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Abstract

Aim—During cancer radiotherapy treatment, on-board four-dimensional-cone beam computed 

tomography (4D-CBCT) provides important patient 4D volumetric information for tumor target 

verification. Reconstruction of 4D-CBCT images requires sorting of acquired projections into 

different respiratory phases. Traditional phase sorting methods are either based on external 

surrogates, which might miscorrelate with internal structures; or on 2D internal structures, which 

require specific organ presence or slow gantry rotations. The aim of this study is to investigate the 

feasibility of a 3D motion modeling-based method for markerless 4D-CBCT projection-phase 

sorting.

Methods—Patient 4D-CT images acquired during simulation are used as prior images. Principal 

component analysis (PCA) is used to extract three major respiratory deformation patterns. On-

board patient image volume is considered as a deformation of the prior CT at the end-expiration 

phase. Coefficients of the principal deformation patterns are solved for each on-board projection 

by matching it with the digitally reconstructed radiograph (DRR) of the deformed prior CT. The 

primary PCA coefficients are used for the projection-phase sorting.
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Results—PCA coefficients solved in nine digital phantoms (XCATs) showed the same pattern as 

the breathing motions in both the anteroposterior and superoinferior directions. The mean phase 

sorting differences were below 2% and percentages of phase difference < 10% were 100% for all 

the nine XCAT phantoms. Five lung cancer patient results showed mean phase difference ranging 

from 1.62% to 2.23%. The percentage of projections within 10% phase difference ranged from 

98.4% to 100% and those within 5% phase difference ranged from 88.9% to 99.8%.

Conclusion—The study demonstrated the feasibility of using PCA coefficients for 4D-CBCT 

projection-phase sorting. High sorting accuracy in both digital phantoms and patient cases was 

achieved. This method provides an accurate and robust tool for automatic 4D-CBCT projection 

sorting using 3D motion modeling without the need of external surrogate or internal markers.
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Four-dimensional-cone beam computed tomography; markerless; motion modeling; phase sorting; 
prior knowledge

INTRODUCTION

Target control and normal tissue complication probabilities are highly correlated to the target 

localization accuracy in radiation therapy.1,2 Accurate localization of moving targets is 

challenging due to the respiratory motion of the normal tissue and target.3 Conventionally, 

three-dimensional-cone-beam computed tomography (3D-CBCT) has been used for target 

localization before the treatment. However, 3D-CBCT does not capture the motion 

information and only provides an average location of the moving target, which may not be 

sufficient for high-precision radiotherapy treatments. More recently, 4D-CBCT has been 

developed for 4D localization of moving targets. 4D-CBCT reconstructs patient on-board 4D 

images by first sorting the acquired cone beam projections into different respiratory phases.
4–9 The accuracy of the projection sorting determines the accuracy of the reconstructed 4D-

CBCT images, which in turn affects the tumor localization accuracy using 4D-CBCT.

Previous projection sorting algorithms can be classified into the following categories: (1) 

External surrogate-based sorting. This method uses the motion of external surrogates such as 

abdominal displacement or lung air volume to determine the respiratory phase. 

Commercially available products include the Varian real-time position management (RPM) 

system (Varian Medical Systems, Palo Alto, CA, USA)10,11 and strain-gauged Anzai belt 

(Anzai Medical Systems, Tokyo, Japan).12,13 Spirometry was also implemented to detect 

changes in lung air volume.14 All of these external surrogates were assumed to correlate 

with the displacement of internal anatomy, but studies have demonstrated that uncertainties 

exist in this relationship,15–18 which can potentially lead to sorting errors. (2) Internal 

surrogate-based sorting. To mitigate the limitations of external surrogates, several internal 

“markerless” techniques were proposed. One example is known as the Amsterdam shroud 

(AS) technique,19 in which the diaphragm motion is enhanced by converting 2D projections 

into the so-called AS image and then breathing signal is extracted by temporal derivative. 

