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Mesenchymal stem cells (MSCs) are ubiquitously present in many tissues. Due to their unique advantages, MSCs have been widely
employed in clinical studies. Emerging evidences indicate that MSCs can also migrate to the tumor surrounding stroma and exert
complex effects on tumor growth and progression. However, the effect of MSCs on tumor growth is still a matter of debate. Several
studies have shown that MSCs could favor tumor growth. On the contrary, other groups have demonstrated that MSCs suppressed
tumor progression. Extracellular vesicles have emerged as a new mechanism of cell-to-cell communication in the development
of tumor diseases. MSCs-derived extracellular vesicles (MSC-EVs) could mimic the effects of the mesenchymal stem cells from
which they originate. Different studies have reported that MSC-EV's may exert various effects on the growth, metastasis, and drug
response of different tumor cells by transferring proteins, messenger RNA, and microRNA to recipient cells. In the present review,
we summarize the components of MSC-EVs and discuss the roles of MSC-EVs in different malignant diseases, including the related
mechanisms that may account for their therapeutic potential. MSC-EV's open up a promising opportunity in the treatment of cancer

with increased efficacy.

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent cells that
can differentiate into various cell types of the mesoder-
mal germ layer. MSCs can also be recruited to the sites
of inflammation and tissue repair [1-5]. In addition, they
possess multiple biological functions including multilineage
differentiation, immunosuppression, and tissue-repair pro-
motion [6-8]. Due to these unique advantages, MSCs have
been widely employed in clinical studies [9-15], such as
spinal cord injuries, cardiovascular diseases, type I dia-
betes mellitus, hepatic cirrhosis, and Alzheimer’s disease
(https://clinicaltrials.gov/).

Recent studies have demonstrated that MSCs can also
migrate to the tumor stroma, contributing to the formation
of the tumor microenvironment [16-20]. Several studies have

shown that MSCs could favor tumor growth directly by pro-
ducing growth factors or promoting tumor vascularization
[21-24]. On the contrary, other groups demonstrated that
MSCs suppressed tumor progression [25-29]. However, the
exact mechanisms of these opposite effects remain unclear
[30]. A large body of MSCs research has focused on MSC-
derived extracellular vesicles (MSC-EVs) and shown that
MSC-EVs have functions similar to those of MSCs [31-38],
such as repairing tissue damage, suppressing inflammatory
responses, and promoting angiogenesis.

MSC-EVs could also be involved in the effects of MSCs
on tumor growth and behavior. Several studies describing the
influence of MSC-EV's on tumor growth have been reported.
Thus, it is reasonable to postulate that MSC-EV's transport
key MSC-associated molecules which change the physiology
of target cells in a specific manner. MSC-EV's have emerged
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as a new mechanism of cell-to-cell communication in the
development and growth of human malignancies.

In this article, first we will review the composition of
MSC-EVs which will be classified based on their molec-
ular contents into four groups: proteins, messenger RNAs
(mRNAs), microRNAs (miRNAs), and others. Then the
effects of MSC-EVs on cancer development and progression
will be highlighted. Finally, we will address the possible
molecular mechanisms underlying MSC-EVs-mediated ther-
apeutic effects.

