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ABSTRACT Streptococcus pneumoniae and other streptococci produce a greenish
halo on blood agar plates referred to as alpha-hemolysis. This phenotype is utilized
by clinical microbiology laboratories to report culture findings of alpha-hemolytic
streptococci, including S. pneumoniae, and other bacteria. The alpha-hemolysis halo
on blood agar plates has been related to the hemolytic activity of pneumococcal
pneumolysin (Ply) or, to a lesser extent, to lysis of erythrocytes by S. pneumoniae-
produced hydrogen peroxide. We investigated the molecular basis of the alpha-he-
molysis halo produced by S. pneumoniae. Wild-type strains TIGR4, D39, R6, and
EF3030 and isogenic derivative Aply mutants produced similar alpha-hemolytic halos
on blood agar plates, while cultures of hydrogen peroxide knockout AspxB AlctO
mutants lacked this characteristic halo. Moreover, in the presence of catalase, the
alpha-hemolysis halo was absent in cultures of the wild-type (wt) and Aply mutant
strains. Spectroscopic studies demonstrated that culture supernatants of TIGR4 released
hemoglobin-bound heme (heme-hemoglobin) from erythrocytes and oxidized oxy-he-
moglobin to met-hemoglobin within 30 min of incubation. As expected, given Ply he-
molytic activity and that hydrogen peroxide contributes to the release of Ply, TIGR4Aply
and AspxB AlctO isogenic mutants had significantly decreased release of heme-hemo-
globin from erythrocytes. However, TIGR4Aply that produces hydrogen peroxide oxi-
dized oxy-hemoglobin to met-hemoglobin, whereas TIGR4AspxB AlctO failed to produce
oxidation of oxy-hemoglobin. Studies conducted with all other wt strains and isogenic
mutants resulted in similar findings. We demonstrated that the so-called alpha-hemoly-
sis halo is caused by the oxidation of oxy-hemoglobin (Fe™?) to a non-oxygen-binding
met-hemoglobin (Fe*3) by S. pneumoniae-produced hydrogen peroxide.

IMPORTANCE There is a misconception that alpha-hemolysis observed on blood agar
plate cultures of Streptococcus pneumoniae and other alpha-hemolytic streptococci is
produced by a hemolysin or, alternatively, by lysis of erythrocytes caused by hydro-
gen peroxide. We noticed in the course of our investigations that wild-type S. pneu-
moniae strains and hemolysin (e.g.,, pneumolysin) knockout mutants produced the
alpha-hemolytic halo on blood agar plates. In contrast, hydrogen peroxide-defective
mutants prepared in four different strains lacked the characteristic alpha-hemolysis
halo. We also demonstrated that wild-type strains and pneumolysin mutants oxi-
dized oxy-hemoglobin to met-hemoglobin. Hydrogen peroxide knockout mutants,
however, failed to oxidize oxy-hemoglobin. Therefore, the greenish halo formed on
cultures of S. pneumoniae and other so-called alpha-hemolytic streptococci is caused
by the oxidation of oxy-hemoglobin produced by hydrogen peroxide. Oxidation of
oxy-hemoglobin to the nonbinding oxygen form, met-hemoglobin, might occur in the
lungs during pneumococcal pneumonia.
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istorically, Streptococcus pneumoniae and other streptococci of the viridians group

are classified as alpha-hemolytic bacteria on the basis of a greenish halo that sur-
rounds colonies when grown aerobically on blood agar plates (1, 2). This alpha-hemo-
lytic activity has been related to the production of a hemolysin, which, in the case of S.
pneumoniae strains, is referred as to pneumolysin (Ply) (3). An observation made that
anaerobic cultures of alpha-hemolytic streptococci lack this greenish discoloration has
linked the phenotype also to the lysis of erythrocytes by hydrogen peroxide that strep-
tococci produce as a metabolic by-product (1). In this study, we investigated whether
Ply or S. pneumoniae-produced hydrogen peroxide was responsible for alpha-hemoly-
sis and identified the molecular basis of the phenotype.