However, this technique requires a visible oscillating structure present across all projection 

angles, which may not always be available. Berbeco et al.20 proposed a technique based on 

the radiological path-length change with lung volume expansion/retraction. The breathing-
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phase information is extracted by analyzing the image intensity fluctuation of fluoroscopic 

images in the middle of lung20 or region of interest in CBCT projections.21 However, the 

angular dependence of image intensities may affect the accuracy of the sorting. Siochi22 

developed a motion tracking method by converting the mega-voltage CBCT rotating 

coordinate system into a patient coordinate system. The method requires the diaphragm to 

be present in the projections images, which may not always be available for upper lobe 

lesions. Lewis et al.23 proposed a template-based tumor tracking algorithm that registers 

each phase of 4D-CT to CBCT and generates digitally reconstructed radiographs (DRRs) to 

match with the projections. This method could be affected by the “out of range” problem 

when the on-board motion range exceeds that of the template. Vergalasova et al.24 proposed 

a Fourier domain-based method to extract breathing signal from CBCT projections. The 

accuracy of this method is degraded for 4D-CBCT scans with faster gantry rotation speeds 

due to the angular dependence of the image intensities.

The aforementioned internal markerless phase sorting techniques either require specific 

anatomical features,19,22,23 or are affected by gantry rotation angle or speed.20,21,24 

Recently, our group and others have proposed using prior information and motion modeling 

for CBCT volume reconstruction with limited angle cone beam projections.9,25 The CBCT 

volume can be estimated by iteratively matching DRRs of deformed prior CT to on-board 

projection images. Our previous results demonstrated that a single projection is not adequate 

for CBCT reconstruction when there is substantial breathing pattern change from simulation 

to on-board treatment.8,9 However, we hypothesized in this study that the motion model 

coefficients solved from a single projection are adequate for projection-phase sorting for 4D-

CBCT reconstruction.26 Since the motion model coefficients are correlated with the overall 

3D motion information of the patient, they can potentially provide more robust information 

for projection sorting without the need of specific anatomical features or gantry rotation 

speeds. In our study, the method was developed and evaluated using XCAT simulation with 

different scenarios and lung cancer patient CBCT data with different gantry rotation speeds 

and scanning modes.

METHODS

Motion modeling from prior four-dimensional-computed tomography

As illustrated in Figure 1, patient motion model is generated from 10-phase planning 4D-CT 

images. One phase of the planning 4D-CT (e.g., end of exhalation phase) is defined as the 

“prior.” The other nine phases are deformed to the prior using Velocity AI (Varian Medical 

Systems, Palo Alto, USA) to generate nine 3D deformation vector fields (DVFs) which 

describe patient respiratory deformations. Principal component analysis (PCA) is then used 

to extract the principal components {PCi} of the deformation fields, which represent the 

major deformation patterns of the patient. Patient respiratory deformation at any instant can 

be represented as a linear combination of the principal components. In this study, we used 

the first three principal components corresponding to the three largest eigenvalues as they 

were proven to be sufficient in depicting lung motion:27–29
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D ≅ Davg + ∑
i = 1

3
wi ∗ PCi (1)

Where, D is the deformation field vector at any instant, Davg is the average of the nine 

deformation fields initially extracted from 4D-CT, PCi is the ith principal component, and wi 

represents the corresponding coefficients for the principal components.

Solving the principal component analysis coefficients for each single cone beam 
computed tomography projection

The on-board CBCT volume at any instant is approximately considered as a deformation 

from the CT “prior.” The deformation field map D is represented as a weighted linear 

combination of the principal motion modes {PCi} as shown in Eq (1).

The weighting coefficients {wi} are solved by minimizing the objective function f (w), 

which is defined based on the data fidelity constraint:

f w = − NCC(ℳ(CBCTnew I prior, Davg + ∑
i = 1

3
wi ∗ PCi ), OBI) (2)

{wi} = arg min f w (3)

Where, NCC is normalized cross correlation between two 2D images, M is projection 

operator calculating DRR from new CBCT volume, CBCTnew is the new volume after 

applying estimated deformation map onto prior volume Iprior, and OBI is the single CBCT 

on-board projection image.

