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Abstract: Control moment gyroscopes (CMG) are crucial components in spacecrafts. Since the
anomaly of bearing temperature of the CMG shows apparent correlation with nearly all critical fault
modes, temperature prediction is of great importance for health management of CMGs. However,
due to the complicity of thermal environment on orbit, the temperature signal of the CMG has
strong intrinsic nonlinearity and chaotic characteristics. Therefore, it is crucial to study temperature
prediction under the framework of chaos time series theory. There are also several other challenges
including poor data quality, large individual differences and difficulty in processing streaming data.
To overcome these issues, we propose a new method named Chaotic Ensemble of Online Recurrent
Extreme Learning Machine (CE-ORELM) for temperature prediction of control moment gyroscopes.
By means of the CE-ORELM model, this proposed method is capable of dynamic prediction of
temperature. The performance of the method was tested by real temperature data acquired from
actual CMGs. Experimental results show that this method has high prediction accuracy and strong
adaptability to the on-orbital temperature data with sudden variations. These superiorities indicate
that the proposed method can be used for temperature prediction of control moment gyroscopes.

Keywords: control moment gyroscope; temperature prediction; online-recurrent extreme
learning machine

1. Introduction

Health management of attitude control systems of spacecrafts is a promising research direction
at present. Recently, control moment gyroscopes (CMGs) have become the actuator of choice due
to their high torque amplification capability and play essential roles in the operation of spacecrafts.
CMGs are capable of producing significant torques and can handle large quantities of momentum over
long periods of time. Consequently, CMGs are preferred in precision pointing applications and in
momentum management of large, long-duration spacecrafts. However, owing to the short period of
applications, condition monitoring and health management of CMGs is less studied. Therefore, it is
essential to study this issue.

A CMG is comprised of a rapidly spinning rotor mounted on one or two gimbals, and is accordingly
called a single gimbal CMG (SGCMG) or a double gimbal CMG. Due to the limitations of weight,
space and energy cost, there are only a few signals (rotating speed, temperature, electric current and so
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on) gathered from the on-orbit satellites. Among those signals, the temperature signal shows apparent
correlation with nearly all of the critical fault modes such as bearing failure, rotor jam and frame jam.
Therefore, the temperature signal is an important indicator to identify whether the CMG is working
well. However, considering the delay of transmission and processing, health assessment based on the
monitoring of temperature signal has a certain hysteresis. Therefore, it is essential to study temperature
prediction so as to assess the CMG’s health state and detect weak failures as early as possible.

Currently, a number of methods are proposed for monitoring machine temperatures [1–4].
Deng X. et al. established a mathematical model of the thermal characteristics of a spindle bearing
system [5]. Bing C. et al. designed a digital temperature-based temperature alarm system [6]. Ma W. et al.
used statistical methods based on historical data to study temperature prediction [7]. In recent years,
the rapid development of machine learning algorithms has brought new possibilities for temperature
prediction. For instance, Luo et al. proposed a long short term memory-based approach to forecast the
temperature trend [8,9]. In addition, many other methods based on temperature data have also been
proposed [10,11].

Considering the universal presence of chaotic phenomena and the complex environments of
spacecrafts, the temperature signal also has strong intrinsic nonlinearity and chaotic characteristics.
Therefore, it is crucial to study temperature prediction under the framework of chaos time series theory.

As a typical feedforward neural network, online sequential extreme learning machine (OS-ELM)
is a good choice to deal with sequence data prediction [12]. Zhang et al. used an OS-ELM-based model
to realize the real-time prediction of solar radiation [13]. Yu et al. proposed an improved OS-ELM
method and achieved good results in the online ship rolling prediction [14]. Park et al. proposed an
improved OS-ELM model called online recurrent extreme learning machine (OR-ELM). Experimental
results showed that the model can not only obtain high prediction accuracy, but it also has remarkable
adaptability to mutation data [15]. However, those individual algorithms have variations in different
trials of simulations and relatively poor stabilities [16]. To overcome this weakness, on the basis
of chaos time series theory, we propose an integrated structure to ensemble a number of OR-ELMs
as a whole, called Chaotic Ensemble of Online Recurrent Extreme Learning Machine (CE-ORELM).
This structure attempts to improve the stability and accuracy by synthetic analysis according to results
of several individual OR-ELMs.