Pneumolysin is encoded by ply (4), while hydrogen peroxide released in cultures of
S. pneumoniae strains and alpha-hemolytic streptococci is a by-product of the metabo-
lism of the enzymes pyruvate oxidase (SpxB) and lactate dehydrogenase (LctO) (5). We
utilized different Aply mutants and S. pneumoniae TIGR4AspxB AlctO from previous
publications (6-8) and prepared AspxB AlctO double mutants in three other back-
grounds, vaccine serotype 19F strain EF3030 (9, 10), serotype 2 strain D39, and strain
R6, and a new EF3030Aply mutant (11). We previously demonstrated by Western blot-
ting and a hemoglobin release assay that the Ply knockout mutants do not produce
Ply (6) and that TIGR4AspxB AlctO does not produce detectable levels of hydrogen per-
oxide in supernatants from Todd-Hewitt broth supplemented with yeast extract (THY
broth) cultures incubated for 4 h (7).

S. pneumoniae strains were inoculated on blood agar plates containing 5% sheep
blood, and plates were incubated at 37°C under aerobic conditions and a 5% CO,
atmosphere. Overnight cultures of strains TIGR4, D39, R6, and EF3030 showed the clas-
sic alpha-hemolytic halo surrounding colonies, whereas D39Aply, R6Aply, TIGR4Aply,
and EF3030Aply mutant strains also showed an indistinguishable alpha-hemolysis halo
(Fig. 1 and not shown). The median diameters of alpha-hemolysis halos produced by
the D39 wild type (wt), TIGR4 wt, and EF3030 wt were very similar although statistically
different from those produced by the respective ply mutant strains (Fig. 1, inset, and
not shown). Blood agar plates with cultures of isogenic D39Aply produced alpha-he-
molysis halos with a diameter of 2.26 mm (Fig. 1, inset). An additional TIGR4Aply mu-
tant (AC4037) yielded a similar alpha-hemolysis halo (not shown) (12). In contrast,
blood agar plates inoculated with TIGR4AspxB AlctO and three additional double
AspxB AlctO mutants, R6AspxB AlctO, D39AspxB AlctO, and EF3030AspxB AlctO, com-
pletely lacked the alpha-hemolytic halo (Fig. 1). Blood agar plates of TIGR4AspxB AlctO,
D39AspxB AlctO, and EF3030AspxB AlctO did not produce the alpha-hemolytic halo
even after 72 h of incubation (not shown).

To confirm that hydrogen peroxide was responsible for the alpha-hemolytic halo,
TIGR4 wt or its isogenic TIGR4Aply was inoculated on blood agar plates containing
catalase (400 U/ml). As shown in Fig. 1, catalase inhibited alpha-hemolysis. Moreover,
adding pure hydrogen peroxide to blood agar plates spanning the concentration pro-
duced by S. pneumoniae strains (i.e., 800, 80, and 8 uM) produced similar alpha-hemo-
lytic halos on plates made of sheep or horse blood (not shown). Other streptococci,
including S. mutans, are not hemolytic when grown on blood agar plates (1, 2).
Colonies of S. mutans strain ATCC 25175 on blood agar plates resembled those of the
S. pneumoniae isogenic hydrogen peroxide knockout mutants (Fig. 1). Similarly to S.
pneumoniae and other streptococci, S. mutans harbors a putative a-hemolysin (13). S.
mutans lacks production of detectable hydrogen peroxide in the supernatant when
grown in aerobic cultures, and it is highly susceptible to hydrogen peroxide produced
by alpha-hemolytic oral streptococci (14, 15). Altogether, this evidence indicates that
hydrogen peroxide but not the hemolysin Ply caused the alpha-hemolytic phenotype
observed in aerobic cultures of S. pneumoniae strains.
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FIG 1 Hydrogen peroxide but not pneumolysin causes the alpha-hemolytic phenotype on blood
agar plates. S. pneumoniae wt strains TIGR4 (T), D39 (D), and EF3030 (E) or Aply and AspxB AlctO
mutant derivatives, or S. mutans strain ATCC 25175, were inoculated onto blood agar plates and
incubated for 24 h at 37°C in a 5% CO, atmosphere. Another set of plates were added with 400 U/ml
of catalase (Cat) and then inoculated as described above. Plates were photographed with a Canon
Rebel EOS T5 camera system, and digital pictures were analyzed. Phenotypes were confirmed at least
three times. Bar, 2mm. (Right) Hemolytic halos measured with Image) software for at least 25
colonies from images obtained from cultures on blood agar plates of D39 wt, D39Aply, TIGR4 (T4), or
TIGR4Aply; unpaired Student's t test was performed to assess significance. *, P < 0.05.