The PCA coefficients {wi} are solved iteratively using the gradient descent method with a 

maximum of ten iterations and ten backtracking line searches for each iteration. The PCA 

coefficients describe the degree of 3D patient deformation caused by the respiratory motion, 

and therefore can be used as surrogates for 4D projection sorting. In our study, the primary 

PCA coefficients along the superoinferior (SI) and/or anteroposterior (AP) directions were 

used for CBCT projection-phase sorting due to the more substantial respiratory motions 

along these two directions.

Phase sorting based on principal component analysis coefficients

The PCA coefficients {wi} are solved for all projections and the primary coefficient w1 in 

the SI or AP direction was used for phase sorting. The coefficients are plotted for all 

projections and the valley projections are defined as the peak-inspiration phase (0% or 

100%). The phase for each projection is defined as the percentage of the respiratory cycle 

that has passed since peak inspiration.
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XCAT digital phantom study

The 4D digital extended-cardiac-torso (XCAT) phantom30 was used to test the algorithm. 

Based on the human anatomical database from the National Library of Medicine, XCAT 

uses nonuniform rational B-spline surfaces to model highly realistic and detailed human 

anatomical structures and images. It can be utilized to generate 4D images according to 

respiratory profiles and anatomical parameters specified by the user. XCAT has been widely 

used in multiple studies as an algorithm and as an evaluation and verification tool.
9,24,27,31–33

The respiratory motion of the body volume is controlled by two breathing curves: diaphragm 

and chest wall curves. The diaphragm curve controls both diaphragm motion and motions of 

the lung, liver, stomach, and other downstream organs. It generally determines motion in the 

SI direction. The chest wall curve controls AP expansions of the body, the ribcage, and 

lungs. In this study, both curves were simplified as sinusoidal curves with 5 s respiratory 

period. The peak-to-peak amplitude of the two curves was set to 3 and 2 cm, respectively. A 

spherical lesion of 30 mm diameter was inserted in the middle of the lung.

A ten-phase 4D-CT was then simulated as the prior knowledge. We used 40 keV 

monochromatic CT source to approach the effective energy of 120 kVp polychromatic 

spectrum used in clinical CT scanners. CT volume of each phase was composed of 256 × 

256 × 150 voxels, with 1.67 mm isotropic resolution. The end-expiration phase was selected 

as the prior volume as the body structure is most stable in this phase.

As shown in Table 1, nine XCAT scenarios were generated to simulate 4D-CBCT volumes. 

Scenario 0 represents no breathing pattern or anatomical changes from prior 4D-CT, while 

scenarios 1–8 include changes in tumor motion amplitude (S1: 3 cm to 2 cm), tumor 

diameter (S2: 30 mm to 20 mm, S3: 30 mm to 40 mm), tumor spatial shifts (S4: 8 mm SI, 

S5: 8 mm AP, and S6: 5 mm in SI, AP, and LR), and motion removal in SI or both SI and AP 

directions (S7, S8).

These 4D-CBCT volumes were set as “ground truth” on-board images to simulate on-board 

projections to be sorted by the proposed method. Totally around 200 projections within 20 

respiratory cycles were simulated over the 200° scan angle. The source to isocenter distance 

was set to 100 cm, and isocenter of detector distance was set to 50 cm. Each projection 

contains 512 × 384 pixels with each pixel of 0.78 mm in both dimensions.

Patient study

In addition to the XCAT digital phantom studies, the proposed method was evaluated on five 

sets of patient data that were previously acquired under an investigational 4D-CBCT study.
34,35 The 4D-CBCT projections were acquired with an X-ray flat panel detector mounted 

orthogonally to the MV treatment gantry on the Varian Trilogy system (Varian Medical 

Systems, Palo Alto, CA, USA). Two of the patients were scanned with full-fan projections 

over a 200° arc at slow-gantry speeds of 0.71 and 0.6°/s, with total scan lengths of 4.5 and 

5.7 min and frame rates of 7 and 5 fps, respectively. Three of the patients were scanned with 

half-fan projections over 360° arc at normal gantry speed of 6°/s, with total scan length of 1 

min and frame rate of 10, 15, and 15 fps, respectively.
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Phase sorting evaluation

In order to evaluate the phase sorting accuracy of the proposed technique, respiratory phases 

were derived from the ground truth respiratory signal in the digital phantom study and visual 

inspection of the on-board projections in patient study. Projections that correspond to peak 

inspiration were identified and recorded as 0% or 100%. The projection phases in-between 

peak inspirations were linearly interpolated as before. This “manual phase sorting” served as 

the gold standard for comparison.

