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Abstract: This paper proposes a novel identity management framework for Internet of Things (IoT)
and cloud computing-based personalized healthcare systems. The proposed framework uses multi-
modal encrypted biometric traits to perform authentication. It employs a combination of centralized
and federated identity access techniques along with biometric based continuous authentication. The
framework uses a fusion of electrocardiogram (ECG) and photoplethysmogram (PPG) signals when
performing authentication. In addition to relying on the unique identification characteristics of the
users’ biometric traits, the security of the framework is empowered by the use of Homomorphic
Encryption (HE). The use of HE allows patients’ data to stay encrypted when being processed or
analyzed in the cloud. Thus, providing not only a fast and reliable authentication mechanism,
but also closing the door to many traditional security attacks. The framework’s performance was
evaluated and validated using a machine learning (ML) model that tested the framework using a
dataset of 25 users in seating positions. Compared to using just ECG or PPG signals, the results of
using the proposed fused-based biometric framework showed that it was successful in identifying
and authenticating all 25 users with 100% accuracy. Hence, offering some significant improvements
to the overall security and privacy of personalized healthcare systems.

Keywords: identity management; personalized healthcare; authentication; cloud computing; internet
of things; fused-based biometric; machine learning; security; privacy; cybersecurity

1. Introduction

The Internet of Things (IoT) and Cloud Computing technologies are shaping and
modernising healthcare services. The penetration of IoT devices in the healthcare industry
is on the rise. The IoT market in healthcare is expected to reach 135.87 billion dollars of
value by the year 2025 [1]. The adoption of Cloud technologies in Clinical Healthcare
services is also gaining momentum amongst major players. In the USA, for example, IBM
and Aetna developed a “Collaborative Care Solution” to enable easy healthcare access for
dispersed Clinical information [2]. Allscripts and MicroHealth are working to provide the
US department of state with a cloud-based health solution for its global Electronic Health
Records (EHR) management [3]. This solution will provide the healthcare and clinical
staff at the department of state with easy access to the patients” health records. This will
benefit both the patients and healthcare professionals [3]. Microsoft is also working with
Allscripts on a solution which will enable researchers to conduct studies based on cloud-
based EHR [4]. Healthcare providers across Europe and Asia are also working on projects
to integrate the IoT and Cloud Computing technologies in their health services [5-7].
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Nonetheless, most of these works are intended for hospital-based care. While it is still
in the development stage [8], Personalised Healthcare (PH) is envisioned to transform the
future of healthcare not only in hospitals but also at homes and on the move. PH aims to
tailor healthcare services (treatment, medication, diet, and others) to the individual needs
of a patient. PH is not only about providing a personalized treatment plan to individual
patients but also encompasses services such as earlier prediction and intervention of onset
of diseases; and providing a deeper knowledge of the factors contributing to an illness and,
hence, offering better-individualised treatment plans.

The Internet of Things (IoT) incorporates multiple long-range and short-range sen-
sors and actuators, RFID tags, smart devices, and personal area wireless networks and
technologies (e.g., wearable technologies) into the designs of IoT applications [9]. Com-
bined with the Cloud Computing capabilities of accessing data anytime and anywhere,
CloudlIoT is leading a digital revolution in healthcare. IoT devices collect diverse data from
an individual which provides healthcare professionals with access to a range of complex
data, which has never been available before. The data collected from individuals are then
connected and mined with data collected from other patients using artificial intelligence
and machine-learning techniques. This approach provides insights into the user’s lifestyle,
including their diet, physical activities, mental state, genetic composition, environmental
factors, amongst many others.

The above-mentioned capabilities paves the way to a new future of personalized
healthcare by ways of providing tailored recommendations to patients as individuals or as a
cohort. While IoT plays a major role in the collection of this data, Cloud Computing enables
such data analysis. Machine learning (ML) is as equally important in PH applications as
well. Personalised diabetic management is an example of a PH service that uses the IoT and
ML techniques. The system provides dietary advice to an individual based on analyzing
their food habits and insulin response using a CloudloT based application [10].

Although many more promising PH oriented services are emerging, security and
privacy concerns remain amongst the major challenges to their fast adoption [11]. More
specifically, processing personal data over the Cloud poses many such issues [12]. PH
CloudlIoT applications rely on the Cloud to store the collected data from the user. The Cloud
is also responsible for data computation, processing and analytics. The major challenge in
this paradigm is the associated security risks. This includes loss of governance, an increase
in threats to data confidentiality due to multi residency threats, the centralization of
data on Cloud infrastructure, and the need for privacy solutions that preserve the users’
privacy [13]. Common communication scenarios involve the collection of users” data using
heterogeneous IoT devices and networks. This data will then be sent to the Cloud for
further processing ranging from data storage to data analysis and mining. Healthcare
workers, thirds parties and other applications could then access the patients’ records
and provide personalized health plans. In such a complex, dynamic and ever-expanding
environment, obtaining the user’s consent and administering authorization and identity
management models are challenging to meet.

Consequently, this paper proposes an identity management framework referred to
as the CloudloTPersonalCare to overcome some of the challenges mentioned above. It
integrates the Centralised and Federated Identity Management System (IDMS) for access
control. It uses encrypted biometric traits for authentication to ensure security and privacy.
The biometric parameters and patient data both are encrypted using Homomorphic En-
cryption to preserve the confidentiality of the patients” data. The aforementioned technique
has been preferred over other counterparts due to inherent suitability for securing medical
data analytics [14].

In this study, the authentication mechanism is achieved using a fusion of electrocar-
diogram (ECG) and photoplethysmogram (PPG) signals. These two traits are selected
since most of the IoT devices in a PH network can read these signals. The use of a single
trait-based biometric like ECG for authentication is not secure enough as it is prone to
spoofing and can be forged [15,16]. However, fusing these two signals using geometric
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mean, in addition to Homomorphic Encryption based communication to PH cloud services,
will make their use for authentication more secure and hard to falsify or forge [17]. The ex-
perimental work shows that our model was successful in authenticating users based on
their biometric traits. The results were also validated and compared against other similar
works which authenticated the users based on either their ECG or PPG signals [18]. To this
end, this work makes the followings contributions:

1. The design of a novel identity management framework for IoT and cloud-based
Personalised Healthcare services.

2. The framework incorporates a new biometric-based authentication method. This
method uses a fusion of PPG and ECG signals to uniquely identify users. Privacy is
preserved using Homomorphic Encryption.