Erythrocytes carry hemoglobin that reversibly binds oxygen through a penta-coor-
dinate heme molecule containing ferrous iron (Fe*2), known as oxy-hemoglobin (16).
When hemoglobin is released from erythrocytes, heme-hemoglobin can be observed
by optical spectroscopy at ~415nm (16-18). This region is known as the Soret region
peak and represents heme-hemoglobin, while oxy-hemoglobin is characterized by two
absorption peaks of ~540 and ~570 nm (17, 18). Oxy-hemoglobin (Fe*?) is autoxidized
to met-hemoglobin (Fe™3) or oxidized by radicals such as hydrogen peroxide (17, 18),
inducing spectral changes, i.e., flattening the oxy-hemoglobin absorbance peaks. S.
pneumoniae produces and releases an abundance of hydrogen peroxide into the cul-
ture supernatant that intoxicates human cells (19) or that rapidly kills Staphylococcus
aureus strains and other bacterial species (7, 20). Hydrogen peroxide is a by-product of
the metabolism of two different enzymes, pyruvate oxidase (SpxB) and lactate dehy-
drogenase (LctO) (5).

To further investigate the molecular basis of the alpha-hemolytic phenotype, we
utilized a modified hemoglobin release assay that, when coupled with optical spectros-
copy, allowed us to quantify the release of heme-hemoglobin and to observe the
oxidation of oxy-hemoglobin to met-hemoglobin. As a control of heme-hemoglobin
release and the presence of oxy-hemoglobin, we obtained the UV-visible absorption
spectra of a 3% suspension of sheep erythrocytes that had been lysed with an equal
volume of water or lysed with 0.1% final concentration of saponin (Fig. 2A and not
shown). After centrifugation of the lysed erythrocyte suspension at 300 x g for 5min,
no red blood cells were visible in the bottom; therefore, this was considered the maxi-
mum heme-hemoglobin released. As expected, three characteristic peaks were
observed. The Soret peak, for which the wavelength of maximum absorption was
415nm and its absorbance was set as 100% hemoglobin release (Fig. 2A), and two
oxy-hemoglobin peaks at 540 and 570 nm (Fig. 2A). Similar peaks were observed when
hemoglobin was released from sheep or horse erythrocytes with saponin (not shown).
To investigate the release of heme-hemoglobin, S. pneumoniae strains were inoculated
at similar densities of ~5 x 107 CFU/ml in THY broth (pH 7) and incubated at 37°C in a
5% CO, atmosphere for 1, 2, 3, or 4 h. Bacterium-free supernatants were harvested and
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FIG 2 Heme-hemoglobin release by S. pneumoniae strains. (A) Suspension (3%) of sheep erythrocytes was
lysed, centrifuged at 300 x g for 5min, and incubated for 30min at 37°C in a 5% CO, atmosphere; the
spectrum was obtained using a spectrophotometer Omega BMG LabTech (Thermo Fisher). (B and C) TIGR4 wt,
TIGR4Aply, or TIGR4AspxB AlctO was inoculated in THY broth (pH 7.0) and incubated for 4 h at 37°C in a 5%
CO, atmosphere. (D) TIGR4Aply was incubated in THY broth alone or with catalase (200 U/ml) for 4 h.
Bacterium-free supernatants were harvested by centrifugation at 13,000 x g for 5min, and equal volumes were
incubated with a 3% suspension of sheep erythrocytes for 30 min at 37°C. After pelleting down the erythrocytes as
described above, the hemoglobin-containing supernatant was collected. (B) The UV-visible absorption spectrum was
obtained at the 4-h time point. Maximum heme-hemoglobin release (C) or that released by an untreated control
(D) was set to 100%, and the percent release by culture supernatants was calculated. Error bars represent the
standard errors of the means calculated using data from at least three independent experiments. Student t test (¥,
P < 0.05) analysis was performed to compare Soret absorbances at 415 nm generated by the wt and isogenic
mutant at the same time point.