The projection-phase sorting accuracy was evaluated by three parameters. One is the average 

difference in phases across the entire dataset, which is defined as:

Average Phase Difference ( % ) = 1
n ∑

i = 1

n
Phase imanual − Phase ipca (4)

Where, n is the total number of projections, i is the index of projection, phase (imanual) is the 

phase value sorted by manual method for the ith projection, and phase (ipca) is the phase 

value sorted by PCA coefficient based method for the ith projection.

The other two parameters are the percentage of projections with a phase difference within 

10% or 5%:

Projection Percentage ( % ) = 100 %

∗
N projs{ Phase imanual − Phase ipca ≤ 10 % or 5 % }

n

(5)

Where, n, phase (imanual), and phase (ipca) had the same definition.

The three quantitative evaluations were performed on all the XCAT simulation scenarios and 

five patient data sets. All image processing and data analyses were performed with in-house 

developed MATLAB programs (The Mathworks Inc., Natick, MA, USA).

RESULTS

XCAT study

To verify the effectiveness of the PCA coefficients in representing the respiratory motion in 

the original prior 4D-CT images, we calculated the coefficients along all the three directions 

for the nine DVFs extracted from the 4D-CT, as shown in Figure 2. Sinusoidal respiration 

motion patterns are manifested in the coefficients of the first principal component along all 

directions. Second and third PCA coefficients (w2, w3) did not show clear sinusoidal pattern 

since the 2nd and 3rd principal components capture much smaller portion of the variances of 

the respiratory deformations. The coefficients for the SI and AP directions showed clearer 

breathing patterns than those for the lateral direction, due to the more substantial respiratory 
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motions along SI and AP directions in the XCAT phantom. In the following studies, we will 

use the PCA coefficient of the first principal component (w1) for projection sorting.

Figure 3 shows the calculated primary PCA coefficients (w1) for each CBCT projection in 

XCAT scenario 0 in three orthogonal directions. Full-fan scanning with 200° rotation was 

simulated, with a rotation speed of 3.3°/s and 0.9° projection interval. The PCA coefficients 

calculated for all projections formed a sinusoidal cycle pattern, which was most clear in SI 

and AP directions and less apparent in lateral direction.

Figure 4 shows the effect of changes in motion amplitude and tumor anatomy from prior 4D-

CT to on-board 4D-CBCT scans on the calculated PCA coefficients. Figure 4a shows that, 

with lower motion amplitude, the oscillation pattern of PCA coefficient stayed the same, 

while the amplitude decreased (red dotted line). Figure 4b illustrates the sensitivity of PCA 

coefficient in detecting the changes in respiratory motion directions. The PCA coefficients 

showed no cyclic pattern in the AP direction when the respiratory motion in AP direction 

was removed (red), and there was no cyclic pattern in both AP and SI directions when the 

respiratory motions in both AP and SI directions were removed (green). Figure 4c 

demonstrates that changes of tumor diameter from 30 mm to 20 mm or 40 mm did not 

change the cyclic patterns or amplitudes of the PCA coefficients (green and red). Figure 4d 

shows that shifts of tumor central location in three orthogonal directions (blue, green, and 

red) did not change the cyclic pattern or amplitudes of the PCA coefficients.

Table 2 shows the phase sorting accuracy of the nine XCAT scenarios. For all the eight 

quantifiable scenarios, the average phase difference was 2% or less. All of the projections in 

the eight scenarios showed a < 10% phase difference from the ground truth. Similar 

accuracies were observed using PCA coefficients in SI and AP directions.