2. Characterization of MSC-EVs

MSC-EVs are a heterogeneous population that mainly
include exosomes, microvesicle particles (also known as
ectosomes), and apoptotic bodies. Exosomes have a diameter
of 30-100 nm, secreted upon fusion of multivesicular endo-
somes with the plasma membranes. Microvesicle particles
are usually larger than exosomes (100-1000 nm), resulting
from outward budding of plasma membrane. These vesicles
are shed into the extracellular space constitutively, or as
consequence to physical or chemical stress, hypoxia, and
soluble agonists [61, 62]. MSC-EVs contain membranes
and cytoplasmic constituents of the original cells. MSC-
EVs membranes are enriched in sphingomyelin, cholesterol,
and ceramide [63]. They are positive for surface markers
of MSCs (CD13, CD90, CD29, CD44, CD73, and CDI105),
but negative for the hematopoietic system-related markers
(CD34 and CD45). Moreover, MSC-EVs also express the
two characteristic markers of EVs, CD81 and CD63 [39, 40].
According to the different origins of MSCs, MSC-EV's have
been divided into different subtypes: human bone marrow-
derived MSC-EVs (hBMSC-EVs), human adipose-derived
MSC-EVs (hAMSC-EVs), human umbilical cord MSC-EVs
(hUCMSC-EVs), mouse bone marrow-derived MSC-EVs
(mBMSC-EVs), porcine adipose tissue-derived MSC-EV's
(pPAMSC-EVs), and so forth. It is difficult to distinguish dif-
ferent subpopulations of MSC-EV's due to their overlapping
size, density, and composition [64].

3. Cargoes of MSC-EVs

Several studies have revealed that MSC-EV's contain proteins,
lipids, and genetic materials, such as mRNAs and miRNAs
[65] (Figure 1). Transfer of these biological materials into
adjacent or distant cells may influence the behavior of the
recipient cells [32, 36, 66].

3.1. Protein Contents of MSC-EVs. Researchers have iden-
tified 730 proteins in hBMSC-EVs according to liquid
chromatography-tandem mass spectrometry analysis [39].
Functional analysis of the hBMSC-EVs proteome indi-
cates that these proteins are involved in cell prolifera-
tion, adhesion, migration, and self-renewal, mainly includ-
ing surface receptors, signaling molecules, cell adhesion
molecules, and MSCs-associated antigens (CD9, CD63,
CD81, CD109, CD151, CD248, and CD276) (Table 1). Among
these molecules, CD63, CD9, and CDB8I are the specific
exosomal markers [41]. Moreover, MSC-EVs express some
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surface molecules, such as CD29, CD73, CD44, and CD105,
but do not express the hematopoietic system-related markers,
CD34 and CD45 [40]. Tumor supportive factors such as
PDGEFR-f, TIMP-1, and TIMP-2 were also identified in
BMSC-EVs [41]. In addition, hAMSC-EVs carried enzymat-
ically active Neprilysin [42], which degrade intracellular and
extracellular S-amyloid peptide in neuroblastoma cell lines.

Another study showed that MSC-EV's contained ribonu-
cleoproteins, such as T cell internal antigen-1 (TIA), TIA-
l-related (TIAR) and AU-rich element binding protein (Hu
R), argonaute2 (Ago2), staufenl (Staul) and staufen2 (Stau2)
proteins, which are implicated in the transport and stability
of mRNA [43]. Researchers also discovered that Wnt4 [44],
angiogenin, basic fibroblast growth factors (bFGF), vascular
endothelial growth factor (VEGF), monocyte chemotactic
protein-1 (MCP-1), the receptor-2 for vascular endothelial
growth factor (VEGF R2), insulin like growth factor I (IGF-
I), Tie-2/TEK, and interleukin-6 (IL-6) [45] were highly
expressed in hUCMSC-EVs, which could promote -catenin
nuclear translocation and enhance angiogenesis. It was also
reported that MSC exosomes had all seven a- and seven
B-chains of the 20S proteasome. The 20S proteasome was
thought to reduce accumulation of denatured or misfolded
proteins [67].

3.2. mRNA. Besides proteins, one of the most distinct fea-
tures of MSC-EVs is that they also contain nucleic acids,
including mRNAs and miRNAs [65]. mRNAs and miRNAs
can be transferred into a recipient cell located in the tumor
microenvironment or at distant sites via fusion of MSC-EV's
with the target cell membrane.