In this paper, a CE-ORELM-based method is proposed for temperature prediction of control
moment gyroscopes. The structure of this paper is arranged as follows: Section 2 describes the
challenges of the CMG temperature prediction problem; Section 3 introduces our prediction framework
for the temperature of CMG; Section 4 introduces the experiments details; in Section 5 we illustrate
experimental results and make some discussion about the result; Section 6 concludes the work of
this paper.

2. Challenges of Control Moment Gyroscope Temperature Prediction

As aforementioned, since the inherent relationships and operation environments of control
moment gyroscopes are complex and rough, there are many challenges during temperature prediction.

2.1. Chaotic Characteristics of Raw Signals

According to chaos theory, chaos phenomena is ubiquitous. Since the temperature signal of CMG
is a typical chaos time series, strong intrinsic nonlinearity and chaotic characteristics can be found and
have critical influence on the prediction. Therefore, we have to study temperature prediction under
the framework of chaos time series theory.

2.2. Poor Quality of Training Data

The monitoring signals are transmitted from spacecrafts to the ground. Due to the limitations of
transmission modes and hardware resources, the sampling frequency of data obtained by the ground is
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greatly reduced. The problem of missing data also occurs from time to time. In addition, the data delay
and noise interference in the transmission process directly lead to further reducing of data quality.

2.3. Large Individual Differences

The running conditions and environments of CMGs are quite different, and the distributions of
temperatures are also related to these factors. It is almost impossible to train one model which can be
universally applied to all CMGs. Even if a model is trained that performs well in offline prediction,
its performance may greatly reduce in practice.

2.4. Streaming Data Processing

The temperature data are transmitted to the computing platform in the form of network byte
stream. The collection, preprocessing and model training method of the streaming data are different
from the traditional offline training approach. The streaming data is usually unstable, which requires the
algorithm to have the ability of continuous learning and timely adaptation to these changeable features.

Currently, there is no existing model which can solve all aforementioned challenges. Concerning
those issues, we introduce a new efficient and accurate prediction framework which is also verified by
using actual data collected from CMGs in service.

3. Methods

3.1. Phase-Space Reconstruction of Chaotic Time Series

The dynamic phase-space reconstruction theory is an important method to study in dynamic
systems [17]. It extends a one-dimensional chaotic time series to a high-dimensional phase space,
which can better describe the dynamic morphology of the system. For time series x(t), t = 1, 2, 3, . . . , N,
the system embedding dimension (m) is introduced to construct an m-dimensional phase space, in
which x(t) can be expressed as:

X(t) = (x(t), x(t− 1), · · · , x(t− (m− 1))). (1)

According to Takens’ embedding theory [18], as long as the dimension satisfies:

m ≥ 2D + 1, (2)

where D is the dimension of the system attractor, then the reconstructed system is equivalent to the
original dynamics system.

Therefore, the determination of the system embedding dimension m is the key issue for phase
space reconstruction. Therefore, we need to calculate the system attractor dimension D.