Patient study

Figure 5 shows a representative OBI and final DRR of the deformed prior CT images in a 

patient case with half-fan mode and fast gantry rotation (~1 min). The anatomy showed in 

the final estimated DRR [Figure 5b] agrees well with the OBI [Figure 5a]. The normalized 

cross correlation between OBI and final DRRs optimized in Equation 2 was above 0.9 for 

most of the projections, as shown in Figure 5c.

Figure 6 displays the solved PCA coefficients (SI direction, primary) for all the five CBCT 

patients. Respiratory motion patterns were clearly manifested by the changes in the 

coefficients in both full-fan slow gantry rotation cases (patients 1 and 2) and half-fan fast 

gantry rotation cases (patients 3–5). As expected, only the SI direction coefficients showed 

clear breathing patterns, possibly because SI is perpendicular to the OBI projection direction 

and is the major breathing motion direction.

Figure 7 shows the evaluation process for the PCA coefficient-based sorting for patient 1. 

The sorting result based on PCA coefficients is shown in blue, with 0/100% phases 

corresponding to the valleys in the coefficient plot in Figure 6. Manual phase sorting result is 

shown in red, with 0/100% phases corresponding to visually identified peak inspiration 

projections. The phase differences were < 10% for most of the projections.
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Table 3 shows the accuracy of PCA coefficient-based phase sorting for the five lung cancer 

patient 4D-CBCT datasets. The average phase differences ranged from 1.62% to 2.23%. The 

percentage of projections with phase sorting difference < 10% ranged from 98.4% to 100% 

and ranged from 88.9% to 99.8%

DISCUSSION

The results presented in this article have demonstrated the feasibility of using patient motion 

modeling-based PCA coefficients as an internal markerless surrogate for 4D-CBCT phase 

sorting. High phase sorting accuracy was achieved in both XCAT digital phantoms and real 

4D-CBCT lung cancer patient data sets. The method avoids using any internal marker or 

external surrogates which may cause complications such as pneumothorax or errors due to 

potential mismatch between external surrogates and internal organ motions.

As demonstrated in the XCAT digital phantoms, this method showed robustness against 

patient breathing or anatomical changes from prior to on-board imaging, including changes 

in tumor size, location, and breathing motion amplitudes. By controlling the motion 

directions and changing the breathing amplitudes in the digital phantom, we further 

demonstrated that the primary PCA coefficient can also be indicative of the major motion 

directions and amplitudes.

The proposed motion modeling and PCA coefficient-based method utilizes prior 4D-CT, 3D 

deformation maps, dimensional reduction, on-board CBCT projection matching, and 

iterative optimization for phase sorting. Instead of using 1D- or 2D-based information as in 

previous methods,10–12,14,20,21,24 3D motion information is used in searching for the correct 

breathing phase. Using information in this higher dimension may have led to several 

advantages of this method.

First, different from the Fourier transform-based phase sorting method24 or image intensity 

based methods,21 this method does not have gantry rotation speed dependence. This 

advantage has been demonstrated in our 4D-CBCT patient datasets, in which a high 

accuracy was achieved with both fast and slow rotation speeds. This feature allows us to 

increase the gantry rotation speed to substantially reduce the scanning time and imaging 

dose of 4D-CBCT.36

Second, no postfiltering of the surrogate is required because, rather than using the 

summation of X-ray attenuation information in intensity-based methods, the PCA coefficient 

represents the overall 3D deformation based on motion modeling. Therefore, no correction 

for the slow changing signal due to projection path-length angular change is needed, which 

is sensitive to variations in external structure or internal structure deformations.21,24

Finally, for half-fan CBCT patient cases, lateral projections may have very limited 2D 

information. Using 3D motion modeling and matching, this method have achieved decent 

sorting results in these areas, which could be one of the contributing factors for its overall 

high accuracy.

