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Prediction of ground-level ozone
by SOM-NARX hybrid neural network
based on the correlation of predictors

Qinqing Xiong,1,3 Wenju Wang,1,3 Mingya Wang,1 Chunhui Zhang,1 Xuechun Zhang,1 Chun Chen,2

and Mingshi Wang1,4,*

SUMMARY

Current approaches to ozone prediction using hybrid neural networks are
numerous but not perfect. Decomposition algorithms ignore the correlation be-
tween predictors and ozone, and feature extraction methods rarely select appro-
priate predictors in terms of correlation, especially for VOCs. Therefore, this
study proposes a hybrid neural network model SOM-NARX based on the correla-
tion of predictors. The model is based on MIC to filter predictors, using SOM to
make predictors as feature sequences and using NARX networks to make predic-
tions. Data from the JCDZURI site were used for training, testing, and validation.
The results show that the correlation of the predictors, classification numbers of
SOM, neuron numbers, and delay steps can affect prediction accuracy. Model
comparison shows that the SOM-NARX model has 13.82, 10.60, 6.58% and
12.05, 9.44, 68.14% RMSE, MAE, and MAEP in winter and summer, which is
smaller than CNN-LSTM, CNN-BiLSTM, CNN-GRU, SOM-LSTM, SOM-BiLSTM,
and SOM-GRU.

INTRODUCTION

Particulate pollution in China has significantly decreased since the Air Pollution Prevention and Control Ac-

tion Plan was put into effect there in 2013. But the presence of ground-level ozone (O3) pollution grows.

From 2015 to 2019, the annual average PM2.5 and PM10 concentrations in 337 Chinese cities decreased

by 24 mg/m3, whereas the annual average O3-M8h value increased from 134 mg/m3 to 148 mg/m3,1

exceeding the WHO air quality standard (100 mg/m3) by 0.48 times.2 Studies have shown that for every

10 mg/m3 increase in O3-M8h, the total risk of death in the population increases by 0.31%.3,4Ozone pollu-

tion has become the second factor affecting China air quality and threatens the health of Chinese residents.

Ozone pollution in China has obvious seasonal and regional differences. High ozone pollution occurs

mainly from May to September, while ozone concentrations are lowest from December to January, mainly

due to the high temperature, high humidity, and light in summer, which promote the rate of photochemical

reactions and accelerate ozone accumulation.5 This seasonal difference also varies by region, for example,

ozone pollution in the Pearl River Delta urban agglomeration occurs in May and October respectively, but

the seasonal difference is not significant, whereas in the central-eastern region, where the seasonal differ-

ence is significant, the high pollution period is concentrated in June to September, and the pollution level

is also higher than in other regions.6–8 The most serious ozone pollution areas are the "2 + 26 city cluster"

around Beijing, Tianjin and Hebei, with annual average O3-M8h values between 158 mg/m3 and 199 mg/m3

from 2015 to 2021. Except for 2015, all other years have reached the "light pollution" level of the China

Ambient Air Quality Standard.9 In the severe ozone pollution situation, it is important to develop effective

control measures. An accurate and reliable ozone warning system is an important part of pollution control,

not only to provide a scientific reference for control strategies but also to remind residents to avoid long-

term exposure to pollution.

Currently, ozone prediction methods can be generally classified into three categories: air quality models,

statistical methods, and neural network models. Representative air quality models include a third-genera-

tion Air Quality Modeling System (Model-3/CMAQ), Weather Research and Forecasting model coupled to

Chemistry (WRF-Chem), and Nested Air Quality Prediction Modeling System (NAQPMS), whose main
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principles are based on the complex physicochemical reactions of precursors under different meteorolog-

ical conditions, However, uncertainties in physicochemical parameters and emission inventories may lead

to some bias in the predicted values.10–12 The statistical method, such as Autoregressive Integrated

Moving Average model (ARIMA),13 hidden Markov model (HMM) and generalized linear models (GLMs),

Multiple Linear Regression (MLR),14 Partial Least Squares (PLS), as well as Principal Component Regression

(PCR),15 is favored by many scholars because of its low operational requirements and easy implementation.

However, the statistical methods assume a linear relationship between the dependent and independent

variables,16 inconsistent with the complex nonlinear relationships between the ozone and precursors

(VOC and NOx), as well as meteorological factors.17

Artificial neural networks have received considerable attention because of their strong nonlinear mapping

ability, especially in solving the nonlinear problems of pollutants with irreplaceable advantages.18–20 The

mechanism of ozone generation is very complex, and a single model cannot efficiently fit the dynamic rela-

tionship between the ozone and influencing factors, so many studies combine the advantages of multiple

algorithms to construct hybrid predictionmodels. At present, the strategies for constructing hybridmodels

are mainly divided into feature extraction and decomposition algorithms. For example, wavelet decompo-

sition (WD) combined with gated recurrent unit (GRU) neural network and support vector regression (SVR)

model to predict O3-M8h21; convolutional neural network CNN combined with long short-term memory

neural network (LSTM) to predict PM2.5.22 However, studies using these two methods to predict ozone

have not been perfect. Decomposition algorithm improves the mapping ability by decomposing the

time series into more stable and regular subcolumns, but ignores the correlation between the predictors

and ozone, destroying the potential relationship between them.23 Relatively, feature extraction methods

are superior to decomposition algorithms. It can extract the temporal and spatial characteristics of predic-

tors and maintain their temporal and spatial correlation with ozone. But the existing studies mostly use

specified environmental pollutant factors (CO, PM2.5, and NOx, and so forth) and meteorological factors

