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A B S T R A C T

Objectives: Many predictive or influencing factors have emerged in investigations of the cognitive reserve model
of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline
in AD, can be assessed by [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural mag-
netic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-clas-
sification. The aim of this study was to calculate residual cognitive performance based on neuronal injury
biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual
clinical course.
Methods: 110 initially mild cognitive impaired and demented subjects (age 71 ± 8 years) with a final diagnosis
of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and
CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting re-
siduals were correlated with years of education. We used multiple regression analysis to calculate the expected
MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each
biomarker and the predicted residualized memory function were correlated with individual cognitive changes
measured during clinical follow-up (27 ± 13months).
Results: FDG-PET correlated highly with clinical MMSE (R=−0.49, p < .01), whereas hippocampal atrophy to
MRI (R=−0.15, p= .14) and CSFt-tau (R=−0.12, p= .22) showed only weak correlations. Residuals of all
neuronal injury biomarker regressions correlated significantly with education level, indicating them to be sur-
rogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up
for the residuals of stand-alone FDG-PET (R=−0.36, p= .01) and the combined residualized memory function
model (R=−0.35, p= .02).
Conclusions: These findings suggest that subjects with higher cognitive reserve had accumulated more pa-
thology, which subsequently caused a faster cognitive decline over time. Together with previous findings sug-
gesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with
an initially protective phase followed by more rapid decompensation once the protection is overwhelmed.
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1. Introduction

Alzheimer's disease (AD), being the most common form of neuro-
degenerative dementia, is having an enormous impact on health care
systems in societies with aging populations (Ziegler-Graham et al.,
2008). In the majority of clinical routine settings, the diagnosis of AD is
still based on clinical and behavioural changes and exclusion of other
medical causes. Classically, a firm diagnosis of AD required post mortem
neuropathological findings of intracellular neurofibrillary tangles and
extracellular amyloid plaques (Braak and Braak, 1991) but in recent
years, in vivo biomarkers are emerging as sufficient diagnostic criteria
for AD (Dubois et al., 2014; McKhann et al., 2011; Jack Jr et al., 2018).
This diagnosis derives from the non-invasive detection of the hallmark
pathologies of β-amyloid (Aβ) and tau-positivity, plus neurodegenera-
tion/neuronal injury, which are together known as the A/T/N classifi-
cation scheme (Jack Jr et al., 2016).

In the A/T/N scheme, positron emission tomography (PET) with
specific ligands for Aβ or tau and/or cerebrospinal fluid (CSF) mea-
surements give readouts for abnormal protein aggregates in living
brain. Neurodegeneration/neuronal injury is detected by T1-weighted
magnetic resonance imaging (MRI), providing a measure of grey matter
atrophy in key regions such as the hippocampus, ventricular dilation, or
sulcal widening (Jack et al., 2010). Alternately, measurement of total
soluble tau proteins in the CSF serves as an indicator of global neuronal
injury (Bartlett et al., 2012). Finally, PET with [18F]-fluorodeox-
yglucose (FDG) can reveal reduced cortical glucose utilization, which is
indicative of the impaired synaptic dysfunction in AD subjects com-
pared to age-matched healthy controls (Mosconi et al., 2008). In gen-
eral, scores for the several biomarkers of neurodegeneration/neuronal
injury all correlate with the severity of AD pathology post mortem
(Landau et al., 2010), supporting their use in diagnostics. Nonetheless,
results of a recent investigation underlined the limited agreement be-
tween binarized read-outs of neuronal injury biomarkers (Alexopoulos
et al., 2014).

The contemporary concept of cognitive reserve as a moderating
factor between the extent of neurodegeneration and clinical deteriora-
tion entails a complex model wherein many different protective en-
vironmental factors contribute to cognitive reserve, in particular the
number of years of education (YoE) (Yoon et al., 2016), but also oc-
cupational complexity (Andel et al., 2006; Potter et al., 2008), extent of
intellectual activities during leisure time (Wilson et al., 2002; Verghese
et al., 2003), or higher physical fitness (Okonkwo et al., 2014;
Tolppanen et al., 2015; Duzel et al., 2016). Different imaging findings
suggest that both structural and functional brain differences may un-
derlie cognitive reserve, e.g. a larger premorbid brain volume
(Perneczky et al., 2010) or greater left frontal cortex connectivity
(Franzmeier et al., 2018).