3.  The authentication model has been validated and tested using a fusion of ECG and
PPG signals and by extracting the instantaneous frequency and spectral entropy
features. The outcomes and results of the experiment were evaluated by comparing
them with other similar works, which used either ECG or PPG to perform users’
authentication. It is noted that the model successfully identified all 25 users used in
the experiment.

2. Background and Motivations

Cloud computing and IoT technologies are contributing to healthcare in many areas [2].
Fitness programs, aged care applications, and remote health monitoring systems are a few
examples. Ambient assisted living (AAL) and Personalised Healthcare are also emerging
areas that make use of CloudIoT technologies to present assistive technologies to vulnerable
users. They aim at easing the daily lives of people with disabilities and help in managing
chronic medical conditions. Nonetheless, the inherited security and privacy risks from
both the IoT and Cloud Computing domains are driving enormous apprehension from
the end-users, such as with the case of patients in healthcare applications [19]. As a result,
biometric-based authentication models can help mitigating these risks given their unique
identification characteristics and their ease of use as they are almost transparent to the
user [20]. Due to the delicate quality and dependability of a single biometric trait-based
system, the usage of multiple biometric features is gaining momentum [21]. Multi-modal
systems incorporate fusion mechanisms, which are diverse and interesting. Based on the
type of the application and dataset in use, these techniques can be performed at the data
level, image-level (for image processing application), feature level, score level, and at the
decision level. Fusion at the image-level requires image registration, which is not always
available. Feature-level fusion can reduce information leakage [22,23], but suffers from
the incompatibilities of the dimensionality between the source features. Score-level fusion
and decision-level fusion avoid these incompatibilities [24,25], but they also suffer from
the information leakage problem. It also requires high computation complexity in the
matching stage and high storage cost for several templates.

To this end, this work proposes a biometric-based authentication model that employs
a data-level fusion of PPG and ECG signals. Therefore, the risk of information leakage, high
storage cost and high computation complexity issues are avoided. Biometric information is
considered confidential by nature. Hence, the exchange of such sensitive data is strictly
regulated. The Health Insurance Portability and Accountability Act, the Australian Privacy
Principles Act and the European Data Protection Directive are all examples of some leading
bodies, which strictly regulate the exchange of biometric data [26]. Most of these regulations
require the use of encryption before exchanging any user’s biometric data. This is why
encryption techniques are widely used in most healthcare applications [27]. The traditional
symmetric key and public key cryptography algorithms are some examples. For instance,
public key models ensure that the receiver must decrypt the data using matching keys prior
to performing any computation on the data [14]. This is because, in cloud-based healthcare
applications, it is typical for the data to be accessed by a third or external entities [28].



Sensors 2021, 21, 552

40f18

Centralized
IDMS

Single IDP and multiple SPs. SS0 enabled.

Notably, the newly advanced Homomorphic encryption technique provides the op-
tion of performing computation on the encrypted data without decrypting the actual
data [14].Thus, facilitating the exchange of data across a range of healthcare and IoT ap-
plications and devices without compromising the security and privacy of the system and
the users. This work uses Homomorphic encryption to encrypt the authentication process.
The authentication model relies on the useful feature of the Homomorphic encryption in
maintaining the confidentiality of the biometric template that is used for authenticating
patients’ data. This in turn will be transferred and stored securely on the cloud.

3. Traditional Cloud-Based IDMS Systems Challenges

Identity Management Systems encompass authentication and authorization mech-
anisms and combine different technologies to manage users’ identity verification [29].
A typical identity management system consists of three primary entities: the Identity
Provider (IDP), Service Provider (SP) and the user or device. The identity provider is
responsible for generating the devices’ or users’ identities, maintaining the users’ informa-
tion and authenticating and authorising the users. The service provider manages resource
provisions and services to users or devices. The users and devices are included in the
authority and authorisation processes.

An identity management system can be classified into two broad categories:
deployment-based systems and functionality-based systems. The deployment-based iden-
tity management system is further divided into three categories. These are the Isolated,
Centralised and Federated models. Figure 1 depicts this classification.

IDENTITY MANAGEMENT SYSTEM (IDMS)

Deployment-based IDMS Functionality-based IDMS

Isolated User-centric

No separation of IDP and SP User controls information

Centralized
Anonymous
The user data remains anonymous

Federated

Muliiple IDPs and SPs. Disiributed storage.

Figure 1. Classifications of an identity management system (IDMS).

In the Isolated model, there is no separate service provider. The same party acts as
both SP, and IDP [30]. This model is also known as the Silo model since the SPs do not
share the users’ identity nor do they share it amongst the SPs. The user may have different
identifiers and credentials for each system. These systems do not need to depend on any
trusted third party (TTP) for credential issuance and verification purposes. However, users
must handle different credentials to access independent systems. The increment in services
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and resources makes the model hard to manage and cumbersome to the user as users
would need to know the credentials of all the services they use [31]. However, this model
is more favourable by the service providers given the simplicity of its implementation.

The Centralised model separates the roles and responsibilities of the SPs and IDPs.
In this model, there is only one trusted third party, which is a single IDP that is respon-
sible for storing, issuing, and management of identities [32]. The presence of multiple
SPs which share the user’s identity enables single sign-on (SSO) systems. The central
management Identity Provider (CIDP) collects the identity information. Then, the CIDP
sends the authentication request to multiple Service Providers which redirect it to the
CIDP. Lastly, a common Identity service provider gets the information from the CloudIoT.
If authentication is successful, the service centre offers security to the user. This model is
indeed quite beneficial for close environments as it has the usability factor of SSO services.
Additionally, both IDP and SP work under the same authority. However, the IDP is a single
point of failure and the sole controller of the user identity information. As a result, it might
mishandle the information [30].

In the Federated IDMS, the IDP’s functions are shared among several IDPs, which are
localised in different security domains. It uses mutual security affirmation and agreement
between SPs to allow single sign-on user services [32]. A federation is composed of a
trusted group of enterprises of IDPs, and SPs of different domains [33]. The SPs, in this
case, accept the authentication token issued by an IDP due to a prior trust relationship
established among IDPs and SPs in the federation. The federated model deals with the
single point of failure issue suffered by Centralised IDMS. It also eases the user burdens
as it removes the need to have to authenticate every time. The users do not have to
manage a myriad of identities as well [30]. In these type of systems, the same identification
information is used to access all networks within the specific trusted group of enterprises.
It is a realisation of a federated identity management model that has the power to enable
this process in cloud computing, and IoT environments [34].