(temperature, light, and wind speed, and so forth) as predictors. Appropriate predictors are rarely selected

from the perspective of correlation, and VOCs, which are important precursors of ozone, are rarely used to

the extent that the mapping relationships established are incomplete.24

In order to make up for the deficiency of neural networks in predicting ozone, this study proposes a hybrid

neural network model (SOM-NARX) that combines a self-organizing mapping neural network (SOM) with

nonlinear autoregressive models with exogenous inputs (NARX). Although the model uses a feature

extraction strategy, it differs from the commonly used feature extraction methods in that for the first

time the clustering capability of the SOMnetwork is used to transform similar predictors into feature factors

for dimensionality reduction. In addition, the effect of correlation on model accuracy was investigated

based on the mutual information coefficient (MIC) of predictors and ozone. Finally, the prediction perfor-

mance of CNN-LSTM, CNN-BiLSTM, CNN-GRU, SOM-LSTM, SOM-BiLSTM, SOM-GRU and SOM-NARX is

investigated by comparing.

RESULTS

In this section, the effect of the correlation between predictors and ozone on the SOM-NARX model is first

analyzed, and then the relationship between different parameters and prediction accuracy is discussed.

Finally, the prediction performance of the SOM-NARX network is analyzed by model comparison.

Correlation of predictors

MIC is used to quantify the correlation between the factors and ozone, with a larger MIC indicating a stron-

ger correlation between the factors and ozone. By calculating the MIC of the factors, the effect of correla-

tion on the accuracy of themodel is investigated and the optimal predictor is screened. Predictors withMIC

>0, MIC >0.05, MIC >0.10, MIC >0.15, and MIC >0.20 were experimented with separately to analyze the

prediction accuracy of SOM-NARX for different MICs. The remaining parameters of the model were

used as initial parameters.

The MIC calculation results of the predictors are shown in Table S1. NO2, temperature, light, air pressure,

wind, and ozone are strongly correlated; they are themain factors affecting the generation and transmission

of ozone. VOCs areweakly correlatedwith ozone. This phenomenonmay be related to the high randomness

of VOC time series caused by the combination of irregular emission levels and complex atmospheric diffu-

sion conditions. In addition, previous studies have shown that relative humidity can reduce the ground-light
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intensity and inhibit the rate of photochemical reactions.25 However, in this study, theMIC of relative humid-

ity was only 0.9, showing a weak correlation with ozone. The main reason is that Jiaozuo City is located be-

tween North China and the Huanghuai River Basin. It is dry in summer and less rainy in winter. The relative

humidity is very low throughout the year, and the inhibition of the photochemical rate is very weak.

The experimental results are shown in Table 1. The table shows that with the increase in MIC, the predictors

of low correlation gradually decrease, and RMSE, MAE, and MAPE decrease accordingly. When MIC>0.15,

the three errors reach the minimum value. This result suggests that irrelevant variables can directly affect

the prediction accuracy of the SOM-NARX model. However, the error tends to increase as the MIC

continues to increase. This phenomenon may be due to the extremely few predictors, so the mapping rela-

tionship constructed by the model tends to be more single, and the fitting ability decreases accordingly,

thereby reducing the prediction accuracy. This result shows that the prediction accuracy of SOM-NARX

is mainly affected by the correlation and number of predictors. Therefore, variables with MIC>0.15 were

selected as the best predictors in this study, includingNO2, air temperature, surface temperature, potential

evaporation, evaporation, sea level pressure, ground pressure, UV intensity, total sunlight intensity, north

wind speed, east wind speed, and CO. In addition, although the correlation between VOCs and ozone is

not strong, VOCs are important precursors of ozone and directly determine ozone generation. Therefore,

using VOCs as the best predictor.

Optimal parameters and data processing

In order to investigate the effect of parameters on prediction accuracy, the optimal parameters of the SOM-

NARX model were screened. Test experiments were conducted for different parameters separately, and

the experiments were repeated 10 times for each group of parameters, and the mean value was used as

the final result. RMSE, MAE, andMAPE were used to evaluate the experimental results. The key parameters

of the SOM network are the number of categories, and the key parameters of the NARX network are the

delay step and the number of neurons.

Parameter selection

The experimental results of the parameters are shown in Figure 1 The figure shows that when the number of

categories is less than 45, RMSE, MAE, and MAPE decrease with the increase in the number of categories;

the three errors increase and fluctuate greatly with more than 55 categories. The finding shows that within

45 categories, the number of categories is inversely proportional to the prediction accuracy of SOM-NARX;

with more than 55 categories, the error has no correlation with the number of categories; the number of

categories is between 45 and 55, and the prediction accuracy is the highest. In addition, the RMSE,

MAE, and MAPE are not remarkably different in categories 45 and categories 55, However, the RMSE

and MAE are the smallest in categories 45, whereas only MAPE is the smallest in categories 55, so the

optimum parameter for the number of categories is 45.