How exactly to quantify cognitive reserve is another matter.
Cognitive reserve is conceptualized as the extent to which cognitive
performance exceeds what might be expected from the level of brain
pathology. Residualized cognitive performance (after regression of pa-
thology markers) has been previously suggested as an objective marker
of reserve predictive for future cognitive changes in aging and AD (Reed
et al., 2010). However, it remains uncertain which marker(s) of brain
pathology should be used to estimate the expected level of cognitive
performance. Here, we propose to use the neurodegeneration bio-
markers that were recently introduced for the purely biomarker-based
A/T/N staging system of AD (Jack Jr et al., 2016), where “A” stands for
PET assessment of amyloidosis, “T” for CSF assessment of total tau
pathology (CSFt-tau), and “N” stands for neurodegeneration illustrated
by structural MRI.

Thus, we first correlated biomarkers for neuronal injury in a series
of patients with their individual cognitive status measured by MMSE
and tested for an association of individual residuals with YoE as a
predictor of cognitive reserve. We then created a model based on bio-
markers of neuronal injury along with relevant covariates for AD to

calculate the expected individual cognitive performance. Finally, we
tested if the discrepancy between measured and model-derived cogni-
tive performance, as a surrogate of cognitive reserve, could predict
cognitive deterioration in later follow-up at the single patient level.

2. Methods

2.1. Study design and patient enrollment

The study included patients with mild cognitive impairment (MCI)
or mild to moderate AD dementia, all confirmed as having AD dementia
in clinical follow-up (27 ± 13months). The subjects were recruited
and scanned in a clinical setting at the University of Munich
Department of Nuclear Medicine between 2010 and 2016. Patients had
been referred by the Departments of Neurology, Psychiatry and
Institute for Stroke and Dementia Research. The local ethics committee
approved analysis of the anonymized data (application 399–09). All
subjects underwent clinical dementia workup, including detailed cog-
nitive testing, structural MRI, CSF-examination, and FDG-PET.
Requirements for inclusion were clinically suspected AD, an available
structural MRI, and a CSF-examination. Confirmation of AD during a
clinical follow-up of ≥12months was obligatory for inclusion. Patients
with insufficient clinical data (e.g. no clinical follow-up confirming the
suspected diagnosis) were excluded. Further exclusion criteria were
stroke, major depression, cerebral manifestation of malignancies, and
other severe neurological or psychiatric disorders.

2.2. Clinical assessment and cognitive testing

We first conducted a clinical neurological examination and neu-
ropsychological testing consisting of the CERAD plus battery which
includes the Mini-Mental-State Examination (MMSE) (Folstein et al.,
1975), Trail-Making Test A and B, as well as verbal fluency tests (Morris
et al., 1989; Chandler et al., 2005). A summed CERAD score was as-
sembled according to (Chandler et al., 2005). YoE was recorded, and
laboratory parameters for metabolic causes of cognitive impairment
(vitamin B12, thiamine and folate levels, thyroid and liver function)
were assessed.

2.3. MRI

MRI was performed (1.5/3.0 Tesla magnets) using a T1w sequence
for atrophy assessment and a T2w-FLAIR sequence for screening of
leukoencephalopathy. The hippocampal atrophy as a biomarker for
neuronal injury was rated visually by an expert in Radiology, using the
Scheltens-Scale for medial temporal lobe atrophy, which ranges from 0
to 4 (for representative T1 MRI images see Fig. 1) (Scheltens et al.,
1992). A summed score was assembled for both hemispheres. In addi-
tion, white matter lesions visible on T2 MRI images were assessed using
the Fazekas-Score (ranging from 0 to 3) by the same expert (Fazekas
et al., 1987; Kim et al., 2008).

2.4. CSF

Lumbar CSF was collected for measurement of phosphorylated tau
(previously established threshold for abnormal p-tau: 61 pg/ml) and
total tau by radioimmunoassay (previously established threshold:
450 pg/ml) (Meredith Jr et al., 2013).

