. Uti-
lizing medications targeting different mechanisms of epi-
leptogenesis to achieve synergistic polytherapy has been 
studied in animals and humans [99]. Combining ASMs 
rationally requires a deep understanding of their pharma-
cology, particularly of the mechanisms of action and how 
these may become altered during SE (Table 1).

For instance, there is an increasing body of evidence 
supporting a time-dependent development of pharma-
coresistance to BZDs [30]. This can be understood when 
reviewing the receptor trafficking during SE as synaptic 
GABAA receptors have been shown to become internal-
ized and inactive during SE. On the other hand, spare 
NMDA receptors assemble, move to the membrane, and 
become synaptically active [31]. A delay in the treatment 
of SE leads to reduction in the number of available synap-
tic GABAA receptors for the binding of GABAA agonist 

drugs, thus explaining the BZD pharmacoresistance. A 
recent study evaluating synergistic effects treated an ani-
mal SE model with a combination of low-dose diazepam 
(to stimulate the remaining GABAA receptors), ketamine 
(to mitigate the effect of the NMDA receptor increase), 
and valproate (to enhance inhibition at a non-BZD site). 
The diazepam-ketamine-valproate combination was 
shown to act synergistically and was far more effective 
in stopping SE than triple-dose monotherapy using the 
same individual drugs. Drug toxicity was shown to be 
simply additive [100]. Another animal study reported a 
pronounced synergistic anticonvulsant effect when com-
bining perampanel (noncompetitive α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid [AMPA] receptor 
antagonist) with zonisamide (modulates voltage-sensitive 
sodium channels and T-type calcium currents) to treat par-
tial-onset seizures [101]. Additionally, the combination 
of phenobarbital, phenytoin, and pregabalin (in a ratio of 
1:1:1) demonstrated synergistic interaction (at p < 0.01) in 
a mouse model of tonic-clonic seizures [102].

Even though several drug combinations have been tried in 
human studies, synergy has been best demonstrated between 
valproate and lamotrigine polytherapy. A European study 
was done to assess the efficacy of switching to lamotrigine 
monotherapy in patients receiving other ASMs (carbamaz-
epine, phenobarbital, phenytoin, or valproate). When ana-
lyzing patients during the combination polytherapy phase, 
the valproate and lamotrigine combination was significantly 
more effective than the others [103]. This synergy was again 
demonstrated in another small trial, where patients who 
failed to respond to monotherapy of valproate and lamo-
trigine were found to respond to a combination of these two 
ASMs, even with lower serum levels of lamotrigine [104].

Another study reviewed a novel approach to early poly-
therapy by combining a first-line treatment (BZD) with a 
second-line treatment, thus giving polytherapy as an initial 
CSE treatment in the pre-hospital setting to provide a more 
effective and rapid treatment [105]. This randomized, dou-
ble-blind superiority trial evaluated the efficacy of adding 
IV levetiracetam (2.5 g) to IV clonazepam (1 mg). This trial 
suggested that the addition of levetiracetam to clonazepam 
treatment had no advantage over clonazepam treatment 
alone in the control of CSE before admission to hospital 
[106, 107]. An adult observational prospective study found 
that administering a combination of BZD (diazepam or 
clonazepam) with fosphenytoin as first-line treatment leads 
to a higher rate of SE termination [108]. Though the latest 
guidelines recommend initial BZD monotherapy with rapid 
escalation to second-line agents, early polytherapy continues 
to gain interest as a potential target for investigation [38, 
105, 109].
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9 � Conclusions

CSE is now being increasingly recognized as a dynamic 
state with progressive BZD pharmacoresistance due to traf-
ficking of neurotransmitter receptors. This has led to revision 
of definitions and guidelines to emphasize earlier treatment 
and rapid escalation to second-line long-acting ASMs. BZDs 
are established as the most effective first-line therapy, but 
there is no clear evidence that any one of the second-line 
ASMs is better than the others. Results of the ConSEPT 
and EcLiPSE trials suggest that levetiracetam is not superior 
to phenytoin, with at times a less severe side effect profile 
during levetiracetam treatment. ESETT study also found 
no major differences between levetiracetam, fosphenytoin 
and valproic acid when used during the second line therapy 
phase. Medication choice among second-line agents may 
therefore also be informed by individual patient character-
istics and center availability [22], among other considera-
tions. There continues to be a paucity of evidence guiding 
treatment for RSE and super-RSE though adjunctive and 
non-pharmacological therapies are actively being studied. 
Consideration of rational and early polytherapy based on 
synergism between ASMs while considering the pharma-
codynamic or pharmacokinetic side effects is a potential 
therapeutic target for future studies [38, 110].
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