For the number of neurons, if the number of neurons is less than 9, then RMSE, MAE, and MAPE gradually

decrease with this number; if it is more than 9, then it tends to be stable, indicating that the fitting ability of

the NARX network increases with the increase in the number of neurons. However, the excessive number of

neurons will increase the complexity of the network and reduce the operating efficiency of the model.

Therefore, the optimal parameter for the number of neurons is 9.

The delay step is a key parameter that determines the structure of NARX and is highly correlated with the

temporal correlation between the ozone and predictors. So, it is necessary to investigate not only the effect

of the delay step on the prediction accuracy but also the relationship between time dependence and

Table 1. Error results under different MIC conditions

MIC RMSE (mg/m3) MAE(mg/m3) MAPE (%)

MIC>0 17.59 14.22 94.55%

MIC>0.5 16.75 13.80 91.65%

MIC>0.1 16.34 13.45 90.78%

MIC>0.15 15.60 12.19 76.02%

MIC>0.2 15.93 13.34 92.45%
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model accuracy. Since this article is concerned with the strength of correlations between ozone and pre-

dictors, rather than positive and negative correlations. Therefore, the absolute value of the correlation co-

efficient is used to indicate the strength of the correlation coefficient, as shown in Table 2, where the color

from green to red indicates the correlation coefficient from small to large. Combine Figure 1 and Table 2,

the RMSE in the delay steps 1–12 shows an upward trend, and the correlation coefficients of all predictors

except VOCs show a downward trend. The RMSE and correlation trends were opposite, indicating that the

temporal correlation between predictors and ozone was positively correlated with the accuracy of the

model. When the delay step is 1, the RMSE, MAE, and MAPE are very large, and then drop significantly,

and when the delay step is 3, they reach the minimum, and then these errors begin to increase. The

main reason is that the correlation coefficients are close to the peak value in delay steps 1–3, and

the peak value is also in this interval. However, extremely few delay steps cause the fitting ability of the

NARX network to become insufficient and increase the error. As the delay step increases, the fitting ability

gradually increases, and the factor restricting the prediction accuracy gradually changes from fitting ability

to correlation. The three smallest errors (with a delay step size of 3) are the result of the combined effect of

correlation and fitting ability. Thus, the optimal parameter for the delay step is 3.

Standardization and normalization

Before making predictions, the data should be processed to ensure that the different factors are in the

same dimension. In this study, experiments were conducted using normalization and standardization,

Figure 1. Error in the number of SOM classifications, NARX neurons, and delay step
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respectively, so that the best data processing method could be screened. The experimental results are

shown in Table 3. By normalizing and standardizing the eigenfactors, the MAPE can be reduced by

15.04 and 24.44%. The finding shows that standardization or normalization can significantly improve the

prediction accuracy of the SOM-NARXmodel, and the prediction error is the smallest after standardization.

To further investigate the reasons for this discrepancy, the processed data were analyzed. The result shows

that the maximum value of VOCs data is 2842.62 mg/m3, the minimum value is 1.69 mg/m3, whereas the

average value is only 114.76 mg/m3, and the frequency of high concentrations of VOCs is very low. By

comparing the two data processing methods (see as Figure 2), we found that 80% of the VOCs data are

distributed between �0.323 and 0.274 after standardization, and the distribution range of all data is not

remarkably different. However, 80% of the normalized data are distributed in the range of 0.0026–0.016,

which is not of the same order of magnitude as other predictors. The difference in data magnitude

increases the training difficulty of the NARX network, thereby increasing the systematic error. Thus, stan-

dardization is better than normalization.

DISCUSSION

Self-organizing mapping neural network-nonlinear autoregressive models with exogenous

inputs performance evaluation

This section investigates the seasonal differences and multiscale prediction accuracy of the SOM-NARX

and NARX networks. In addition, the stability and applicability of the model are analyzed by comparing

SOM-NARX with several commonly used hybrid neural networks. The experimental data were used from

September 3 to 15, 2020 and compared with the data from January 3 to 15, 2022. The No. 1 and No. 2

data are used as pre-experiments, not as prediction results.

Improvement of nonlinear autoregressive models with exogenous inputs prediction

performance by self-organizing mapping neural network

In the ozone predictions of NARX and SOM-NARX in different seasons (as shown in Table 4 and Figure S3),

the predicted values are in good agreement with the observed values. However, the fit between the pre-

dicted value and the observed value in January 2022 is very high, the fit in September 2020 is poor, and the

RMSE, MAE, and MAPE in January 2022 are generally smaller than those in September 2020. This finding

shows the evident seasonal differences in the prediction accuracy of the two models, and the prediction

performance in winter is better than that in summer, similar to Wang Hongwei’s research.26 The authors

suggest that this seasonal difference may be related to seasonal differences in ozone.