Moreover, while using these systems, there is no need to create any other account for
external parties. It relies on its inherent cross-domain access. This process is commonly
used in the Information Technology industry [35]. In this system, the identity information
is stored at multiple locations, given its distributed architecture. Additionally, to increase
security, a federated Identity Management Systems and cloud service users request results
in the linking of their information across multiple Identity Service Providers [36].

User-Centric Identity Management Systems are used on the user’s end to accumulate,
achieve, and recover the user’s information from any unauthorised person. It is also used to
exchange their identity credentials with other trusted entities like cloud service providers,
identity providers, or other cloud service users [37]. So, the system puts the users in control
of their security. Moreover, identity management systems do not disclose identifiable
information to the service provider without the user’s consent.

Anonymous Identity Management Systems have a feature of secrecy. An anonymous
cloud identity management system can keep the secret of its entity from attackers [38].
In identity management systems, the data might be interconnected with other data. So, it
is prone to identity attacks [30]. On the other hand, user-centric IDM models are recom-
mended in e-health applications as they provide the user with better control over their
information [39]. However, in some cases, distinct users (e.g., patients, health professionals)
which can be localised in different security domains, may need access to a patient’s health
data. In this case, the user may not use the same IDP for authentication, therefore rendering
the federated model more adequate to use [39].

The preceding discussion demonstrates that no single IDMS is suitable for a diverse
and expandable cloud-based system. As a result, in our architecture, we adopt the notion
of multi-modal IDMS, which comprises both Centralised and Federated access manage-
ment models.
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Gateway Layer

4. Cloud IoT Personal Care IDMS Framework

Incorporating Personalised healthcare systems with other IoT systems and cloud
technologies opens the door to numerous opportunities. Figure 2 presents some of the
possible smart applications that can result from the integration of PH in the IoT.
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Figure 2. Architecture of CloudIoT Personalised Healthcare (PH) services.

At the device layer where data acquisition occurs, IoT sensors, wearable devices and
other smart devices collect data from patients and send them to the cloud database through
the IoT gateway (the Gateway layer). The Gateway layer consists of a range of networking
devices which have access to the Internet. These devices form a local cloud on their own
to run the authentication computations. They perform the encryption on the biometric
template and save it for authenticating the patient later. The Gateway layer also sends
the encrypted template to the hospital cloud to ensure correct authorization is done in the
healthcare database. This gives rises to several applications that can benefit from accessing
this data. It enables healthcare professionals to access the data remotely and empowers
other healthcare applications with the capabilities of providing intelligent services such as
smart medicine management, emergency alert systems, and community-based engagement
services amongst many others. The opportunities become vast when other IoT applications
are also incorporated into the cloud IoT system. Obviously, such an interconnected complex
system gives rise to numerous challenges in terms of interoperability, security, and privacy,
which are out of the scope of this paper. Our work focuses on facilitating the provision of a
unique, automated and secure authentication scheme for the data acquired from the users.
It achieves this by using the biometric traits of a user as a base for the authentication scheme.

The proposed CloudloT based healthcare system has three layers: the Device layer,
Gateway layer, and the Hospital /Public healthcare cloud layer. Figure 3 illustrates these
layers. The Device layer is in the patient’s network where the devices are authenticated
using a central gateway. The Gateway layer is where the patient’s authentication credentials
are stored and where encryption and any other initial computation are done. The Gateway
layer maintains a Centralised access control that facilitates a user-centric restriction on
sharing data with the public healthcare cloud. The last layer is the Hospital cloud layer
which resides on the public cloud and adopts a Federated IDMS strategy.
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Device Layer
. Gateway Layer .
Authentication Authentication Hospital Cloud Layer

T~ (Centralized) Authentication (Federated)

— — -

-
( Devices are Authenticated
\~--.1using the central Gateway

Figure 3. The architecture for the proposed IDMS for PH.

The Authentication Framework Details

The authentication processes involved in the gateway and hospital cloud layer are
done in two phases: the enrolment and authentication phases which are shown in
Figures 4 and 5, respectively.

ensors collect Biometric data, from
patie ECG, PPG

Device Layer

Send the data to the Gateway
Layer

Enroll the patient

o
=
o
|
e
[
3
= and store the
] ted Template
2nd the encrypted template to the hospital
cloud
C The hospital cloud receives the
L template and store it
3
5
=5
uw
o
T

Figure 4. The enrolment phase.

¢ Device Layer: The sensors collect the biometric data at various times from the patients
under different settings, such as in a sitting position or when lying down and send it
to the gateway layer.
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Gateway Layer: The gateway layer enrols the patient and saves the template. The bio-
metric template is secured using the Homomorphic algorithm. The encrypted tem-
plate is then sent to the hospital cloud.

Hospital Layer: This layer stores the authentication data received from the Gateway
layer to authorise the patient in the future. This layer is also responsible for computing
and analysing the patient’s data.

The steps involved in the authentication process can be summarised as follows:

Gateway Layer

Device Layer

Hospital Layer

The patient sends new data and their biometric traits to the gateway layer through
the device gateway.

The Gateway layer tests the encrypted biometric template against the stored encrypted
template in the database. If the template matches, the user is then authenticated.
The Gateway layer sends the data to the hospital cloud. The user is then authenticated
against the stored encrypted biometric template versus the newly arrived template
received from the gateway. If the template matches, the user is fully authenticated.

Start A F

Sensors collect Biometric data, from patients
eg.ECG, PFG

Send the data to the
Gateway Layer

Compare with the stored
encrypted template

Match the stored template

Send the data to the hospital
cloud

Match the
stored template

Authenticate

Figure 5. The authentication phase.

5. Encryption for Biometric Template

The proposed authentication framework uses the Homomorphic encryption (HE) to

secure patient data. The biometric template and patient data are all encrypted to prevent
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them from being stolen and misused. One of the advantages of the HE method is that com-
putation can be directly performed on the encrypted data without the need to access the
secret key. The result of the calculation stays in an encrypted form as well. Thus, the com-
putation can be done on the ciphertext without decrypting the plaintext [40]. For instance,
for a plaintext PT; if the corresponding ciphertext is CT; and for PTj, the corresponding
ciphertext is CTj, the Homomorphic encryption can perform computation on CT; and CT;
without revealing PT; and PT;. The computation is based on the addition or multiplication
process. If HEA(x) is a function to encrypt the plaintext PT; and PT;, the Homomorphic
encryption for these texts are computed as follows:

CT; = HEA(PT); (1)
CTj = HEA(PT);; )
CT; x CT; = HEA(PT + PT),;;; @3)

The detailed reasoning behind using this cryptographic primitive have been discussed
in Section 2. Table 1 provides the notations used in the equations.