2.5. FDG-PET imaging

2.5.1. FDG PET acquisition
FDG was purchased commercially. FDG-PET images were acquired

using a 3-dimensional GE Discovery 690 PET/CT scanner or a Siemens
ECAT EXACT HR+ PET scanner. All patients fasted for at least six
hours, and had a plasma glucose level< 120mg/dl (6.7mM) at time of

L. Beyer, et al. NeuroImage: Clinical 24 (2019) 101949

2



tracer administration, when a dose of 140 ± 7MBq [18F]-FDG was
injected as a slow intravenous bolus while the subject sat quietly in a
room with dimmed light and low noise level. A static emission frame
was acquired from 30min to 45min p.i. for the GE Discovery 690 PET/
CT, or from 30min to 60min p.i. for the Siemens ECAT EXACT HR+
PET scanner. A low-dose CT scan (GE) or a transmission scan with
external 68Ge-sources (Siemens) was performed prior to the static ac-
quisition for attenuation correction. PET data were reconstructed
iteratively (GE) or with filtered back-projection (Siemens).

2.5.2. Visual analysis of FDG PET
For visual image interpretation of FDG-PET images, three-dimen-

sional stereotactic surface projections (3D-SSP) (Minoshima et al.,
1995) were generated using the software Neurostat (Department of
Radiology, University of Washington, Seattle, WA, U.S.A.). An expert in
Nuclear Medicine visually assessed the 3D-SSP images using tracer
uptake and Z-score maps (with global mean scaling). Voxel-wise Z-
scores were calculated in Neurostat by comparing the individual tracer
uptake to historical FDG-PET images from a healthy age-matched co-
hort (n=18). The reader had access to clinical information and
structural imaging, which was conducted in all cases. To allow a visual
based quantification, we applied a simplified approach of the t-sum
method published by Herholz and coworkers (Herholz et al., 2002).
Preselected AD-typical regions in FDG-PET (bilateral parietal lobe,
temporal lobe and posterior cingulate cortex) were rated based on the

surface projections into four grades of neuronal injury ranging from 0
(no neuronal injury) to 3 (severe neuronal injury), with representative
images shown in Fig. 2. A combined FDG-PET Score (0–18) was cal-
culated by summing the values for all six regions.

2.5.3. Semiquantitative analysis of FDG PET
Semiquantitative analysis of FDG uptake was performed to validate

the visual findings. All individual FDG-PET image volumes were re-
gistered to an in-house FDG-PET template within the MNI space (Daerr
et al., 2017) using PMOD software (version 3.5, PMOD Technologies
Ltd., Zürich, Switzerland). We measured the mean activity within bi-
lateral parietal and temporal volumes of interest (VOIs: posterior cin-
gulate gyrus, superior parietal gyrus, remaining parietal lobe, posterior
temporal lobe, middle temporal gyrus) of the Hammers atlas (Hammers
et al., 2003), corresponding to the affected regions seen in Fig. 2.
Measured regional activities were scaled to standardized uptake value
rations relative to a cerebellum reference region.

2.6. Calculations and statistical analysis

Scheltens-Scale scores, CSFt-tau concentrations and FDG-PET read-
outs were correlated with clinical MMSE-Scores (MMSEOBSERVED), cor-
rected for age, gender and the severity of white matter lesions (Fazekas-
Score) and the residuals (RESPET, RESMRI, RESCSF) were archived. The
residuals of all regression analyses were correlated with YoE.

Fig. 1. Evaluation scheme for magnetic resonance imaging. Representative T1 structural MR images for a Scheltens-Score 0 (no atrophy), 1 (only widening of choroid
fissure), 2 (also widening of temporal horn of lateral ventricle), 3 (moderate loss of hippocampal volume, decrease in height) to 4 (severe volume loss of hippo-
campus).