From the comparison of the twomodels, the RMSE, MAE, andMAEP of SOM-NARX in different seasons are

smaller than NARX, and the mean error of the two seasons is also the smallest for SOM-NARX. The result

shows that the SOM network can improve the prediction performance of the NARX network. On the other

Table 2. Cross-correlation of predictors with ozone

Daley NO2 VOCs Pressure Temperature Wind Light Evaporation

Potential

evaporation CO RMSE

�12 0.11 0.07 0.49 0.36 0.03 0.18 0.07 0.07 0.02 12.42

�11 0.14 0.07 0.49 0.39 0.04 0.09 0.02 0.01 0.02 12.37

�10 0.18 0.07 0.49 0.42 0.05 0.01 0.05 0.09 0.01 11.87

�9 0.23 0.06 0.49 0.47 0.07 0.12 0.12 0.19 0 12.45

�8 0.28 0.05 0.49 0.52 0.1 0.24 0.21 0.29 0 12.96

�7 0.33 0.05 0.49 0.57 0.13 0.36 0.29 0.4 0 11.55

�6 0.39 0.05 0.49 0.63 0.16 0.47 0.38 0.5 0 11.11

�5 0.45 0.05 0.5 0.68 0.19 0.56 0.45 0.6 0.01 11.32

�4 0.5 0.04 0.5 0.72 0.22 0.63 0.51 0.67 0.01 11.24

�3 0.55 0.04 0.51 0.76 0.24 0.66 0.55 0.73 0.02 9.65

�2 0.6 0.03 0.53 0.75 0.26 0.64 0.55 0.72 0.03 10.55

�1 0.63 0.03 0.54 0.75 0.27 0.58 0.52 0.69 0.04 14.15

0 0.64 0.03 0.54 0.72 0.28 0.48 0.45 0.61 0.04
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hand, the RMSE, MAE, and MAEP of the NARX model in winter and summer differed by 3.26%, 2.26%, and

67.87%, respectively, whereas the difference in SOM-NARX was 1.77%, 1.15%, and 61.56%, and the sea-

sonal difference of SOM-NARX was significantly smaller than that of NARX. This finding indicates that after

the dimensionality reduction of the SOM network, the seasonal difference of the NARX network can be

effectively improved, and the applicability of the NARX network in different seasons can be improved.

In the comparison of multistep prediction, absolute error (AE; the absolute value of the difference between

the observed value and the predicted value, i.e., |Oi-Pi|) is the main reference for measuring deviations in

the size of different forecasting steps. The results are shown in Figure 3, where the AE of the two models

showed a trend of initially increasing and then become stable with the increase in the step size. It continued

to increase in the 0–3 steps, and the AE tended to be stable after three steps. It shows that the short-term

prediction accuracy of the NARX and SOM-NARX models is better than the long-term prediction. The dif-

ference is that the error distribution of SOM-NARX in each step is more concentrated than NARX, and the

MAE is also smaller thanNARX. It shows that in multistep prediction, the prediction accuracy of SOM-NARX

is higher than that of the NARX network.

Model comparison

To further evaluate the advantages of the SOM-NARX model in ozone prediction. Two commonly used

feature extraction networks (i.e., SOM and CNN) were compared with four dynamic neural networks

(NARX, LSTM, BiLSTM, GRU) combined into eight hybrid neural networks to discuss the performance dif-

ferences between the SOM-NARX network and other models. 10 experiments were performed for each

model, and the average value was used as the experimental result. The optimal parameters were deter-

mined by Trial-and-Error testing before the experiment. The prediction errors are shown in Table 4.

The two feature extraction networks are compared, and the results showed that the average error of the

SOM network in the two seasons reaches 31.65%, 23.65%, and 56.47%, and the CNN is only 19.72%,

15.71%, and 67.63%. The summer error of SOM is much larger than that of CNN, whereas the error in winter

and the R2 are smaller than the CNN. Except for SOM-NARX, the seasonal difference in SOM is significantly

stronger than that of CNN. This finding shows that the stability and applicability of CNN in different sea-

sons are better than the SOM network in terms of feature extraction. The reason may be that the feature

sequences classified by SOM only maintain the correlation between similar predictors, and LSTM,

BiLSTM, and GRU can only deal with temporal correlation. When the two types of models are combined,

the interactions between different predictors cannot be effectively fitted, resulting in large errors. Espe-

cially in summer, ozone precursors are more closely correlated with temperature, light, wind speed, and

other factors, widening the error and strengthening seasonal differences.

The prediction performance of dynamic neural networks indicates that when the four networks are com-

bined with CNN and SOM, the prediction errors from small to large are NARX, LSTM, GRU, and

BiLSTM. Although the RMSE and MAE of the CNN-NARX network in winter are larger than those of

CNN-LSTM, and the correlation coefficient is smaller than that of CNN-LSTM. They are basically at the

same level, without evident difference, and the error in summer is much smaller than the other dynamic

neural network, indicating that the prediction accuracy of the NARX network is better than other dynamic

networks. In addition, the prediction errors of NARX in different seasons are not remarkably different,

whereas the seasonal differences of other dynamic networks are more evident, indicating that NARX is bet-

ter than LSTM, BiLSTM, and GRU in fitting the interaction relationship between different predictors. The

prediction error of the SOM-NARX model in different seasons is much smaller than that of other hybrid

models, and the correlation coefficient R2 between the predicted value and the observed value is the

largest, indicating that the NARX network can effectively make up for the shortcomings of the SOM network

in feature extraction.