Table 1. Notations.

Notation Description
pi Patient i
h; Health worker i
GCp; Gateway Layer i
hospCp; Hospital Service Cloud Provider i
RhospCp; Rough Service Provider i

Based on the above concepts, the enrolment level encryption uses the following steps
to encrypt the stored biometric template:

e Key tuple generation: In the enrolment phase, the sensor sends the collected biometric
template. The template is secured using a key pair secret key sk; and public key
pk;. The key is generated using the KGen(x) function, which takes the biometric trait
ECG/PPG as input to generate a key.

KGen(xgcg) = pki, sk; 4)

However, when the patient sends real health data after the enrolment phase, a new
key is generated, combining the patient data and biometric traits such as ECG or PPG or a
combination of both of them.

KGen(xpr,pata) = pk;j, skj ®)

where BT = biomeric traits, data = health data.

*  Encryption technique: The biometric template is then encrypted using the encryp-
tion function:

CBiuTemp = EnC(Pki, PBioTemp) (6)

This function takes a public key pk; and biometric template plaintext Pp;oemp as inputs

and outputs a ciphertext which is the encrypted biometric template Cgjorp-

®  Decryption technique: The template is decrypted using the decryption function
as follows:
PBioTemp = Dec (Ski/ CBioTemp) @)

This function takes a secret key sk; and encrypt the biometric template ciphertext
CioTemp s inputs, and outputs the related plaintext Ppisgesp-
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e  Evaluation function: The next function is the evaluation function Ev(pk,x,0). The eval-
uation function takes the generated public key from the biometric traits, circuit x
with m inputs, where m is the plaintext for biometric template Pg;yr.ip and a set of
CaioTemp Of generated ciphertext from plaintext Ppjofenp which is CioTemp, » CBioTemp, s
.-+ CBioTemp,, and output a ciphertext Cp;oremp- It works in such a way that x(Ppioremp1,
PgioTemp2, - - - PioTempm) = Dec (ski, CpioTemp) where x17 is an allowed circuit set of
biometric templates and if the ciphertext Cgjotemp is the corresponding ciphertext
for plaintext Ppjorempi fori =1, 2, ..., m and CgioTemp = (CioTemp 1, CBioTemp2s -+,
CpioTempm) then the evaluate function Ev(pk;,x, C BioTemp) Teturns a ciphertext CpjoTemp
corresponding to the plaintext x (PgioTemp1, - - - » PBioTempm) for a circuit x with m inputs.

The patient data is also encrypted using the HE technique. However, the details of the
encryption processes are out of the scope of this paper.

The Adversary Model

The designed encrypted authentication framework is open to two broad categories of
adversaries. They are sample recovery and reference recovery attacks [41].

1. Sample recovery attacks: In this type of attack, the perpetrator uses the spoofing or
brute force technique. Consider, for example, a rogue sensor that enters the patient’s
home network. To authenticate itself as a valid user, it generates an ECG and a key
pair. The authentication servers, in this case the gateway layer, will enrol and will list
it as a valid sensor and encrypt the template. Now the attacker will break into the
real sensor and collect any data the user was sending. The attacker will directly send
this data along with the ECG signal. Another key will be generated using the health
data of the real patient and ECG of the impersonator. However, the encryption key
will differ since the access key of the actual user is distinct. So the sample recovery
attack will fail in this authentication scenario.

2. Reference recovery attacks: In this case, an adversary gains access to a patient’s
reference biometric traits. As in the previous scenario, the attacker also gets access to
the patient’s health data. This time when the data are sent together with the real ECG
signal (in the form of replay attack), the gateway layer will be tricked into providing
access to data stored at the hospital cloud. To mitigate this type of attacks, in our
authentication framework, we are using a signal level fusion which combines ECG
and PPG signals and generates a key using these fused signals. It would be nearly
impossible for the adversary to spoof both ECG and PPG of the same person.

3.  Concomitantly, these type of attacks can happen in the hospital cloud layer. An ad-
versary gains access to the saved encrypted biometric template in the hospital cloud.
The rogue service provider RhospCp; will try to access the data. However, data
are encrypted using the Homomorphic approach, the RhospCp; will not be able to
access the plaintext data and will only be able to perform computation on the data
such as send it back to the patient p;. To mitigate reference recovery attacks, replay
attacks and man in the middle attacks, security measures such as the use of public-key
cryptography, TSL/SSL, authorised certificate authority and other classical security
measures such as the use of a VPN can be incorporated in the authentication model.

6. The Experimental Work

In this section, the experimental work used to validate the proposed authentication
model is described. The biometric authentication experiment utilised data sourced from a
publicly available dataset [42]. The proposed biometric-based authentication framework is
trained and tested using this dataset. The dataset contains ECG and PPG data that were col-
lected from 25 users who participated in an experiment. The participants wore a prototype
device in the form of a smartwatch which was placed on the users” wrist. The prototype
device was equipped with an ECG and a low-cost open hardware PPG sensors along with
some other sensors such as the Galvanic Skin Response (GSR) sensors. The Physiological
data, i.e., the ECG and PPG signals, were collected from the 25 participants in seating
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postures. The dataset contained data collected from each participant over the duration of
five minutes. Each participant produced approximately a sequence of 28,000 samples of
amplitude values of PPG and ECG signals.

To confirm the validity and robustness of the authentication model, this experiment
was conducted in two phases. In the first phase, we trained and tested the authentication
model using the data collected from 10 participants. In the second phase, and in order to
test and evaluate the scalability of the experiment, we increased the dataset size to 25 users.
The details of these experiments are provided in the subsections below.