then incubated with equal volumes of a 3% suspension of sheep erythrocyte at 37°C in
a 5% CO, atmosphere for 30 min, after which, the treated erythrocyte suspensions
were centrifuged at 300 x g for 5 min to collect supernatants. Experiments presented
below were conducted with TIGR4 wt and its isogenic mutants. We also performed
similar experiments using D39, R6, and EF3030 wt strains and their isogenic mutants,
with essentially similar results (not shown).

The Soret peak of heme-hemoglobin released in the control (Fig. 2B) represented
100% of heme-hemoglobin released (Fig. 2C). A time course study demonstrated that
TIGR4 released ~60% of heme-hemoglobin as soon as 1 h postinoculation (Fig. 2B and
C) and produced, after 4 h of incubation, a Soret peak representing ~85% of heme-he-
moglobin released compared to the maximum heme-hemoglobin released in the con-
trol (Fig. 2C). As expected given that hydrogen peroxide contributes to release of Ply
into the supernatant (21), hemoglobin released by TIGR4AspxB AlctO after 4 h of
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FIG 3 Oxy-hemoglobin is oxidized to met-hemoglobin by S. pneumoniae-produced hydrogen peroxide.
(A) Suspension (3%) of sheep erythrocytes was mixed with equal volumes of cell-free culture
supernatants of strain TIGR4 wt that had been grown as described for Fig. 2B for the indicated times.
The mixture was incubated for 30 min at 37°C in a 5% CO, atmosphere. As a control, erythrocytes were
lysed and incubated under the same conditions. The absorbance spectra were then obtained using a
spectrophotometer Omega BMG LabTech (Thermo Fisher). (B) TIGR4 wt, TIGR4Aply, or TIGR4AspxB
AlctO was inoculated in THY broth (pH 7.0) and incubated for 4 h at 37°C in a 5% CO, atmosphere.
Bacterium-free supernatants were harvested by centrifugation at 13,000 x g for 5min, and equal volumes
were incubated for 30min at 37°C with hemoglobin-containing erythrocytes lysates. Hemoglobin-
containing supernatants were collected, and the UV-visible absorption spectra were obtained. (C) Oxy-
hemoglobin-containing lysates (control) were incubated for 30 min at 37°C with H,O, (880 uM), TIGR4 wt
supernatant harvested as described above, or TIGR4 wt supernatant and catalase (200 U/ml). Error bars

(Continued on next page)
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incubation was ~50% of that released by the wt strain (Fig. 2B and C). In contrast to
the TIGR4 strain and TIGR4AspxB AlctO, the isogenic Ply knockout mutant TIGR4Aply
induced the release of <30% heme-hemoglobin compared to that by the control. This
residual release of hemoglobin was in part caused by hydrogen peroxide activity in the
supernatants, since it was significantly reduced in cultures of TIGR4Aply incubated
with catalase (200 U/ml) (Fig. 2D). Because a mutation in ply renders the strain unable
to lyse erythrocytes, all but Aply mutant strains produce the so-called alpha-hemolytic
phenotype; these results further support that Ply-associated hemolytic activity is not
responsible for the alpha-hemolysis phenotype observed in blood agar plates.