Table 3. Standardization and normalized prediction errors

Number of categories RMSE (mg/m3) MAE(mg/m3) MAPE (%)

standardization 14.21 11.38 70.84%

normalization 14.58 12.09 80.24%

Raw data 16.70 13.67 95.28%
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Conclusions

This study proposes a new hybrid neural network model (SOM-NARX) for the prediction of ground-level

ozone concentration. The model uses the maximum information coefficient to screen out environmental

factors and meteorological factors that are highly related to ozone as predictors; it fully considers the

correlation between predictors. Similar predictors are clustered as feature factors by the SOM network

to avoid over-fitting problems caused by repeated variables. Finally, the NARX network is used for training

and prediction. Experimental results show that the model can effectively predict near-ground ozone con-

centration, outperforming competitors. The following summarizes several key findings of this study:

The accuracy of SOM-NARX prediction is affected by the correlation and quantity of predictors. The

optimal predictors selected were air temperature, surface temperature, potential evaporation, potential

evaporation, sea level pressure, surface pressure, UV intensity, net sunshine intensity, total sunshine inten-

sity, wind speed and direction, and CO.

Figure 2. Boxplot of data distribution after standardization and normalization

Table 4. RMSE, MAE, MAPE of the prediction results of 8 mixed models

Model

September-20 January-22

R2RMSE (mg/m3) MAE (mg/m3) MAPE (%) RMSE (mg/m3) MAE (mg/m3) MAPE (%)

cnn-lstm 23.18 18.02 11.25% 15.64 13.39 118.42% 0.8978

cnn-bilstm 23.01 17.92 11.43% 20.50 18.03 148.16% 0.8832

cnn-gru 22.36 17.70 11.13% 17.24 14.80 123.21% 0.8979

cnn-narx 18.39 14.92 9.54% 16.22 13.82 107.90% 0.8742

som-lstm 50.70 42.46 25.04% 15.99 13.10 94.88% 0.7865

som-bilstm 49.98 42.35 24.96% 16.44 13.64 105.01% 0.7925

som-gru 52.49 44.38 26.22% 16.15 13.22 100.86% 0.7730

som-narx 13.82 10.60 6.58% 12.05 9.44 68.14% 0.9161

narx 16.22 12.45 7.58% 12.96 10.19 75.45% 0.9056
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Excessively high or low number of SOM classification numbers, neuron numbers, and delay steps will in-

crease the prediction error of SOM-NARX. When the three parameters are 45, 9, and 3, the model accuracy

is the highest. Standardization or normalization of the eigenfactors can effectively reduce the prediction

error by 24.44 and 15.04% respectively, and the model error is the smallest after standardization.

The RMSE, MAE, and MAEP of the NARX model in winter and summer differed by 3.26%, 2.26%, and

67.87%, respectively, whereas the difference in SOM-NARX was 1.77%, 1.15%, and 61.56%. The SOM

Figure 3. Accuracy boxplots of SOM-NARX and NARX networks at different prediction steps

Figure 4. SOM-NARX network architecture
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network can reduce the seasonal differences of the NARX network. In multistep forecasting, the SOM-

NARX network has higher prediction accuracy than the NARX network.

Through model comparison, although the stability and applicability of CNN in different seasons are better

than that of the SOM network, NARX is better than LSTM, BiLSTM, and GRU in fitting the interaction rela-

tionship between different predictors, effectively compensating for the shortcomings of SOM network in

feature extraction. The RMSE, MAE, and MAEP of the SOM-NARX model in winter and summer were

13.82, 10.60, 6.58% and 12.05, 9.44, 68.14%, respectively, with smaller prediction errors than CNN-LSTM,

CNN-BiLSTM, CNN-GRU, SOM-LSTM, SOM-BiLSTM, and SOM-GRU.

Limitations of the study

The SOM-NARX network model based on the correlation of predictors is not only suitable for ozone

prediction, but also for the early warning of other pollutants and prediction of carbon emissions,

providing a scientific reference for pollution prevention and control. A limitation of this study is that

the dataset is obtained from a 13-month time series at one site and does not consider the spatial cor-

relation of predictors with ozone. Longer time horizons and broader target areas can help obtain

more accurate forecasts and deeper insights. Inter-regional interactions are also the next focus of this

study.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Mingshi

Wang (mingshiwang@hpu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table. A detailed description of the data can be found in the supplementary docu-

ment "Research area and data".

d All original code has been deposited at https://www.scidb.cn/s/JFBJry and is publicly available as of the

date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Research area and data

Jiaozuo City is one of the "2 + 26 cities" in China with serious ozone pollution, and the annual average value

of O3-M8h in 2020 is ranked second to last among 337 cities,1 especially in Jiaozuo City Demonstration

Zone of Urban-Rural Integration (Abbreviation JCDZURI), where ozone pollution is the most serious.