It was demonstrated that the mRNAs present in EVs are
associated with the mesenchymal phenotype and with several
cell functions related to the control of cell differentiation
(RAX2, ORI1H12, OR2M3, DDN, and GRIN3A), transcrip-
tion (CLOCK, IRF6, RAX2, TCFP2, and BCL6B), prolifer-
ation (SENP2, RBL1, CDCI4B, and SI100A13), cytoskeleton
(DDN, MSN, and CTNNALI), metabolism (ADAMI5, FUT3,
ADM?2, LTA4H, BDH2, and RAB5A) [47], and cell immune
regulation (CRLF], ILIRN, and MTI1X) (Table 2). Further-
more, in an in vitro model of renal toxic injury, MSC-EVs
were shown to contain mRNA for the insulin growth factor 1
(IGF-1) receptor. Transfer of IGF-1 receptor mRNA through
MSC-EVs induced proliferation of proximal tubular cells
[46].

In EVs from porcine adipose tissue-derived MSCs,
researchers found distinct classes of RNAs were selectively
expressed using high-throughput RNA sequencing [48]. EV's
preferentially express mRNAs for angiogenesis, adipogenesis,
Golgi apparatus, and transcription factors associated with
alternative splicing, apoptosis, and chromosome organiza-
tion. EVs also express genes involved in TGF-f signaling
(TGFBIL, TGFB3, FURIN, and ENG).

3.3. MicroRNA. In addition to mRNAs, MSC-EVs have been
shown to contain miRNAs as well (Table 3). miRNAs are
small noncoding RNAs containing 22 nucleotides [68]. After
internalization by target cells, these miRNAs may function
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FIGURE 1: Composition of MSC-EVs. MSC-EVs carry a variety of molecules including proteins, mRNAs, miRNAs, and lipids. Transfer of
these biological materials into adjacent or distant cells may influence the behavior of the recipient cells.

as either tumor suppressors or oncogenes, targeting specific
mRNAs to mediate inhibition of translation [69].

It has been shown that 79 mature miRNAs could be
detected in BMSC-EVs using miRNA arrays [49]. Among
these miRNAs, five (miRNA-199b, miRNA-218, miRNA-148a,
miRNA-135b, and miRNA-221) were differentially expressed
at different time points in BMSC-EVs during osteogenic
differentiation. Researchers have also analyzed the miRNA
profile of EVs released by two different sources: AMSCs
and BMSCs. The study has revealed that MSC-EVs mainly
contain mature transcripts. The most expressed miRNAs in
AMSC-EVs and BMSC-EVs are highly similar, but their
relative proportions are different, raising the possibility that
AMSC-EVs and BMSC-EVs may transfer different informa-
tion [53, 70]. In contrast, EV's secreted by human embryonic
stem cell-derived MSCs (hEMSCs-EVs) were enriched in
precursor miRNAs rather than mature miRNAs [71]. This
suggested that the EVs released by different MSCs might
preferentially enclose different forms of miRNA.

Likewise, some other miRNAs, such as miRNA-15a [50],
miRNA-16 [52], miRNA-21, miRNA-34a, and miRNA-191
[41, 72], have been identified in MSC-EVs and shown to pre-
vent apoptosis, promote cellular growth [73], reduce cardiac

fibrosis [74], and inhibit tumor growth [75] by regulating
their target genes in recipient cells. While these miRNAs are
not randomly sorted into the MSC-EVs, some miRNAs are
present only in the original cells, but not in the MSC-EVs.
However, some certain miRNAs are selectively sorted into the
MSC-EVs, which are undetectable in the original MSCs, such
as miRNA-564, miRNA-223, and miRNA-451. The specific
mechanism of MSC-EVs content sorting is not clear.

3.4. Lipid and Other Contents of MSC-EVs. Our knowledge
on the lipid composition of MSC-EVs is quite limited. Only
a few studies confirmed high level of bioactive lipids such as
diacylglycerol and sphingomyelin but trace amounts of dihy-
droceramide and a-hydroxy-ceramide in MSC-EVs. Further-
more, small molecule metabolite assays have demonstrated
the presence of lactic acid and glutamic acid in EV's [41].