6.1. Dataset Pre-Processing

Firstly, fusion signals were computed and collected from the users in sitting positions.
Using the PPG and ECG signals, a fused signal Fs was derived using the following formula:

Fs = \/P?+EZ ®)

In Equation (8), the Ps represents the PPG amplitude point and Es represents the
ECG amplitude point both at a given time. In preparation of phases 1 and 2 of this
experiment, the fused signal as well as the PPG and ECG signals were stored in a separate
data file (“mergedTablel.mat”). This and the relevant data processing code are published
on GitHub [43]. It is worth noting that during the training phase of the model, the minor
class (valid user) parameters were duplicated in order to avoid creating an imbalance of
valid user samples. A comparative graph of a participant’s PPG and ECG signals along
with the resultant fused signal is provided in Figure 6.

Square Root Fusion of PPG and ECG Signal
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Figure 6. Photoplethysmogram (PPG), electrocardiogram (ECG) and fusion signal.

Before training the model, the sample sequences of data were normalised first followed
by the process of features” extraction.

6.2. Features Extraction

The fused signal represents a sequence of amplitude values. Hence, we extracted two
distinct features from the non-stationary signals including (1) the instantaneous frequency
and (2) the spectral entropy. The instantaneous frequency feature was particularly helpful
for discovering the frequency noise and phase noise. It was computed as the first contingent
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spectral moment of the time-frequency distribution of the input signal. It can be calculated
using the following Equations (9) [44]. Ps(t, f) represents the power spectrum.

o Jo f(Ps(t, f)) df
o0 Jo Ps(t, f) df

The spectral entropy is the Shannon entropy properly normalised and applied to the
power spectrum density of the fusion signal. This entropy was also used as part of the
features selection for training and testing the model. The spectral entropy (SE) was worked
out using Equation (10) [45]: Here, Pd(n) represents a probability distribution, and N
represents the number of frequency points

©)

N
SE =Y Pd(n)log,Pd(n) (10)

n—1

The feature matrix was created after calculating the instantaneous frequency and
spectral entropy from the sample signals. These features are provisioned in the input layer
of the biometric authentication framework.

6.3. Phase One of the Experiment

To perform biometric authentication, we employed the Long Short-Term Memory
(LSTM), which is a sequence pattern that matches deep neural networks. This learning
algorithm is broadly used for identification and prediction of time series data. We exploited
the bidirectional LSTM layer, to enforce the LSTM net to examine the sequence of the
ECG and PPG signals in the forward direction as well as in the backward directions to
match a valid user. The sample window size for each sequence was set to 1500 for each
participant. Each user produced around 18 sequences of samples. Hence, the total sample
size produced by 10 users was over 182 sequences of fused samples. The minor class data
were also duplicated a few times to improve the training bias of the model. Figure 7 shows
the network model architecture.

Fusion Feature Sequence bi-LSTM
Signal Extractions Input Layer Layer
Fully Connected Softmax Classification Layer

Layer Layer

Figure 7. The biometric model architecture with PPG and ECG fusion input.

To find out the number of optimal hidden layers required for this model, we defined
the LSTM layer with a variable number of hidden neurons. That is, the fewer the neuron
number was, the lower the computation cost was. This layer related to the fully connected
layer. There were only two classes of deserving output: a valid or an invalid user. Hence,
we included a fully connected layer of two neurons to specify two classes, followed by a
softmax layer which distributed the probabilities of each class followed by a classification
layer. The softmax layer also served as a neural transfer function. These transfer functions
calculated the softmax layer’s output from its net input.



Sensors 2021, 21, 552 13 of 18

The Model Training Setup

There were several training options for the classifier. We set some them as follows:
The maximum epoch was set to 100 to train the network and configure the neurons. A mini-
batch size of 32 was configured that directed the network to consider 32 data points at a time.
The initial learning rate was set to 0.01 which quickened the training process. To restrict the
gradients from getting too large and to stabilise the training process, the gradient threshold
was set to 1. We also used the Stochastic Gradient Descent with the Momentum (SGDM)
optimiser. The training progress charts are provided in Figure 8.
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Figure 8. Training progress with various hidden layers.

The model network received two computed features from Equations (9) and (10).
Then, the features went through the BiLSTM layer which had various sets to 2, 8, 16 and 24
neurons—this was in order to compare the network’s performance.

6.4. Phase Two of the Experiment

In phase two of the experiment, we loaded the fused signal from the imported file
“mergedTablel.mat” into the ML model. In this phase, the ML model had a similar archi-
tecture to the one depicted in Figure 7. Using a sample frequency of 150 Hz, each user
had 182 sequences of samples. Hence, the total sample size of data corresponding to the
25 users was over 4700 sequences of fused signals. These sequences of signals were used
to extract the features using Equations (9) and (10). Next, the features extracted by the
equations were fed into the sequence input layer to train the ML model as illustrated in
Figure 7.

Model Training Options

In phase two of the experiment, 100 neurons were used in the hidden layer of the
model. The maximum epoch was set to 20 and the batch size was set to 32 for the training.
The initial learn rate was set to 0.01 and the gradient threshold to 1. In multiple trials, one
of the users was selected as a valid user to test against the biometric data of the remaining
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users. Then, 70% of the data were allocated for training the model and the remaining 30%
of data were allocated to test the model. Therefore, 190 samples of valid-user data and
4500 samples of attacker signals data were used to train and test the model.

7. Results and Analysis

The pre-processed dataset was split into a 70/30 ratio for training and testing to
facilitate the experiment. The model was trained to distinguish the fused signal of a valid
user from that of other users. After the training phase, the model was then tested with
the test portion of the data. The model’s performance in recognising valid users was then
noted and validated.

7.1. Results: Phase 1

The results of phase 1 of the experiment are presented in Tables 2 and 3. TN stands
for True Negative, TP stands for True Positive, FN stands for False Negative and FP
stands for False Positive values. From Tables 2 and 3, True Negative (TN) means an
attack is identified as successful. True Positive (TP) means that the valid-user has been
successfully authenticated. Tables 2 and 3 exhibit that, the training and test model could
reach maximum precision and accuracy of 100 per cent by using only two hidden layers of
LSTM. Therefore, we note that a smaller LSTM network is considered to be suitable for
biometric authentication validation purposes.

Table 2. Experiment phase 1: model training comparison with 100 epochs.

Size of LSTM TN FN FP TP Sensitivity Specificity Precision Accuracy F Score

2 Layers 107 0 0 72 100.00% 100.00% 100.00% 100.00% 100.00%

8 Layers 108 0 0 71 100.00% 100.00% 100.00% 100.00% 100.00%

16 Layers 108 0 0 71 100.00% 100.00% 100.00% 100.00% 100.00%

24 Layers 107 0 0 72 100.00% 100.00% 100.00% 100.00% 100.00%
In phase 1 of the experiment, we also sampled data with a sequence size of 15 s which
corresponded to 1500 amplitude points. The results demonstrated that 15 s of fused ECG

and PPG signals were adequate for the model to authenticate a user.
Table 3. Testing results comparison.