Oxy-hemoglobin can react with reactive oxygen species, including hydrogen perox-
ide, to produce met-hemoglobin, the non-oxygen-binding form of hemoglobin (22,
23). To assess the presence of met-hemoglobin, we evaluated the oxy-hemoglobin
peaks in hemoglobin preparations incubated with S. pneumoniae supernatants. Oxy-
hemoglobin peaks were clearly observed in the control preparation (Fig. 3A) but were
completely flattened when culture supernatants of the TIGR4 strain obtained after 3 or
4 h of incubation were incubated with the suspension of erythrocytes for an additional
30-min period. This change in the absorption pattern of oxy-hemoglobin was compati-
ble with the oxidation of oxy-hemoglobin to met-hemoglobin (22). Note that autoxida-
tion of oxy-hemoglobin to met-hemoglobin did not occur within the 30-min incuba-
tion of the assay, since the oxy-hemoglobin peaks were observed. Because culture
supernatants from TIGR4Aply or TIGR4AspxB AlctO did not contain heme-hemoglobin
at the same level as those from TIGR4, we could not evaluate the oxidation of oxy-he-
moglobin in these isogenic mutant strains using the modified hemoglobin release
assay.

To further confirm whether oxy-hemoglobin is oxidized to met-hemoglobin by
hydrogen peroxide produced in culture supernatants of TIGR4Aply but not in superna-
tants of hydrogen peroxide knockout mutant TIGR4AspxB AlctO, we incubated prepa-
rations of oxy-hemoglobin that had been previously released from erythrocytes, as
mentioned earlier, with culture supernatants of TIGR4 or isogenic mutants. We rea-
soned that if hydrogen peroxide present in culture supernatants was responsible for
the oxidation of oxy-hemoglobin, then having oxy-hemoglobin already as a substrate
would allow us to observe such a reaction. As expected, supernatants from 4-h cultures
of the wt strain that were incubated for 30 min with the oxy-hemoglobin preparation
converted oxy-hemoglobin to met-hemoglobin (Fig. 3B). Supernatants from the iso-
genic TIGR4Aply significantly oxidized oxy-hemoglobin to met-hemoglobin, indicating
that oxidation occurred due to the hydrogen peroxide activity retained by the ply
knockout mutant. Confirming this hypothesis, oxy-hemoglobin was observed almost
intact after a 30-min incubation with supernatants of the isogenic TIGR4AspxB AlctO,
indicating that met-hemoglobin was produced by hydrogen peroxide secreted into
the culture supernatant. Oxidation of oxy-hemoglobin did not occur in supernatants of
the wt strain treated with catalase (200 U/ml), but oxy-hemoglobin was oxidized to
met-hemoglobin when the oxy-hemoglobin preparations were treated with H,0,
(880 M) at a similar concentration to that produced in culture supernatants of S. pneu-
moniae strains (7, 21, 24) (Fig. 3C). Oxidation of hemoglobin to met-hemoglobin was
observed using horse erythrocytes and when releasing hemoglobin from erythrocytes
using water or saponin (not shown).

In conclusion, we demonstrated in this study that the so-called alpha-hemolysis
phenotype observed on blood agar plates when incubated under aerobic conditions is

FIG 3 Legend (Continued)

represent the standard errors of the means calculated using data from at least three independent
experiments. Student t test (¥, P < 0.05) analysis was performed to compare the oxy-hemoglobin
absorbance peaks (540nm and 570nm) generated by the untreated hemoglobin-containing lysate
control against that generated by incubation with supernatants from TIGR4 wt, TIGR4AspxB AlctO,
TIGRAAply strain (B), or H,0, (C). #, P < 0.05 comparing TIGR4 wt incubated with catalase against TIGR4
wt and H,0,
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an oxidative reaction caused by S. pneumoniae-produced hydrogen peroxide that con-
verts oxy-hemoglobin to met-hemoglobin.
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