In general, the correlation dimension is calculated as Grassberger and Procaccia proposed an
algorithm for calculating the correlation dimension [19], also known as the G–P algorithm, which is
widely used. The steps of the algorithm are as follows:

(1) Calculation of correlation integral:
Define N as the number of vectors in reconstructed phase space, and the correlation integral Cm(r)

is defined as

Cm(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

H
(
r−

∣∣∣Xi −X j
∣∣∣), (3)

where, H is the Heaviside function.
(2) A cluster of ln Cm(r)-ln(r) curves are plotted through increasing m. Then the least squares

method is used to make linear regression in the curve’s approximately linear part, to obtain the
estimated value of correlation dimension D.
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The correlation dimension D is defined as

D = lim
r→0

ln(Cm(r))
ln(r)

. (4)

3.2. OR-ELM Theory

As a widely used solution to the online time-series prediction problem, online sequential extreme
learning machine (OS-ELM) can quickly track new sequence patterns and performs better than other
online learning solutions in most cases [12]. Due to the introduction of an incremental learning
algorithm, OS-ELM can update the model parameters sample-by-sample. When new samples are
added, it is not necessary to recalculate all the previous data, but to conduct incremental learning on
the new sample based on the previous model.

Park et al. [15] proposed an improved OS-ELM, called online recurrent extreme learning machine
(OR-ELM), which shows better performance on time-series prediction tasks than other traditional
online learning methods such as hierarchical temporal memory (HTM) and online long short-term
memory (online LSTM). The OR-ELM algorithm adds an LN layer to the basic OS-ELM and constructs
a recurrent neural network as its main framework. The weights of input layer and hidden layer
are updated by two ELM-auto-encoders (ELM-AE) [16], the first being ELM-AE for input weight
(ELM-AE-IW) and the second ELM-AE for hidden weight (ELM-AE-HW). The learning process of
OR-ELM is mainly divided into two stages. The first part is the initialization stage, in which the input
weight, output weight and parameter matrix are initialized. The second part is the online sequential
learning phase, in which a new chunk of samples is used to update the input weight, output weight and
hidden weight. Figure 1 shows the difference between a simple OS-ELM model and the corresponding
improved OR-ELM model.
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Figure 1. A simple online sequential extreme learning machine (OS-ELM) model and a simple online
recurrent extreme learning machine (OR-ELM) model.

1. Initialization stage:

For any online prediction model, there is no training data available in the initialization process,
so the algorithm adopts the method to complete the initialization of the output weight β0:

β0 = 0, P0 =
( I

C

)−1
. (5)

where C is the regularization constant of the ELM-AE. In addition, the initial values of ELM-AE-IW’s
input weight, ELM-AE-HW’s input weight and hidden layer’s output H0 are assigned by the standard
normal distribution.
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2. Online sequential learning stage:

In the online sequential learning stage, the weight matrix will be updated once a new set of
input data with Nk+1 training samples arrives. x(k + 1) represents the newly added sample here.
According to the RLS method, the forgetting factor λ is introduced, then the updated equations of the
model are as follows:

β0 = 0, P0 =
( I

C

)−1
. (6)

The input weight update is Wk+1 = βi
k+1

T, where

βi
k+1 = βi

k + Pi
k+1Hi

k+1
T(x(k + 1) −Hi

k+1β
i
k); (7)

Pi
k+1 =

1
λ

Pi
k − Pi

kHi
k+1

T(λ2 + λHi
k+1Pi

kHi
k+1

T)
−1

Hi
k+1Pi

k. (8)

The hidden weight update is Vk+1 = βh
k+1

T, where

βh
k+1 = βh

k + Ph
k+1Hh

k+1
T(Hk −Hh

k+1β
h
k); (9)

Ph
k+1 =

1
λ

Ph
k − Ph

kHh
k+1

T(λ2 + λHh
k+1Ph

kHh
k+1

T)
−1

Hh
k+1Ph

k . (10)

The Output matrix update is

Hk+1 = g(norm(Wk+1x(k + 1) + Vk+1Hk)) (11)

where, g() is the activation function.
The output weight update is

βk+1 = βk + Pk+1HT
k+1(x(k + 1) −Hk+1βk) (12)

Pk+1 =
1
λ

Pk − PkHk+1
T(λ2 + λHk+1PkHk+1

T)
−1

Hk+1Pk. (13)