Sizeof BILSTM TN FN FP TP  Sensitivity = Specificity = Precision  Accuracy F Score

2 Layers 46 0 0 30 100.00% 100.00% 100.00% 100.00% 100.00%

8 Layers 45 0 0 31 100.00% 100.00% 100.00% 100.00% 100.00%

16 Layers 45 0 0 31 100.00% 100.00% 100.00% 100.00% 100.00%

24 Layers 46 0 0 32 100.00% 100.00% 100.00% 100.00% 100.00%

Tables 2 and 3 show that the proposed biometric authentication model could achieve
a 100% accuracy with just two hidden layers. The model became optimal after 100 epochs.
We have compared the model’s performance in terms of accuracy and equal error rate
(EER) with other similar works [42]. Thus, under the same settings i.e., in sitting postures
and using the same data source, our model which fused ECG and PPG signals to au-
thenticate users outperformed the performance of the model reported in [42], which used
three physiological signals including the ECG, PPG, and GSR. The results are reported in
Table 4. When using only the PPG signal for authentication, the success rate of the model
in authenticating the 10 subjects achieved 100% accuracy [18]. The experiment results
demonstrated that the proposed model also achieved an accuracy rate of 100%. However,
given that our model relied on a fused ECG and PPG signal, it was considered more secure
and less vulnerable to spoofing attacks. It is more difficult for an attacker to forge both ECG
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and PPG signals, fuse them, and calibrate them when compared to just spoofing either the
ECG or PPG signal.

Table 4. Biometric model comparison.

Biometric Trait Work Accuracy EER Subjects
PPG, ECG Phase 2 100% 0% 25
PPG [18] 100% 0% 10
ECG, PPG, GSR Sla [42] NA 0.05% 25
ECG [46] NA 0.11% 78
ECG [47] NA 0.01% 30

7.2. Results of Phase 2 of the Experiment

In phase two of the experiment, the dataset sample size was increased from 10 to
25 users. This allowed us to further test and confirm the performance of the proposed
model. The results are presented in Figure 9 as a confusion matrix. Figure 9 shows that the
performance of the training and testing setups both achieved 100% accuracy. Although
the experiment was set up with a 70 to 30 train and test ratio, we discovered that a smaller
sample size was also sufficient to train the model in recognising valid users—even after
reducing the train/test ratio to 20/80.

Training Accuracy Confusion Matrix Testing Accuracy Confusion Matrix
3192 [ 0 |100% 1368 | 0 |100%
ﬁ Attacker | 96.09% | 0.0% | 0.0% § Attacke” | 96.09% | 0.0% | 0.0%
o 0 | 133 |100% o 0 57 |100%
‘g_va“d'user 0.0% | 4.0% | 0.0% ‘g_va"d'user 0.0% | 4.0% | 0.0%
E =] hd
3 100% | 100% | 100% 8 100% | 100% | 100%
0.0% | 0.0% | 0.0% 0.0% | 0.0% | 0.0%
L
6@& S)@k 'a-c\’& \)cgza*
\;:\@ '\\b’ \;5-\ &
Q2 A\
Target Class TargetClass

Figure 9. Phase two experiment confusion matrix.

Based on the reported outcomes of the two phases of the experiment conducted in
this work, it is evident that a fused signal of ECG and PPG can be used to authenticate
users based on their biometric traits without compromising the accuracy of the model.
Compared to using just ECG or PPG signals, the outcomes of using the proposed fused-
based biometric model showed significant improvement to the security and privacy of the
overall personalized healthcare system.

8. Limitations

This work acknowledges a few limitations. The proposed biometric-based authentica-
tion model was tested to be secure against spoofing attacks. End-to-end security has not
been validated. Thus, classical identity-based security attacks, such as man in the middle
and replay attacks, are yet to be tested. As many of these attacks can be mitigated using
existing established security measures such as the use of VPN, validating the end to end
security aspects of the proposed model is planned in future work. Nevertheless, the use
of Homomorphic Encryption by the proposed model allows data to stay encrypted when
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being processed or analysed in the cloud or when accessed by third-party devices, thus
reducing the risk of data theft and leakage.

Lastly, the dataset used to conduct the experiment sourced the PPG and ECG signals
from users in sitting postures. Future work will look into evaluating the performance of the
proposed model in authenticating users while they are in various positions e.g., walking or
climbing stairs.

9. Conclusions

This work proposed a biometric identity management framework. The framework is
based on multi-modal IDMS and the Homomorphic Encryption technique. It provisions
the unique identification of patients’ identities in personalized healthcare environments.
The authentication process is based on recognisable and verifiable biometric data. It uses
a novel approach that fuses ECG and PPG signals when performing authentication, thus
providing a reliable, fast, and most importantly, a secure authentication method. The pro-
posed approach alleviates many of the issues encountered in the health domain as most
elderly patients usually lack the experience of using technologies. The approach of using
a fused-based biometric approach mitigates many of the security risks associated with
the use of a single biometric trait (e.g., PPG signals), such as spoofing attacks. The ex-
perimental works reported in this paper also confirm the success of the framework in
identifying users based on their biometric profile, mainly based on fusing their ECG and
PPG signals. The performance of the proposed biometric authentication model exhibited
0% EER and 100% accuracy when tested with 25 users in sitting positions. Our future work
will consider evaluating the proposed model with a larger dataset of users in multiple
positions. Future work is also planned to evaluate the end-to-end security performance of
the proposed model.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data supporting reported results can be downloaded from [43].

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Mabhajan, S. IoT. In Healthcare Market Size, Growth and Industry Trends Report 2026; Fortune Business Insights: Pune, India, 2020.

2. Sultan, N. Making use of cloud computing for healthcare provision: Opportunities and challenges. Int. . Inf. Manag. 2014,
34,177-184. [CrossRef]

3. Allscripts. Allscripts Cloud-Based EHR Solution to Support MicroHealth, LLC for Use within the United States Department of
State. Available online: https:/ /investor.allscripts.com/news-releases/news-release-details /allscripts-cloud-based-ehr-solution-
support-microhealth-llc-use (accessed on 7 December 2020).