JCDZURI is located in the south of Jiaozuo City, which is a complex functional area with urban-rural inte-

gration, industrial integration and integrated development. It contains one national high-tech industrial

development zone, one two-star industrial cluster in Henan Province, a national demonstration base for

new industrialization industry, a national science and technology business incubator, and the second batch

of national pilot area for science and technology service industry.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Pollutants data (national control sites) Qingyue Data https://data.epmap.org/page/index

Meteorological data NASA GES DISC MERRA https://disc.gsfc.nasa.gov/

VOCs data Demonstration area VOCs

detection station

https://doi.org/10.57760/sciencedb.06259;

https://www.scidb.cn/s/Y3YFri

Software and algorithms

IBM SPSS IBM https://www.ibm.com/analytics/spss-statistics-

software

Origin 2018 OriginLab https://www.originlab.com/

MATLAB 2020b MathWorks https://ww2.mathworks.cn/?s_tid=gn_logo

Maximal Information coefficient Reshef et al.27 https://doi.org/10.57760/sciencedb.06273;

https://www.scidb.cn/s/JFBJry

Self-Organizing Mapping Neural Network Kohonen et al.28 https://doi.org/10.57760/sciencedb.06273;

https://www.scidb.cn/s/JFBJry

Nonlinear AutoRegressive models with

exogenous inputs

Tsungnan et al.29 https://doi.org/10.57760/sciencedb.06273;

https://www.scidb.cn/s/JFBJry
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The data set includes hourly data of 6 pollutants (national control sites), 31 meteorological factors, and 118

VOCs from the Sanqing website (https://imee.3clear.com) NASAGES DISCMERRA (https://disc.gsfc.nasa.

gov/), and VOCs fixed detection stations in the demonstration area. In this study, the datasets are divided

into three types: training set, test set and validation set. The training set is used to train the network to learn

the features in the dataset. In using machine learning to predict air pollutants, many scholars tend to use

one year of data as the training set,30–33 because the maximum period of temporal variation of pollutants is

one year and one year of data covers all temporal characteristics of pollutants,34,35 such as annual charac-

teristics, seasonal characteristics, daily characteristics, weekend effects, etc. Therefore, the full year 2021

data, containing 8760 hourly data from 1 January to 31 December, was selected as the training set for

this study. The test set and validation set are used to tune the model parameters and evaluate the perfor-

mance of the model respectively. The study showed that the annual variation of ozone in Jiaozuo City grad-

ually increased from January and remained at a high level fromMay to September.36 In order to investigate

the difference inmodel accuracy between high and low values, the test and validation sets were taken for 15

consecutive days in January 2022 and September 2020, respectively.

Pre-processing of data

The acquired training data were missing 170 hourly data for pollutants and 254 for VOCs. This study

interpolated the missing data using linear interpolation to reduce the impact of non-continuous data on

temporal correlation. On the other hand, different parameters have different scales, and large values

disproportionately mask the impact of smaller inputs.24 As a result, the data is preprocessed using min-

max normalization or standardization. Calculations as Equations 1 and 2.

x� =
x � xmin

xmax � xmin
(Equation 1)

x0 =
x � x

s
(Equation 2)

where x* is the normalized value, dimensionless; x is the data at a moment of the factor; xmin and xmax

represent, respectively, the minimum and maximum values in the dataset made up of x; x’ is the standard-

ized value, dimensionless; x is the mean; and s is the standard deviation.

Numerous VOC species contribute differently to ozone, and the ozone formation potential (OFP) based on

the maximum incremental reactivity (MIR) can assess the ability of VOCs to produce ozone. In this study, to

establish a mapping relationship between VOCs and ozone, OFP was used as a predictor of the model,

OFP is calculated as Equations 3 and 4.

OFPi = MIRi 3 ½VOCi� (Equation 3)

OFP =
X

OFPi (Equation 4)

where VOCi is the observed concentration of VOC species i; MIRi is the maximum incremental reactivity

coefficient for i; The coefficient comes from the MIR updated by Carter in 2010.37

Maximum information coefficient (MIC)

Predictors are critical to the model’s prediction performance, and too many irrelevant variables or missing

key variables will affect the prediction accuracy.24 Predictor screening is mainly divided into trial-and-er-

ror26 and analytical methods,38 although the trial-and-error method is simple to operate, the amount of

arithmetic is very large and does not reflect the relationship between predictors and accuracy, while the

analytical method based on factor correlation is better than the trial-and-error method. However, Pearson

and Spearman correlation coefficients are only sensitive to linear relationships and cannot effectively

capture the nonlinear relationships between both meteorological factors and precursors and ozone.