Fig. 2. Evaluation scheme for positron emission tomography. Representative three-dimensional stereotactic surface projections (3D-SSP) of normalized tracer uptake
from right lateral (upper row) and left medial (bottom row) for no (0), mild (1), moderate (2) and severe neuronal injury (3) in all six Alzheimer's disease typical
regions.
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A regression analysis was performed by a model including the three
A/T/N biomarkers of neuronal injury, YoE, and covariates (age, gender,
leukoencephalopathy) as predictors to anticipate the MMSE score and
calculate a MMSE score based on the biomarkers of neuronal injury
(MMSEPREDICTED=MMSE neuronal injury). A surrogate score for the
individual cognitive reserve was calculated by
ΔMMSE=MMSEOBSERVED - MMSEPREDICTED. ΔMMSE was compared to
the natural variance of the MMSE methods using standard deviations

(SD) of historical test-retest analyses (Tombaugh, 2005).
Clinical deterioration was measured by clinical follow-up assess-

ment of at least 12months. Each subject's annual rate of decline in
MMSE-score was correlated with the residuals using only a single
neuronal injury marker (RESPET, RESMRI, RESCSF) or with ΔMMSE, to-
gether with age and gender serving as covariates. A significance level of
p < .05 was applied in all analyses. All statistical tests were performed
using SPSS (version 24.0, IBM, Chicago, IL).

3. Results

3.1. Demographics and neuronal injury biomarkers

The study population consisted of 110 subjects (56.4% female)
presenting with cognitive impairment, of whom 32 (29.1%) were in-
itially classified as MCI and 78 (70.9%) as AD. For details of the study
population see Table 1.

3.2. Correlation of neuronal injury biomarkers with cognitive performance

In subjects who had baseline MMSE and CERAD plus battery scores
(n=97), the two test results had a strong positive correlation
(r=0.699; p < .001). We present below the correlations between
MMSEOBSERVED scores and neuronal injury marker (the corresponding

correlations for CERAD plus battery scores are presented in Supplement
Figure 1). Visual and semiquantitative FDG-PET read-outs likewise
showed highly congruent results (R=0.70, p < .01, see Supplement
Figure 2), so we elected to use the clinically common visual read-out of
surface projections in the regions known to be affected in AD for further
analyses.

FDG-PET grading showed the highest association with the MMSE-
OBSERVED score (β=−0.49, p < .001) than did grading of the hippo-
campal volume in MRI (β=−0.15, p= .14) and the CSFt-tau levels
(β=−0.12, p= .22; see Fig. 3A–C); FDG-PET, age, gender, and leu-
koencephalopathy accounted for 21% of the variance in MMSEOBSERVED
(F(4,106)= 8.2, p < .01, R2= 0.24, R2

Adjusted= 0.21). The hippocampal
volume in MRT together with age, gender, and leukoencephalopathy
accounted for 1% of the variance in MMSEOBSERVED (F(4,106)= 1.4,
p= .24, R2=0.05, R2

Adjusted= 0.01). The CSFt-tau levels, age, gender,
and leukoencephalopathy together accounted for 1% of the variance in
MMSEOBSERVED (F(4,106)= 1.2, p= .31, R2= 0.04, R2

Adjusted= 0.01).
The correlation of regression residuals (RESPET, RESMRI, RESCSF)

with the YoE revealed significant positive associations for all three
biomarkers (MRI: R=0.35, p < .01); CSF: R=0.35, p < .01); PET:
R=0.39, p < .01) (see Fig. 3D–F), indicating that the discrepancies
between biomarker results and clinically assessed MMSE may also serve
as a proxy of cognitive reserve.

Leukoencephalopathy, as assessed with the Fazekas-Score, did not
have a significant correlation with baseline cognitive performance
(R=0.08, p= .42).

3.3. Regression model of neuronal injury based cognitive performance

3.3.1. Multiple regression model
Next, we computed a regression model to assess the factors influ-

encing the current cognitive performance. FDG-PET and YoE sig-
nificantly explained some of the variance in the calculation of MMSE-
PREDICTED score predicted by the model of neuronal injury biomarkers
and covariates (for details see Table 2).

Using the calculated weighting factors, the individually predicted
MMSEPREDICTED score was generated using the following formula:

The multiple regression analysis indicated that 36% of the variance
in cognitive impairment was explained by the included parameters,
whereas the two significant parameters (FDG-PET + YoE) accounted
together for 35% of the variance in a separately calculated regression.