4. MSC-EVs Inhibit Proliferation and
Promote the Apoptosis of Tumor Cells

The role of MSC-EVs in tumor proliferation has been well
documented. However, the mechanisms by which MSC-EV's
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inhibit tumor growth are still uncertain. It has been demon-
strated that MSC-EVs inhibited the proliferation of HepG2
hepatoma, Kaposi’s sarcoma (KS), and Skov-3 ovarian cancer
cell lines by blocking cell cycle progression in the G0/Gl1
phase [54]. Gene array profiles showed that the genes
related to antiproliferative pathway were upregulated, such
as GTP-binding RAS-like 3 (DIRAS3), retinoblastoma-like 1
(Rbl-1), and cyclin-dependent kinase inhibitor 2B transcript
(CDKN2B), but different genes were modulated in various
cancer cell lines. Moreover, EVs could induce apoptosis in
HepG2 and Kaposi cells, as demonstrated by TUNEL assay.
In contrast, EVs induced necrosis not apoptosis in Skov-
3 cells and in vivo intratumor administration of EVs in
established tumors generated by subcutaneous injection of
these cell lines in SCID mice significantly inhibited tumor
growth.

A similar effect was observed in EV's derived from human
cord blood Whartons jelly MSCs (hWJMSC-EVs) [55].
hWJMSC-EVs abolished T24 bladder tumor proliferation via
GO/Gl phase arrest in a dose-dependent manner and induced
apoptosis in T24 cells in vitro and in vivo. The antiprolif-
erative and proapoptotic effects were mainly mediated by
restraining phosphorylation of Akt, upregulation of p-p53,
and activation of caspase cascade (caspase-3 cleavage).

Another recent paper described the effect of murine
MSC-EVs on the expression of VEGF in mouse breast
cancer cell line (4T1). It demonstrated that murine MSC-
EVs significantly downregulated the expression of VEGF in a
dose-dependent manner, causing inhibition of angiogenesis
in vitro and in vivo. Additionally, miRNA-16 shuttled by
MSC-EVs was partially responsible for the antiangiogenic
effect of MSC-EVs [52].

In addition, it was reported that in hematological malig-
nancies normal BMSC-EVs inhibited the growth of multiple
myeloma (MM) cells, while MM BMSC-EVs promoted MM
tumor growth [50]. Further study found that normal and MM
BMSC-EVs differed in their protein and miRNA contents,
with higher expression of cytokines, oncogenic proteins,
and protein kinases in MM BMSC-EVs, but lower level of
miRNA-15a. On the basis of this information, MSC-EVs
could therefore exert either antiproliferation or proapoptotic
effects on tumor cells (Table 4).

5. MSC-EVs Promote the Growth and
Metastasis of Tumor Cells

The tumor growth promoting effects of MSC-EV's have also
been suggested by various reports. For instance, researchers
have found that MSC-EVs could increase tumor growth in
BALB/c nu/nu mice xenograft model by enhancing VEGF
expression through activation of extracellular signal regu-
lated kinase 1/2 (ERK1/2) and p38 MAPK pathway [56].
Inhibition of ERK1/2 activation could reverse the increase of
VEGF level by MSC-EV's. However, the proproliferative effect
on cancer cells was not observed in vitro, and there were no
differences in the percentage of cells in the GO/Gl, S, and
G2/M phases between EV-treated and untreated cells. These
findings suggest that MSC-EVs do not directly stimulate

proliferation of cancer cells in vitro but instead induce
activation of an angiogenesis program that could favor tumor
engraftment and growth.

MSC-EVs can also promote the metastasis of the breast
cancer cell line MCF7 by activating the Wnt pathway. In
a study on MM, researchers found that BMSC-EVs could
promote proliferation, survival, and metastasis of myeloma
cells. p38, p53, c-Jun N-terminal kinase, and Akt pathways in
MM cells were influenced by BMSC-EVs [57].