4. Osman, H. The Time for Healthcare to Embrace Cloud, Is Now. Available online: https://www.healthcareit.com.au/article/
time-healthcare-embrace-cloud-now (accessed on 7 December 2020).

5.  Garai, A.; Péntek, .; Adamko, A. Revolutionizing Healthcare with IoT and Cognitive, Cloud-based Telemedicine. Acta Polytech.
Hung. 2019, 16, 163-181.

6.  Yuan, Y.S; Cheah, T.C. A Study of Internet of Things Enabled Healthcare Acceptance in Malaysia. J. Crit. Rev. 2020, 7. [CrossRef]

7. Dang, LM.; Piran, M.].; Han, D.; Min, K.; Moon, H. A Survey on Internet of Things and Cloud Computing for Healthcare.
Electronics 2019, 8, 768. [CrossRef]

8. Ahamed, F; Farid, F. Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges.
In Proceedings of the 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia,
3-7 December 2018; pp. 19-21. [CrossRef]

9.  Elkhodr, M,; Shahrestani, S.; Cheung, H. Internet of Things applications: Current and future development. In Innovative Research
and Applications in Next-Generation High Performance Computing; IGI Global: Hershey, PA, USA, 2016; pp. 397-427.


http://doi.org/10.1016/j.ijinfomgt.2013.12.011
https://investor.allscripts.com/news-releases/news-release-details/allscripts-cloud-based-ehr-solution-support-microhealth-llc-use
https://investor.allscripts.com/news-releases/news-release-details/allscripts-cloud-based-ehr-solution-support-microhealth-llc-use
https://www.healthcareit.com.au/article/time-healthcare-embrace-cloud-now
https://www.healthcareit.com.au/article/time-healthcare-embrace-cloud-now
http://dx.doi.org/10.31838/jcr.07.03.04
http://dx.doi.org/10.3390/electronics8070768
http://dx.doi.org/10.1109/iCMLDE.2018.00014

Sensors 2021, 21, 552 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ara, A.; Ara, A. Case study: Integrating IoT, streaming analytics and machine learning to improve intelligent diabetes
management system. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), Chennai, India, 1-2 August 2017; pp. 3179-3182.

Boujezza, H.; Modher, A.M.; Ayed, HK.B.; Saidane, L. A taxonomy of identities management systems in IOT. In Proceedings of
the 2015 IEEE/ ACS 12th International Conference of Computer Systems and Applications (AICCSA), Marrakech, Morocco, 17-20
November 2015; pp. 1-8.

Saha, S.; Soumitra, S. Secured Integration of IoT and Cloud Computing. Ph.D. Thesis, United International University, Dhaka,
Bangladesh, 2019.

Li, J.; Chen, X.; Huang, X,; Tang, S.; Xiang, Y.; Hassan, M.M.; Alelaiwi, A. Secure distributed deduplication systems with improved
reliability. IEEE Trans. Comput. 2015, 64, 3569-3579. [CrossRef]

Kocabas, O.; Soyata, T. Medical data analytics in the cloud using homomorphic encryption. In E-Health and Telemedicine: Concepts,
Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2016; pp. 751-768.

Eberz, S.; Patané, A.; Paoletti, N.; Kwiatkowska, M.; Roeschlin, M.; Martinovic, I. Broken Hearted: How to Attack ECG Biometrics.
In Proceedings of the Network and Distributed System Security Symposium (NDSS) 2017, San Diego, CA, USA, 26 February-1
March 2017. [CrossRef]

Karimian, N.; Woodard, D.; Forte, D. ECG Biometric: Spoofing and Countermeasures. IEEE Trans. Biom. Behav. Identity Sci. 2020,
2,257-270. [CrossRef]

Calleja, A.; Peris-Lopez, P.; Tapiador, J.E. Electrical heart signals can be monitored from the moon: Security implications for
IPI-based protocols. In IFIP International Conference on Information Security Theory and Practice; Springer: Berlin/Heidelberg,
Germany, 2015, pp. 36-51.

Farid, F.; Ahamed, F. Biometric Authentication for Dementia Patients with Recurrent Neural Network. In Proceedings of the
2019 International Conference on Electrical Engineering Research & Practice (ICEERP), Sydney, Australia, 24-28 November 2019;
pp- 1-6.

Butpheng, C.; Yeh, K.H.; Xiong, H. Security and privacy in IoT-cloud-based e-health systems—A comprehensive review. Symmetry
2020, 12, 1191. [CrossRef]

Hathaliya, J.J.; Tanwar, S.; Evans, R. Securing electronic healthcare records: A mobile-based biometric authentication approach. J.
Inf. Secur. Appl. 2020, 53, 102528. [CrossRef]

Joseph, T.; Kalaiselvan, S.; Aswathy, S.; Radhakrishnan, R.; Shamna, A. A multimodal biometric authentication scheme based on
feature fusion for improving security in cloud environment. J. Ambient. Intell. Humaniz. Comput. 2020, 1-9. [CrossRef]

Leng, L.; Li, M; Kim, C.; Bi, X. Dual-source discrimination power analysis for multi-instance contactless palmprint recognition.
Multimed. Tools Appl. 2017, 76, 333-354. [CrossRef]

Leng, L.; Teoh, A.B.J. Alignment-free row-co-occurrence cancelable palmprint fuzzy vault. Pattern Recognit. 2015, 48, 2290-2303.
[CrossRef]

Leng, L.; Zhang, ]. PalmHash Code vs. PalmPhasor Code. Neurocomput. 2013, 108, 1-12. [CrossRef]

Leng, L.; Teoh, A.B.J.; Li, M.; Khan, M.K. A remote cancelable palmprint authentication protocol based on multi-directional
two-dimensional PalmPhasor-fusion. Secur. Commun. Netw. 2014, 7, 1860-1871. [CrossRef]

Shakil, K.A.; Zareen, FJ.; Alam, M.; Jabin, S. BAMHealthCloud: A biometric authentication and data management system for
healthcare data in cloud. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 57-64. [CrossRef]

Farooqui, M.; Gull, H.; Ilyas, M.; Igbal, S.; Khan, M.A.; Krishna, G.; Ahmed, M. Improving Mental Healthcare Using a Human
Centered Internet of Things Model and Embedding Homomorphic Encryption Scheme for Cloud Security. ]J. Comput. Theor.
Nanosci. 2019, 16, 1806-1812. [CrossRef]

Sharma, S.; Chen, K.; Sheth, A. Toward Practical Privacy-Preserving Analytics for IoT and Cloud-Based Healthcare Systems.
IEEE Internet Comput. 2018, 22, 42-51. [CrossRef]

Cao, Y;; Yang, L. A survey of identity management technology. In Proceedings of the 2010 IEEE International Conference on
Information Theory and Information Security, Beijing, China, 17-19 December 2010; pp. 287-293.