3.3.2. Residualized memory function as a surrogate score of cognitive
reserve

We calculated the difference between MMSEOBSERVED and MMSEP-
REDICTED as a surrogate score of the individual cognitive reserve
(ΔMMSE, see Fig. 4). When comparing the individual surrogate score to
the published SD of an MMSE test-retest (Tombaugh, 2005), 49.0% of
subjects had surrogate score magnitudes exceeding more than one SD
(±2.37) and 15.5% more than two SDs (± 4.74).

Importantly, age had no impact on the observed distribution of
surrogate scores of cognitive reserve (R=0.00, p= .99.; see
Supplement Figure 3).

3.4. Prediction of individual cognitive decline by neuronal injury based
residualized memory function

Finally, we asked if the calculated surrogate score for cognitive
reserve in the single subject has clinical relevance for predicting disease
progression. The mean annual MMSE change (n=110) was −1.55
(± 2.41). ΔMMSE (β=−0.35, p= .02) and RESPET (β=−0.36,

Table 1
Demographics of the study population. Demographics, covariates, baseline
cognitive testing and findings of neuronal injury biomarkers of the study po-
pulation.

All subjects MCI AD

N 110 32 78
Age (y ± SD) 70.5 ± 7.7 71.7 ± 6.4 70.0 ± 8.2
Gender (♂male/♀female) ♂48/♀62 ♂15/♀17 ♂33/♀45
Education (y ± SD) 12.6 ± 3.2 14.9 ± 3.9 12.0 ± 2.6
Fazekas-score (0–3) 1.22 ± 0.53 1.34 ± 0.48 1.17 ± 0.54
Baseline MMSE ± SD 22.9 ± 4.3 25.8 ± 2.2 21.7 ± 4.4
CERAD (n=97) 55.5 ± 13.0 62.1 ± 9.2 52.7 ± 13.4
Verbal fluency (Animals) 12.9 ± 5.2 15.3 ± 4.4 11.9 ± 5.2
Modified BNT 12.4 ± 2.6 13.1 ± 1.9 12.1 ± 2.8
Word list learning 11.6 ± 4.6 13.9 ± 4.2 10.6 ± 4.5
Constructional praxis 9.3 ± 2.1 10.2 ± 1.3 8.9 ± 2.3
Word list recall 2.3 ± 1.9 2.6 ± 1.9 2.1 ± 1.9
Word list recognition-
discriminability (%)

84.6 ± 12.0 85.2 ± 10.9 84.4 ± 12.4

Verbal fluency (S-Words) 9.4 ± 5.2 11.4 ± 5.2 8.6 ± 4.9
TMT-A (sec) 85.4 ± 41.6 72.6 ± 36.0 91.5 ± 42.9
TMT-B (sec) 191.5 ± 73.6 180.8 ± 73.8 202.8 ± 73.5

Clinical follow-up in
months (n=46;± SD)

27.0 ± 12.5 25.5 ± 11.6 28.2 ± 13.3

Scheltens-score (0–8) 4.07 ± 1.94 3.94 ± 1.91 4.13 ± 1.96
CSFtotal-tau (pg/ml) 545.7 ± 309.0 462.9 ± 203.1 580.0 ± 338.5
CSFtotal-tau (%

positive > 450)
55% 47% 58%

CSFp-tau (pg/ml) 79.1 ± 33.9 78.0 ± 31.5 79.6 ± 35.0
CSFp-tau (% positive≥61) 71% 66% 73%
Visual FDG-PET (0–18) 7.31 ± 3.66 5.00 ± 2.57 8.26 ± 3.63

= + + + +MMSE 20.810 (0.592*FDG ) (0.046*Scheltens) (0.0004*CSF ) (0.028*Fazekas) (0.483*YoE) (0.499*Gender) (0.002*Age)PREDICTED visual t tau
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p= .01) indicated a significant negative association with the annual
MMSE change upon clinical follow-up (see Fig. 5). ΔMMSE, age, and
gender together accounted for accounted for 16% of the variance in
annual MMSE change (F(3,107)= 4.0, p= .01, R2=0.21,
R2
Adjusted= 0.16); RESPET, age and gender likewise accounted for 17% of

the variance in annual MMSE change (F(3,107)= 4.3, p= .01,
R2=0.23, R2

Adjusted= 0.17). Single RESMRI (β=−0.23, p= .11) and
RESCSF (β=−0.23, p= .10) did not show a significant correlation
with the annual MMSE change.