Althoughmutual information (MI) has good performance in analyzing nonlinear relationships between vari-

ables, the probability density functions of the variables are unknown and the mutual information is difficult

to estimate.39,40 In contrast, MIC is applicable to any functional relationship, whether linear or nonlinear,

and the outliers of the variables have less impact on the results. Therefore, this study used the maximum

information coefficient (MIC) to screen out factors with some correlation with ozone as predictors.
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Reshef proposed the maximum information coefficient (MIC) to analyze the nonlinear correlation of big

data.27 MIC is calculated by mutual information and grid division. Mutual information is an important indi-

cator for determining the degree of correlation between variables, and it is defined as Equations 5–8:

MIðA;BÞ =
X
a˛A

X
b˛B

Pða;bÞlog2

Pða;bÞ
PðaÞPðbÞ (Equation 5)

MI�ðD; x; yÞ = maxMI

�
D

G

�
(Equation 6)

MðDÞx;y =
MI�ðD; x; yÞ

log2 minfx; yg (Equation 7)

MICðDÞ = maxxy<BðnÞ
n
MðDÞx;y

o
(Equation 8)

Where A = {ai, i = 1, 2, $$$, n}; B = {bi, i = 1, 2, $$$, n}; n denotes the number of samples; The joint probability

density of A and B is p(a, b); The marginal probability densities of A and B are denoted by p(a) and p(b),

respectively; MIC is the maximum information coefficient; D/G denotes that data D is divided using G;

M(D)x, y is the maximum normalized MI value obtained by dividing a feature matrix into different divisions;

B(n) is the upper limit of grid division x3y, which is generally defined as u(1)%B(n)%O(n1�ε), 0<ε < 1.

Self-organizing mapping neural network (SOM)

The mechanism of ozone generation is complex, and the effects of similar variables (such as net sunshine

intensity and UV light intensity, ground temperature and air temperature, etc.) on ozone generation are still

unclear. If similar variables are excluded, the prediction accuracy may be reduced due to the lack of key

factors. Therefore, this research adopts the method of feature extraction to achieve the purpose of dimen-

sionality reduction. Traditional feature extraction methods such as Principal Component Analysis (PCA),41

Partial Least Squares (PLS),42 etc. mostly rely on the correlation between variables or specific functional

relationships, and will be limited to varying degrees.43 The self-organizing map network can cluster

high-dimensional input vectors without any prior knowledge of statistical distribution to form a visual

one-dimensional or multi-dimensional topology map and maintain the relationship between variables.44

The SOM network is an unsupervised neural network proposed by Kohonen based on the phenomenon of

"lateral inhibition" between biological neurons,28 as shown in Figure S1. It includes an input layer and a

clustering layer consisting of nodes in a two-dimensional graph. Associated with each node is a weight vec-

tor with the same dimensions as the input vector (variable, e.g., ground temperature) and a location in map

space. The trainingmethod of SOM is different from other neural networks. Different from other neural net-

works, the training network of SOM adopts the competitive learning method. Different from other neural

networks, the training network of SOM adopts the competitive learning method. The winning neuron is

determined according to the minimum Euclidean distance dj between the weight vector u(j) and the input

vector x(t). Winning neurons and in-neighbor neurons can update weights. Calculated as Equations 9–13:

dj = xðtÞ � uðjÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i = n

�
xðtÞi � uðjÞi

�2s
(Equation 9)

rðt+ 1Þ = INT

�
ðrðtÞ � 1Þ3

�
1 � t

T

��
+ 1 (Equation 10)

kj = e

 
� uðjÞ �uðjÞ�2

2r2t

!
(Equation 11)

hðt+ 1Þ = hðtÞ � hð0Þ
T

(Equation 12)

uðjÞnew = uðjÞold +hðtÞkj
�
xðtÞ � uðjÞold

�
(Equation 13)
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where n is the dimension of the input vector and weight vector, u(j) represents the jth competition layer

neuron, x(t) represents the tth input layer neuron; kj is the neighborhood function, generally using Gaussian

function or bubble The function, which represents the update coefficient of the weight vector in the neigh-

borhood of the jth winning neuron, the smaller the Euclidean distance between the neighborhood neuron

and the winning neuron, the larger the value of kj; r(t) is the winner when the tth vector is input Neighbor-

hood radius of the neuron, INT is the rounding function, T is the iteration period;u(j) denotes the jth winning

neuron’s weight vector; The winning neuron neighborhood’s weight vector is u(j)*; t is the learning

efficiency function, which gradually decreases with the iterative training, and the value range is (0, 1).

Nonlinear AutoRegressive models with exogenous inputs (NARX)

In pollutant prediction, dynamic neural network RNN (such as LSTM, GRU, etc.) with memory function has

been widely used due to its irreplaceable advantages in dealing with time series problems, but it is still

insufficient in solving function approximation, so many Scholars build hybrid prediction models based

on LSTM, such as CNN-LSTM hybrid model,45 spatial transfer bidirectional long short-term memory

network,46 Attention-based Seq2Seq learning for temporal modeling,26 etc. Another dynamic neural

network, NARX, also has good performance in prediction. It adds a delay and feedback mechanism on

the basis of a multi-layer perceptron, which makes it have the ability to memorize historical data and can

take into account both time series and function approximation29,47,48

The NARX network is a two-layer feedforward network, the hidden layer is mainly in the form of full connec-

tion, and the sigmoid is used as the activation function. The output yt is influenced by the input (xt, xt-1, xt-2,

xt-3, $$$ xt-n) and (yt-1, yt-2, yt-3, $$$ yt-n), where n is also called the delay step. The Equation 14 is the NARX

model’s defining equation:

y
�
t
�
= f
�
y
�
t � 1

�
; y
�
t � 2

�
;/; y

�
t � n y

�
; x
�
t � 1

�
; x
�
t � 2

�
;/; xðt � nx Þ (Equation 14)

where x is the input variable, y is the output variable, and ny and nx are the delay steps of the output and

input variables, respectively.