Zhang et al. Page 8

Cancer Transl Med. Author manuscript; available in PMC 2018 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This method was inspired by our earlier work in CBCT image reconstruction using the 

motion modeling method. Due to the suboptimal accuracy of reconstruction using motion 

modeling alone, Zhang et al.9 used free-form deformation to further improve the 

reconstruction accuracy after motion modeling. While 3D motion modeling itself may not be 

sufficient for 3D volumetric reconstruction, our study demonstrated that 3D motion 

modeling is accurate for 1D breathing signal extraction and thereafter used for projection-

phase sorting. The method can be used for 4D-CBCT reconstruction using either full-scan 

angles or limited scan angles.7,37,38

XCAT results for scenarios S0, S1, S7, and S8 showed potential correlation between the 

values of PCA coefficients and breathing motion amplitudes, which suggests the potential to 

use the PCA coefficient as surrogates for amplitude-based sorting.13,39

The limitation of this method may be the calculation speed. On a Dell Optiplex 7010 PC 

with 3.4 GHz CPU and 8 GB RAM, 3–6 min is required for each projection-phase 

calculation. However, the PCA coefficient calculation for the projections is completely 

independent and thus can be paralleled. In addition, graphics processing unit acceleration 

can potentially accelerate the calculation speed substantially (< 1 s).32

In conclusion, the feasibility of using the PCA coefficient of a patient respiratory motion 

model as an internal markerless surrogate for phase sorting of 4D-CBCT projections has 

been demonstrated through both simulation and patient studies. The percentages of 

projections sorted within 10% phase difference were 100% and 98% for XCAT and patient 

data, respectively. The average phase differences between sorted phases and the gold 

standard were below 3% for both XCAT and patient data. Overall, the proposed method is 

promising in providing robust markerless automatic projection sorting for 4D-CBCT scans.
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Figure 1. 
Flowchart of patient motion modeling and on-board principal component analysis 

coefficient calculation
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Figure 2. 
Principal component analysis coefficients of nine deformation vector fields of prior four-

dimensional-computed tomography. From top to bottom, the principal component analysis 

coefficients (w1, w2, and w3) correspond to deformable field vectors along different 

directions (superoinferior, anteroposterior, and lateral). From left to right, the principal 

component analysis coefficients correspond to the first three primary principal components. 

The X-axis represents the phase number of the nine deformation vector fields used to 

calculate principal component analysis coefficients
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Figure 3. 
Primary principal component analysis coefficient (w1) for three orthogonal motion 

directions for XCAT scenario 0. Each dot represents principal component analysis 

coefficient calculated for one on-board projection. From top to bottom: superoinferior, 

anteroposterior, and lateral directions, respectively
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Figure 4. 
Primary principal component analysis coefficients (w1) of XCAT scenarios 0–8 in 

superoinferior and anteroposterior directions. (a) Change in motion amplitude; (b) changes 

in motion directions (superoinferior and anteroposterior, superoinferior only, and no 

motion); (c) changes in tumor size (20 mm, 30 mm, and 40 mm); and (d) shifts in tumor 

central location in superoinferior, anteroposterior, and diagonal directions
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Figure 5. 
Patient cone beam computed tomography on-board projection and final digitally 

reconstructed radiograph after optimization. (a) On-board projection; (b) final digitally 

reconstructed radiograph after optimization; and (c) normalized cross correlation between 

on-board projection and digitally reconstructed radiographs for all 885 projections
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Figure 6. 
Principal component analysis coefficients in the SI direction for all the five cone beam 

computed tomography patients. Patients 1–2, full-fan cone beam computed tomography 

slow gantry rotation (~5 min); patients 3–5, half-fan cone beam computed tomography fast 

gantry rotation (~1 min). The temporal resolution in the X-axis is not to the same scale 

because of different gantry rotation speeds and frame rate settings for each patient
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Figure 7. 
Comparison of principal component analysis coefficient-based sorting with manual phase 

sorting. Top, phase sorting result using principal component analysis coefficient; middle, 

phase sorting result by visual inspection; and bottom, phase difference between the two 

methods
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Table 3

Principal component analysis coefficient-based phase sorting accuracy for five lung cancer patients

Patient number Average phase difference (%) Projections with phase difference (%)

< 10% < 5%

P1 (full fan) 2.23 99.4 88.9

P2 (full fan) 1.81 98.7 93.4

P3 (half fan) 1.62 100.0 99.8

P4 (half fan) 1.82 100.0 96.2

P5 (half fan) 1.63 98.4 96.6
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