The OR-ELM based prediction network designed in this paper is shown in Figure 2. The input
layer of the model consists of N cells, and each cell contains a vector of L dimensions arranged in
specific order. The output layer of the model contains only one-dimensional scalar value. The input
layer and the output layer are sequentially connected by the LN layer and the hidden layer. The output
of a hidden layer’s cell is input to the LN layer of the next cell together with the original data at next
time step after the multiplication operation with the specific weight coefficient.
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The input of the model consists of a set of time series data χ =
{
χ(1),χ(2), . . . ,χ(N)

}
, where N

represents the length of time window required. The OR-ELM-based prediction model proposed in this
paper is only applicable to a certain position’s temperature prediction task. Each element χ(t) ∈ RL in
the input sample χ is composed of an m-dimensional vector

{
χt

1,χt
2, . . . ,χt

L

}
, where L represents the

length of the feature table and the scalar value χt
k represents the value of the (k)th input at time t. Here

we set the value L as 11, then the L elements in each χ(t) correspond exactly to the L-dimensional inputs.
The output of the model is also a set of time series data Y =

{
y(N+k)

}
, where y(N+k) represents the

predicted temperature after k cycles at the measurement point.

3.3. Chaotic Ensemble of OR-ELM

The OR-ELM network takes the minimum embedding dimension as the input number. Therefore,
the estimation of the minimum embedding dimension has a great influence on the accuracy of the
network. However, in practice, it is difficult to get the exact embedding dimension using the GP
algorithm, and the stability of a single OR-ELM network is poor, which leads to the inaccurate
prediction results of a single OR-ELM network. Therefore, a chaotic ensemble of OR-ELM consisting
of multiple OR-ELMs (CE-ORELM) is proposed in this paper. The structure is shown in Figure 3.
In this model, multiple parallel connected OR-ELM networks are constructed, which are denoted as
sub −ORELMi (i = 1, 2, . . . , n). The prediction results of each network are integrated with proper
weights to obtain the final prediction results of the network, to improve the prediction accuracy. In this
paper, each subnet uses the default parameter, where the number of hidden layers is 1, and the number
of hidden nodes is equal to the number of input vectors.
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The correlation dimension D is obtained by the G–P algorithm described above, and the minimum
embedding dimension m is determined according to the Formula (2). Let the number of input nodes
in the central subnet sub-ORELM[n/2] be equal to m. The number of input nodes in other subnets is
defined as follows:

Ini = In[n/2] + (i− [n/2])(i = 1, 2, · · · , n), (14)

where n is the total number of subnets in CE-ORELM. Ini represents the number of input nodes in the
subnet. When i = [n/2], the subnet is called central subnet.

Due to the instability of the performance of a single ORELM network, each subnet needs to be
weighted appropriately to obtain more accurate prediction results. Define the weighted factor as ω,
the optimal weighted factors of each subnet ωi (i = 1, 2, . . . , n) is calculated through the least square
regression algorithm.

minJCE−ORELM = min
∑N

t=1
[x(t + step) −

∑n

i=1
ωix̂i(t + step)]

2
, (15)
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where, N is the number of samples, step is the prediction step and x(t + step) is the true value.
The final prediction results x̂(t + step) of CE-ORELM network can be expressed as follows:

x̂(t + step) =
n∑

i=1

$i × x̂i(t + step), (16)

where, n is the total number of subnets in CE-ORELM and x̂i(t + step) represents the output of the
ith subnet.

3.4. Framework of Temperature Prediction

As shown in Figure 4, the CE-ORELM-based temperature prediction framework proposed in this
paper is mainly composed of three parts: data preprocessing part, CE-ORELM-based model’s training
and prediction part, and an auxiliary alarm part.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 14 

 

input nodes in the central subnet [ ]/ 2nsub ORELM−  be equal to m. The number of input nodes in 

other subnets is defined as follows: 

[ ] [ ]( )/ 2 / 2i nIn In i n= + −  ( 1,2, , )i n=  , (14) 

where n is the total number of subnets in CE-ORELM. iIn  represents the number of input nodes in 

the subnet. When [ ]/ 2i n= , the subnet is called central subnet. 