The NARX network is divided into open-loop mode and closed-loop mode, as shown in Figure S2. The

open-loop mode is a network without feedback, and the target and predictor are combined into the input

layer; the closed-loop mode is a network with a feedback mechanism, and the output value is fed back to

the input layer of the feedforward network instead of the target value. Usually, the network is trained in

open-loop mode to ensure the accuracy of the input; prediction is made in closed-loop mode to achieve

dynamic prediction.49

Given that the network in open-loop mode is a feedforward neural network, training can be done using the

static back-propagation technique to increase training effectiveness. The mean square error is used to

adjust the network’s weights and biases during training (MSE). The training algorithm adopts

Levenberg-Marquardt, which trains very fast. Although it is inefficient to train large networks with many

weights, it has good performance in fitting nonlinear regression.50–52

The reasons for using the NARX network can be found in the supplementary document " Nonlinear

AutoRegressive models with exogenous inputs (NARX)".

Evaluation indicators

This study employs three statistical indicators to assess model performance: mean absolute error (MAE),

mean absolute percentage error (MAPE), and root mean square error (RMSE), with lower values represent-

ing better model performance, as defined as Equations 15–17:

MAE =
1

n

Xn
i = 1

jOi � Pij (Equation 15)

MAPE =
1

n

Xn
i = 1

jOi � Pij
Oi

(Equation 16)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i = 1

�
Oi � pi

�2s
(Equation 17)

where Oi is the value of the observed data, Pi is the predicted value, and n is the length of the data.

Construction of SOM-NARX model

The SOM-NARXmodel uses the SOM network to cluster the time series of similar predictors, thereby trans-

forming them into corresponding feature factor sequences. Finally, the eigenfactors are fed into the NARX

network together with other predictors for training and prediction. Before the SOM-NARX model predicts,

it is necessary to screen out the factors highly correlated with ozone as predictors based on MIC. The con-

struction of the model is divided into three parts, as shown in Figure 4. Screening predictors based onMIC;

2. Constructing characteristic factors based on SOM network; 3. Using the NARX network to train and pre-

dict ozone. Please refer to the Supporting information for the detailed process.

Step 1. Screening predictors based on MIC

Mutual information (MI) coefficient estimated probability density from histogram, assuming that D = {(ai,

bi), i = 1, 2, ., n} is a finite set of ordered pairs, grid division G (an x3y grid) divides the range of variable

A into x segments and the range of B into y segments. Mutual informationMI (A, B) is calculated inside each

of the obtained grid divisions. There are many grid division methods for the same x3y, and the maximum

value of MI (A, B) in different division methods is taken as the value of G. mutual information value. We refer

to Reshef’s research27 and set the number of networks to be B(n) = n0.6, where n is the data volume of 8760

in 2021.

Step 2. Constructing characteristic factors based on SOM network

The 8760 hourly data of similar factors are divided into m categories, and the cluster labels are used as ei-

genvalues, and the new time series formed is called the eigenfactor sequence. The eigenfactors and other

predictors make up the input variables for subsequent models. The number of classifications "m" is the size

of the output layer of the SOM network, which determines the topology of the network mapping. We set

the data structure of m to be a one-dimensional column vector. because a one-dimensional column vector

can maintain the continuity and temporal correlation of the eigenfactor sequence. The optimal number of

classifications is determined through global experiments.

Step 3. Using the NARX network to train and predict ozone

The prediction module uses the standard NARX network. Trained in open-loop mode, the input layer con-

sists of the predictor x1, the feature factor x2, and the target variable y. The root mean square error (MSE) is

used as the training basis. The training is finished if theMSE does not decrease for six consecutive tests. The

closed-loop mode is used for prediction. The output y’(t) at time t and the predictor x1(t+1) and character-

istic factor x2(t+1) at time t+1 constitute input variables. The variables are mapped by the trained NARX

network and the output value y’(t+1) at time t+1, and y’(t+1) is the predicted value. For example, to predict

the ozone concentration for 8 consecutive hours from 12:00 to 19:00 on January 1, 2022, it is necessary to

input the variables at n times before 12:00 into the closed-loop NARX network to obtain the first predicted

value at 12:00. The predicted value at 12:00 is used as the target variable in the input layer to predict the

next moment at 13:00. Continuous prediction is achieved by circular mapping. The optimal parameters of

the preprocessing of the input variables, the delay step and the number of neurons in the hidden layer are

gradually determined through global experiments.
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