Thus, patients whose present cognition seemed at odds with their
manifest signs of neuronal injury by biomarker grading showed worse
cognitive deterioration in the clinical follow up. Among single neuronal
injury markers, the residuals of FDG-PET indicated the strongest pre-
dictive value.

Fig. 3. Association of neuronal injury biomarker findings with cognitive performance and education level. A: Regression analyses of neuronal injury biomarkers with
clinical-assessed MMSE scores. B: Correlation of regression residuals (RESPET, RESMRI, RESCSF) with years of education for all neuronal injury biomarkers. Values of
the regression analyses are presented as residuals.

Table 2
Regression coefficients of the biomarker based model. Regression coefficients,
β-values and significance levels of the multiple regression analysis for the cal-
culation of the neuronal injury biomarker based anticipated mini mental status
examination.

Regression coefficient β p

Constant 20.810 .000
FDG-PETvisual −0.592 −0.505 .000
Scheltens-Score 0.046 0.021 .814
CSFt-tau 0.0004 0.030 .723
Fazekas score −0.028 −0.003 .967
Years of Education 0.483 0.355 .000
Gender −0.499 −0.058 .490
Age (y) 0.002 0.004 .968
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4. Discussion

We demonstrate that neuronal injury biomarker readouts in relation
to clinical scoring of cognition can serve to assess the individual cog-
nitive reserve in MCI and AD subjects, which is predictive of future
decline. Among the neuronal injury biomarkers, FDG-PET correlated
better with clinical scoring by MMSE than did measures of hippocampal
atrophy by structural MRI or total-tau by CSF analysis. By creating a
composite model based on neuronal injury biomarkers and relevant
covariates for AD, we further investigated the manner in which cog-
nitive performance predicted by modelling of biomarker findings dif-
fered from the individual clinical observations in many patients. The
difference between the two cognitive scores (MMSEOBSERVED and
MMSEPREDICTED) represents a surrogate for the individual cognitive
reserve. Importantly, this individual cognitive reserve forecasts the
cognitive deterioration to follow-up, independent from the extent of
cognitive deterioration at baseline.

A range of neuronal injury biomarkers (FDG-PET, MRI, CSFt-tau) are
currently recommended to substantiate the working hypothesis of an
AD diagnosis (Jack Jr et al., 2016). In previous studies, all three of these
biomarkers correlated independently with cognitive performance
(Nathan et al., 2017; Forster et al., 2010). Nevertheless, their re-
lationship with the extent of neuronal injury is complex, and has poor
agreement within the A/T/N triad of biomarkers (Alexopoulos et al.,
2014). This may be due to the distinct aspects of neuronal injury cap-
tured by PET, MRI and CSF measurements; whereas FDG-PET primary
depicts net synaptic dysfunction, the hippocampal atrophy in MRI in-
dicates region specific neuronal and neuropil loss, and elevated total-
tau in CSF is a non-specific marker of different forms of neuronal da-
mage (Jack et al., 2010). Furthermore, current thinking holds that tau
pathophysiology precedes onset of hypometabolism or hippocampal
atrophy in the course of AD (Jack Jr et al., 2013; Bateman et al., 2012).
If so, tau levels in CSF may bear only a transient relationship with the
extent of neuronal injury and cognitive decompensation. Nonetheless,

Fig. 4. Distribution of individual discrepancies be-
tween the clinical and calculated cognitive perfor-
mance. The discrepancy in mini mental status ex-
amination (MMSE) values (ΔMMSE) is illustrated by
a waterfall plot representing the proposed surrogate
score for individual cognitive reserve.± 1 standard
deviation (SD) illustrated by black dashed line,
and± 2 SD illustrated by grey dashed line are pro-
vided as previously published for MMSE test-retest
studies.