Due to the instability of the performance of a single ORELM network, each subnet needs to be 
weighted appropriately to obtain more accurate prediction results. Define the weighted factor as ω, 
the optimal weighted factors of each subnet ωi (i = 1, 2, …, n) is calculated through the least square 
regression algorithm. 𝑚𝑖𝑛 𝐽஼ாିைோா௅ெ = 𝑚𝑖𝑛∑ [𝑥(𝑡 + 𝑠𝑡𝑒𝑝) − ∑ 𝜔௜𝑥ො௜(𝑡 + 𝑠𝑡𝑒𝑝)௡௜ୀଵ ]ଶே௧ୀଵ , (15) 

where, N is the number of samples, 𝑠𝑡𝑒𝑝 is the prediction step and 𝑥(𝑡 + 𝑠𝑡𝑒𝑝) is the true value. 
The final prediction results ( )x̂ t step+

 
of CE-ORELM network can be expressed as follows: 

( ) ( )
1

ˆ ˆ
n

i i
i

x t step x t stepϖ
=

+ = × + , (16) 

where, n is the total number of subnets in CE-ORELM and ( )ˆix t step+  represents the output of the 

ith subnet. 

3.4. Framework of Temperature Prediction 

As shown in Figure 4, the CE-ORELM-based temperature prediction framework proposed in 
this paper is mainly composed of three parts: data preprocessing part, CE-ORELM-based model’s 
training and prediction part, and an auxiliary alarm part. 

The CE-ORELM model predicts the temperature data of each measurement point in the next k 
cycles. In the comparison link, the prediction value was compared with the temperature warning 
threshold of each measurement point, and the difference between the prediction value and the 
external environment temperature was compared with the temperature warning threshold of each 
measurement point. When any one of the prediction values exceeded the threshold, the warning 
signal would be sent. 

Start Streaming 
Sensor Data

Prediction Result >Threhold ?

Send Warning Message

No

Yes

Data Preprocessing CE-ORELM-based 
Model Training

continueNoStop

Yes

Prediction 
Result

CE-ORELM-based 
Model Prediction

 
Figure 4. Framework of the prediction model. 

4. Experiments 

4.1. Data Description 

The data used in the experiments are collected from control moment gyroscopes of a satellite in 
service. The temperature sensor installed on the high-speed bearing of each CMG which is shown in 
Figure 5. We collected the running data within 15 days and stored them in the offline database, and 

Figure 4. Framework of the prediction model.

The CE-ORELM model predicts the temperature data of each measurement point in the next k
cycles. In the comparison link, the prediction value was compared with the temperature warning
threshold of each measurement point, and the difference between the prediction value and the external
environment temperature was compared with the temperature warning threshold of each measurement
point. When any one of the prediction values exceeded the threshold, the warning signal would
be sent.

4. Experiments

4.1. Data Description

The data used in the experiments are collected from control moment gyroscopes of a satellite in
service. The temperature sensor installed on the high-speed bearing of each CMG which is shown in
Figure 5. We collected the running data within 15 days and stored them in the offline database, and the
raw data is shown in Figure 6. If the temperature value is larger than 70 ◦C, the CMG is considered to
be breaking down. To simulate the online scenario as much as possible, we arranged this data into
streaming data format in time order for the use of prediction task.