Bhargav-Spantzel, A.; Camenisch, J.; Gross, T.; Sommer, D. User centricity: A taxonomy and open issues. J. Comput. Secur. 2007,
15, 493-527. [CrossRef]

Josang, A.; Pope, S. User centric identity management. In Proceedings of the AusCERT Asia Pacific Information Technology
Security Conference, Manila, Philippines, 21-24 April 2005; p. 77.

Gemmill, J.; Robinson, J.P,; Scavo, T.; Bangalore, P. Cross-domain authorization for federated virtual organizations using the
myVocs collaboration environment. Concurr. Comput. Pract. Exp. 2009, 21, 509-532. [CrossRef]

Domenech, M.C.; Comunello, E.; Wangham, M.S. Identity management in e-Health: A case study of web of things application
using OpenlID connect. In Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications
and Services (Healthcom), Natal, Brazil, 15-18 October 2014; pp. 219-224.

Xiao, Y.; Chen, X,; Li, W,; Liu, B.; Fang, D.; Li, W. An immune theory based health monitoring and risk evaluation of earthen sites
with Internet of Things. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications
and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 2023 August 2013; pp. 378-382.
Arias-Cabarcos, P.; Almendrez-Mendoza, F.; Marin-Lopez, A.; Diaz-Sanchez, D.; Sdnchez-Guerrero, R. A metric-based approach
to assess risk for “on cloud” federated identity management. J. Netw. Syst. Manag. 2012, 20, 513-533. [CrossRef]


http://dx.doi.org/10.1109/TC.2015.2401017
http://dx.doi.org/10.14722/ndss.2017.23408
http://dx.doi.org/10.1109/TBIOM.2020.2992274
http://dx.doi.org/10.3390/sym12071191
http://dx.doi.org/10.1016/j.jisa.2020.102528
http://dx.doi.org/10.1007/s12652-020-02184-8
http://dx.doi.org/10.1007/s11042-015-3058-7
http://dx.doi.org/10.1016/j.patcog.2015.01.021
http://dx.doi.org/10.1016/j.neucom.2012.08.028
http://dx.doi.org/10.1002/sec.900
http://dx.doi.org/10.1016/j.jksuci.2017.07.001
http://dx.doi.org/10.1166/jctn.2019.8149
http://dx.doi.org/10.1109/MIC.2018.112102519
http://dx.doi.org/10.3233/JCS-2007-15502
http://dx.doi.org/10.1002/cpe.1350
http://dx.doi.org/10.1007/s10922-012-9244-2

Sensors 2021, 21, 552 18 of 18

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Sénchez, R.; Almenares, F.; Arias, P.; Diaz-Sanchez, D.; Marin, A. Enhancing privacy and dynamic federation in IdM for consumer
cloud computing. IEEE Trans. Consum. Electron. 2012, 58, 95-103. [CrossRef]

Jam, M. System and Method for Providing Context-Aware Computer Management Using Smart Identification Badges. U.S.
Patent 8,069,157, 29 November 2011.

Conrado, C.; Kamperman, E,; Schrijen, G.J.; Jonker, W. Privacy in an Identity-based DRM System. In Proceedings of the 14th
International Workshop on Database and Expert Systems Applications, Prague, Czech Republic, 1-5 September 2003; pp. 389-395.
Doukas, C.; Maglogiannis, I. Bringing IoT and Cloud Computing towards Pervasive Healthcare. In Proceedings of the 2012 Sixth
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4-6 July 2012;
Pp- 922-926. [CrossRef]

Bala, Y.; Malik, A. Biometric inspired homomorphic encryption algorithm for secured cloud computing. In Nature Inspired
Computing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 13-21.

Pagnin, E.; Mitrokotsa, A. Privacy-preserving biometric authentication: Challenges and directions. Secur. Commun. Netw.
2017, 2017, 7129505. [CrossRef]

Blasco, J.; Peris-Lopez, P. On the feasibility of low-cost wearable sensors for multi-modal biometric verification. Sensors 2018,
18, 2782. [CrossRef] [PubMed]

Ahamed, F. BioMetric Identification Using Fusion of PPG and ECG. 2020. Available online: https://github.com/fsumon/
BioFusion1 (accessed on 20 December 2020).

Boashash, B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 1992, 80, 520-538.
[CrossRef]

Pan, Y.; Chen, J.; Li, X. Spectral entropy: A complementary index for rolling element bearing performance degradation assessment.
Proc. Inst. Mech. Eng. Part C . Mech. Eng. Sci. 2009, 223, 1223-1231. [CrossRef]

Singh, Y.N.; Singh, S.K.; Gupta, P. Fusion of electrocardiogram with unobtrusive biometrics: An efficient individual authentication
system. Pattern Recognit. Lett. 2012, 33, 1932-1941. [CrossRef]

Derawi, M. Wireless chest-based ECG biometrics. In Computer Science and its Applications; Springer: Berlin/Heidelberg, Germany,
2015; pp. 567-579.


http://dx.doi.org/10.1109/TCE.2012.6170060
http://dx.doi.org/10.1109/IMIS.2012.26
http://dx.doi.org/10.1155/2017/7129505
http://dx.doi.org/10.3390/s18092782
http://www.ncbi.nlm.nih.gov/pubmed/30149511
https://github.com/fsumon/BioFusion1
https://github.com/fsumon/BioFusion1
http://dx.doi.org/10.1109/5.135376
http://dx.doi.org/10.1243/09544062JMES1224
http://dx.doi.org/10.1016/j.patrec.2012.03.010

	Introduction
	Background and Motivations
	Traditional Cloud-Based IDMS Systems Challenges
	Cloud IoT Personal Care IDMS Framework
	Encryption for Biometric Template
	The Experimental Work
	Dataset Pre-Processing
	Features Extraction
	Phase One of the Experiment
	Phase Two of the Experiment

	Results and Analysis
	Results: Phase 1
	Results of Phase 2 of the Experiment

	Limitations
	Conclusions
	References