Fig. 5. Correlation between change in MMSE scores to clinical follow-up and biomarker findings. Presented are the correlations of stand-alone regressions residuals
(RESMRI, RESCSF, RESPET) of magentic resonance imaging (MRI; A), total-tau in cerebrospinal fluid (CSF; B) and FDG positron emission tomography (PET, C) as well as
the surrogate score of cognitive reserve (ΔMMSE; D) with the annual MMSE change during clinical follow-up. Values are presented as residuals (res.) from the
regression analysis.
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current practice recommends all three biomarkers equally for assess-
ment of neurodegeneration/neuronal injury by current AD classifica-
tion schemes (Jack Jr et al., 2016). Our present data entails the hitherto
first head-to-head comparison of FDG-PET, MRI, and CSF biomarkers as
predictors of current and future cognitive function in a mixed popula-
tion of MCI and AD patients. We find that reduced relative FDG uptake
in AD-related cortical regions correlated best with MMSE scores,
whereas hippocampal atrophy or total tau in CSF showed only a poor
agreement. Thus, freestanding FDG-PET is a good predictor for cogni-
tive function in this population, with little additional benefit derived
from considering MRI and CSF results. This finding may prove parti-
cularly useful in the diagnosis of AD in aphasic or otherwise un-
responsive patients (Rogalski et al., 2016). Furthermore, we were able
to show that a simple scoring system, based on neuronal injury as de-
picted by surface projections of FDG-PET, gave equivalent prediction of
cognitive function when compared to a semi-quantitative approach.
This enables taking the previously vague concept of cognitive reserve
into consideration when FDG-PET is used for evaluation of possible AD
in clinical routine at tertiary centers.

Many different factors have been shown to influence the individual
cognitive reserve of the individual patient. Above all, higher YoE seems
to be the best predictor for a higher cognitive reserve (Yoon et al.,
2016). Importantly, residuals deriving from separate regression ana-
lyses between neuronal injury biomarker results and the clinically ob-
served MMSE correlated significantly with the YoE, indicating that
these residuals are indeed a surrogate for the individual cognitive re-
serve. By implication, the neuronal injury biomarkers can also serve as
a surrogate of cognitive reserve, as has already been shown for a larger
premorbid brain volume (Perneczky et al., 2010) or greater left frontal
cortex connectivity (Franzmeier et al., 2018).

The main objective of this study was to create a model including
several established biomarkers for neuronal injury and relevant cov-
ariates such as age and YoE to compute the residualized memory
function. All of the selected parameters are known to impact in-
dependently upon cognitive performance (Nathan et al., 2017; Forster
et al., 2010; Defrancesco et al., 2013; Niu et al., 2017; Stern, 2012). Our
regression analysis showed that 35.8% of the MMSEPREDICTED variance
can be explained by these parameters, but that only FDG-PET and
educational attainment contributed significantly to the model. Thus,
the present A/T/N triad does not capture all factors relevant to cogni-
tive function in the face of neuronal injury. This result further implies
that deviations from predicted cognitive state are not simply a matter of
deficiency of the model, but rather that individual factors relating to
cognitive reserve impart some temporary protection from the cognitive
manifestations of ongoing neuronal injury (Ewers et al., 2013). Fur-
thermore, there are numerous additional factors (e.g. depression, hy-
pothyroidism, vitamin-B12 deficiency) having impact on current cog-
nitive performance, which are not sufficiently represented within the
established methods of neuronal injury (Jack Jr et al., 2016). BMI,
diabetes, smoking status, alcohol intake, hypertension, ApoE4 status
and physical activity have all been identified as contributing factors to
cognitive status in a large population-based analysis (Livingston et al.,
2017). Additionally, environmental factors such as social support and
personality differences regarding social engagement may prove to have
some weight (Livingston et al., 2017). Vascular comorbidity is another
factor likely to have some bearing on cognition in AD, even though the
Fazekas rating of leukoencephalopathy had no significant effect in our
model. It may be that cognitive effect due to ischemic brain damage is
already captured by FDG-PET.