There are two hyper parameters that need to be determined before applying the model to make
predictions tasks. They are M and λ, which respectively represent the number of hidden nodes and the
forgetting factor of model. Finding the optimal hyper parameters becomes a key task for the data with
different distributions. We divided the dataset into three parts νn, νt and νm. To evaluate the feasibility
and adaptability of the model in response to emergencies, we filtered out a piece of data containing
special events (emergency braking in our experiment) from the data set, which is νm. Then we divided
the remaining data into νn and νt according to the ratio of 8:2. The data set νn was used to train the
optimal hyper parameters of the model, and νt was used to evaluate the model’s performance in
solving this prediction problem and to compare its characteristics with other models.
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4.2. Hyper Parametric Setting

To obtain the optimal hyper parameters M and λ, the data set νn is involved. According to the
structural characteristics of the model itself, the optimal value of the parameter λ is between the
interval 0.9–1. We first fix a certain λ, and then test the prediction accuracy of the model obtained
after taking different M (10–1500) on the data set νn. Finally, we can get the optimal M with this λ.
By constantly adjusting the value of λ, the optimal hyper parameters M and λ applicable to the data
set can be obtained after some iterative searches.
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4.3. Experiment Scheme Design

We conducted experiments to compare the performances of the proposed CE-ORELM for
temperature prediction with different parameters. To evaluate the performance of the prediction
result on the test data set, we introduce the normalized root mean square error (NRMSE) and mean
absolute percentage error (MAPE) indicators for analysis. In the time series prediction, NRMSE is the
most common evaluation indicator used to evaluate the performance, which can reflect the similarity
between the prediction series and the actual series. It can be calculated as:

NRMSE =

√
1
T
∑T

k=1 (Yk − y(k))2

Ymeam
, (17)

where T represents the length of data sequence, Yk represents the observed value at time k, and y(k)
represents the predicted value of the algorithm at time k.

Although data preprocessing methods were implemented, there were still some noises contained
in data. Contrary to NRMSE, MAPE is more suitable to evaluate the performance of prediction models
with noisy data. It can be calculated as:

MAPE =

∑T
k=1

∣∣∣Yk − y(k)
∣∣∣∑T

k=1|Yk|
, (18)

where T, Yk, and y(k) are defined the same as NRMSE.

4.4. Parameters of CE-ORELM

The correlation dimension D can be obtained through the G–P method described above. Firstly,
a cluster of ln Cm(r)–ln(r) curves of the normal data are plotted through increasing m. Then the least
square regression method is used to obtain the estimated value of D. According to the Formula (2),
the embedding dimension m is determined, and m = 6. After training and testing, a prediction model
of normal state can be determined.

5. Results and Discussion

The experimental results are illustrated in this section. By analyzing the prediction error of the
model with different forgetting factors λ and hidden node number M, as shown in Figure 7, we obtained
the optimal hyper parameters in this experiment.

The algorithm proposed in this paper is verified by the test data νt mentioned above. At the same
time, the performance of the proposed CE-ORELM algorithm is compared by the NRMSE and MAPE
in different training samples and prediction steps. The results are shown in Table 1. In terms of training
sample 3000, the NRMSE values are 0.0021, 0.015, 0.0028 and 0.0030 respectively, which are lowest in
all the NRMSE values, including the training sample 2500 (0.0042, 0.1400, 0.0224 and 0.1423) and the
training sample 2000 (0.0118, 0.1179, 0.0423 and 0.0466). Therefore, the number of the training sample
has certain influences on the performance of CE-ORELM. The MAPE are 0.0014, 0.0012, 0.0025 and
0.0031 respectively, which is lower than other training samples (2500: 0.0107, 0.0226, 0.0165 and 0.0340;
2000: 0.2250, 0.5130, 0.2515 and 0.3659). Therefore, the CE-ORELM algorithm is robust and effective in
the forecasting of time series with intrinsic nonlinearity and chaotic characteristics.