In addition, Du et al. have reported that hWJMSC-
EVs promoted the growth and migration of human renal
cell carcinoma (RCC) cells both in vitro and in vivo. EVs
facilitated the progression of cell cycle from GO/Gl to S.
The mechanisms underlying this effect were suggested to
be transfer of RNA material by EVs to induce hepatocyte
growth factor (HGF) expression in RCC and activate Akt
and ERK1/2 signaling pathways. Use of c-Met inhibitors can
abrogate the activation of AKT and ERK1/2 signaling in 786-
0 cells [58]. Interestingly, the same group has demonstrated
the antiproliferative and proapoptotic effects of hWJMSC-
EVs on bladder cancer cells [74].

Taken above findings together, the same EVs can have
opposite effects on different tumors (Figure 2). The specific
mechanism is not precisely known.

6. MSC-EVs Promote Dormancy of
Tumor Cells

Some researchers have found that BMSC-EV's could decrease
the proliferation of BM2 cells and reduce the abundance of
stem cell-like surface markers. Further studies showed that
dormant phenotypes were induced by overexpression of miR-
23b in BM2 cells which suppressed MARCKS gene [51].
Another study has also indicated that stroma-derived
exosomes contributed to breast cancer cells quiescence. The
transfer of miRNAs might be involved in the dormancy of
BM metastases [59]. Thus, targeting miRNA may be a valid
therapeutic tool to reduce breast cancer metastasis.

7. MSC-EVs Promote Drug Resistance of
Tumor Cells

It has been reported that BMSC-EVs not only increase MM
cells growth but also induce resistance to bortezomib (BTZ),
a proteasome inhibitor [57]. BMSC-EVs could inhibit the
reduction of Bcl-2 expression caused by BTZ and reduce the
cleavage of caspase-9, caspase-3, and PARP. Researchers also
found BMSC-EVs could decrease the sensitivity of BM2 cells
to docetaxel, a common chemotherapy agent [51].

In addition, the EVs derived from rat bone marrow-
derived MSCs (rBMSC-EVs) can protect the rat pheochro-
mocytoma PCI2 cells against the excitotoxicity induced by
glutamate. In this study it was also revealed that rBMSC-
EVs reduced the expression of Bax and Bcl-2. Inhibition
of PI3K/Akt pathway could partially abrogate the protective
effects [60].
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FIGURE 2: The different effects of MSC-EVs on the growth, metastasis, and drug response of different tumor cells.

8. Conclusion

MSC-EVs could mimic the effects of mesenchymal stem cells
in tumor therapies. Compared with cells, MSC-EV's are much
smaller and have a lower possibility of immune rejection
and formation of tumor. Therefore, MSC-EVs represent a
promising alternative that could overcome the limitations
of cell-therapy approaches. Besides being therapeutic agents,
MSC-EVs have been advocated as “natural” drug delivery
vehicles [76-78]. These lipid vesicles could be engineered
to deliver therapeutic agents to target sites. For instance, it
has been reported that the EVs secreted by SR4987 cells
primed with paclitaxel (SR4987PTX) delivered active drugs
and inhibited human pancreatic adenocarcinoma cells prolif-
eration in a dose-dependent manner [79]. However, several
questions have to be answered before clinical application of
MSC-EVs. Firstly, it is very important to carefully evaluate the
safety issues. For MSC-EVs have been reported to promote
tumor growth, it is necessary to verify what kind of tumors
may benefit from the treatment and to which extent MSC-
EVs contribute to the beneficial effects. Secondly, researchers
should thoroughly characterize the content of MSC-EVs
and identify what molecules shuttled by MSC-EVs would
function. Thirdly, the technologies for the isolation, detec-
tion, characterization, and engineering of MSC-EVs need
to be standardized for their clinical application. Meanwhile,

MSC-EVs dose, optimal timing of MSC-EV's administration,
and schedule of administration also need to be developed for
effective usage of MSC-EVs.

In conclusion, although MSC-EVs open up a promising
opportunity to develop new “biotech drugs” in malignant
diseases, further investigation is still required in some areas.
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