Clinical MMSE assessments, and the corresponding MMSE scores as
predicted by our multifactorial model showed considerable dis-
crepancies of 49.0% (±1 SD) and 15.5% (±2 SD) respectively when
considered in the light of relative SD reported for MMSE test-retest
results in similar populations (Tombaugh, 2005). Thus, the residualized
memory function as a proxy of the individual cognitive reserve is
subject to a large heterogeneity. In about two thirds of our cases the

residualized memory function was positive (Fig. 4), which is consistent
with greater sensitivity of our compiled biomarker assessment to signs
of cognitive decompensation at early stages of AD (Jack Jr et al., 2013).
However, there were numerous instances in our population of patients
whose clinical MMSE scores were worse than the model-based predic-
tions. Interestingly, the distribution of these MMSE deviations showed
no correlation with the age at baseline. This is consistent with earlier
findings that patients with early onset AD and amnestic presentation
show a distinct cerebometabolic pattern, but no difference in global
glucose consumption compared to patients with late onset AD
(Chiaravalloti et al., 2016; Aziz et al., 2017).

Finally, we tested if the cognitive reserve estimated from neuronal
injury biomarkers at the single patient level is predictive of clinical
course. To this end, we correlated the residualized memory with the
cognitive deterioration to clinical follow-up. Strikingly, we observed a
significantly faster cognitive deterioration measured by MMSE when
the initial residuum was positive. This finding suggests that subjects
with higher reserve had already accumulated a greater burden of pa-
thology, which subsequently lead to faster decline over time (Stern,
2009). Together with previous findings suggesting that higher reserve is
associated with slower cognitive decline, we propose a biphasic reserve
effect, with an initial phase of greater resilience, followed by ac-
celerated decline upon decompensation (Stern, 2009). The baseline
clinical MMSE had no impact on this correlation, consistent with het-
erogeneity of the population with respect to reliance on cognitive re-
serve. A negative predictive value for further cognitive deterioration
has already been shown in a univariate model of neuronal injury bio-
markers among MCI subjects (Landau et al., 2010; Yuan et al., 2009).
Our new findings show that a multimodal grading of neuronal injury
based on all neuronal injury biomarkers and relevant covariates is a
good predictor of cognitive reserve and therefore further cognitive
decline in MCI and AD subjects, irrespective of their baseline cognitive
performance.

The assessment of cognitive reserve in individuals offers the op-
portunity to select or adjust for the patient's risk for cognitive decline,
which may prove useful in the design of upcoming therapeutic trials by
increasing the sensitivity for detection of cognition endpoints.
Furthermore, by considering different biomarker stages of neuronal
injury at baseline of such studies we can reduce bias arising from un-
equal allocation to placebo and treatment arms.

Among the limitations of this study, we note that the MMSE is a
commonly used instrument for detection of cognitive impairment in
patients with suspected AD, but it cannot replace detailed neu-
ropsychological testing, and does not represent all aspects of cognitive
decline. For this reason, we also administered the CERAD test in most of
our subjects, which showed comparable results (see Supplement Figure
1). For facile implementation in a clinical routine, the present calcu-
lated grading of neuronal injury is based rather on the MMSE, aiming to
provide a standardized, widely accepted index. We focused on covari-
ates that are recommended in the guidelines for supporting the diag-
nosis of AD, but we were not able to cover the full range of environ-
mental factors, co-morbidities, and ApoE-status, which might have had
impact in this analysis. Current standards for diagnosis of AD in living
patients call for evidence of Aβ and tau pathology to either CSF analysis
or PET (Jack Jr et al., 2016). While p-tau content of CSF was available
and positive in virtually all of our cases, we had no comprehensive
assessment of Aβ. However, diagnoses of AD were confirmed by long
term clinical follow-up, and only those subjects with a confident clinical
diagnosis were included in the analysis. By design, a major strength of
the study lies in the clinical setting, such that our results and models
should be easily translatable to routine clinical scenarios.

5. Conclusion

Biomarkers of neuronal injury can predict the individual cognitive
reserve in MCI and AD subjects by assessment of the residualized
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memory function. Importantly, this concept can be established by
simple visual and laboratory read-outs without use of highly sophisti-
cated quantification methods. The established surrogate score of cog-
nitive reserve by neuronal injury biomarkers predicts future cognitive
progression at the single patient level and should therefore serve to
adjust for heterogeneous clinical progression independent of treatment
arm in therapeutic trials.
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