In order to compare the performance of the models with different prediction steps and training
data, we selected different prediction steps of 5, 10, 15 and 20, and training samples of 2000, 2500 and
3000 to analyze the prediction accuracy respectively, as shown in Figure 8. It is shown in Figure 8a that
when the number of training samples is 3000, the prediction accuracies of all models perform best
compared with the training samples of 2500 and 2000 and are all above 90%. Meanwhile, the accuracies
of training samples 2500 are around 90%, and the accuracies of training samples 2000 are from 60%
to 90%. Therefore, it can be seen from Figure 8a that with the number of training sample increases,
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the accuracy of CE-ORELM can reach about 90% gradually. The greater the number of training samples,
the higher accuracy it achieves. According to Figure 8b, with the different prediction steps, CE-ORELM
has the highest accuracies all the time (no less than 92%), compared with the sub-ORELMs. What is
more, as shown in both Figure 8a,b, the prediction accuracies of prediction step 10 is almost the best
with different parameters. Therefore, the proposed algorithm with the prediction step of 10 can be
used for temperature prediction of control moment gyroscopes.Sensors 2020, 20, x FOR PEER REVIEW 10 of 14 
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Table 1. The analysis of prediction results based on normalized root mean square error (NRMSE) and
mean absolute percentage error (MAPE).

Training
Sample Value Prediction

Step 5
Prediction

Step 10
Prediction

Step 15
Prediction

Step 20

3000
NRMSE 0.0021 0.0015 0.0028 0.0030
MAPE 0.0014 0.0012 0.0025 0.0031

2500
NRMSE 0.0042 0.1400 0.0224 0.1423
MAPE 0.0107 0.0226 0.0165 0.0340

2000
NRMSE 0.0118 0.1179 0.0423 0.0466
MAPE 0.2250 0.5130 0.2515 0.3659

To demonstrate the efficiency of the CE-ORELM in details, a number of results are shown in
Table 2 and Figure 9. The weights of sub-ORELMs with the prediction step 10 are shown in Table 2,
and the actual outputs and predicted outputs with prediction step 10 are shown in Figure 9. It is
obvious that the curve of actual outputs and the curve of predicted outputs are almost the same.
Moreover, the predicted outputs (ranging from 39 to 42) are not only close to actual data, but also
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indicate the same variation trend with the actual data, which has obvious variable stages. Therefore,
the proposed method is effective in temperature prediction under different operation states.
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Table 2. Weights of sub-online recurrent extreme learning machine (ORELMs).

Sub-ORELM Embedding
Dimension 4

Embedding
Dimension 5

Embedding
Dimension 6

Embedding
Dimension 7

Embedding
Dimension 8

Weight 0.3454 0.1350 0.1522 0.2358 0.1316

Moreover, as shown in Figure 9, it is noticeable that due to the regular change of thermal
environment on orbit, the temperature of the high-speed bearing increases with step-wise changes and
the values fluctuate between adjacent stages. In this scenario, the proposed method tends to get close
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to the later stage. Although this tendency decreases the accuracy, it is helpful for us to decide ahead
of time. It is also shown that when the suddenly varying data emerges, the proposed CE-ORELM
can also perform well. Therefore, it is obvious that the CE-ORELM has high prediction accuracy and
strong adaptability to the on-orbital temperature data with sudden variations.
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6. Conclusions

Temperature prediction is a significant part of the health management system for CMGs. This paper
proposes a chaotic ensemble-ORELM-based framework that can be applied to the temperature
prediction of CMGs. We tested this framework with the actual data acquired in the running process
of CMGs. The experiment results show that the prediction accuracy increases with the increase of
the number of training samples. The prediction step also has influence on the prediction accuracy,
and the accuracy is highest with the prediction step 10 in the experiment. The experimental results
show that this framework outperforms others with a higher prediction accuracy over 96%. What is
more, the proposed framework has a good ability in predicting the data with sudden variations and
is therefore effective in temperature prediction under different operation states. These advantages
indicate that this framework approximately meets the requirements of temperature prediction of CMGs
in practice.

However, the high accuracy is based on the sufficiency of training samples. In practice, the absence
of fault data may create over-fitting. Thus, more experiments with small sample data and imbalanced
data should be done in the future.
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