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ABSTRACT: Endometrial cancer (EC) is a frequently diagnosed
gynecologic cancer. Identifying reliable prognostic genes for
predicting EC onset is crucial for reducing patient morbidity and
mortality. Here, a comprehensive strategy with transcriptomic and
proteomic data was performed to measure EC’s characteristics.
Based on the publicly available RNA-seq data, death-associated
protein kinase 3, recombination signal-binding protein for the
immunoglobulin kappa J region, and myosin light chain 9 were
screened out as potential biomarkers that affect the EC patients’
prognosis. A linear model was further constructed by multivariate
Cox regression for the prediction of the risk of being malignant.
From further integrative analysis, exosomes were found to have a
highly enriched role that might participate in EC occurrence. The
findings were validated by qRT-polymerase chain reaction (PCR) and western blotting. Collectively, we constructed a prognostic-
gene-based model for EC prediction and found that exosomes participate in EC incidents, revealing significantly promising support
for the diagnosis of EC.

■ INTRODUCTION
Endometrial cancer (EC) is a commonly diagnosed gyneco-
logic malignancy among women.1 The precursor lesion for
endometrioid adenocarcinoma of the endometrium, which
accounts for the majority of endometrial carcinomas, is
endometrial hyperplasia (EH). EH is a noninvasive, abnormal
proliferation of the endometrial lining of the uterus and is
associated with a significant risk of concurrent EC or
progression to EC.2 EH could be further classified into two
subtypes during its development: endometrial hyperplasia
without atypia (EHA)3 and endometrial atypical hyperplasia
(EAH). EHA is a benign disease without significant somatic
genetic changes, along with a significant risk of transforming
EC and persistent EH.4 EAH is regarded as a precancerous
condition leading to EC,5 whose pathological progression is
complex and exhibits a multiplicity over time and spatial
distribution.6 It is widely recognized that women with EAH
have a higher risk of progressing to EC compared to those with
EHA. However, the magnitude of this risk is uncertain.7

The rising incidence of EC and its growing population of
new diagnoses underscore the severe challenge to women’s
health. To combat this condition, it is essential to identify
reliable prognostic biomarker genes to assist in the risk
assessment of malignancy and to inform clinical treatment
decisions for EC. Nowadays, high-throughput technologies
have made it possible to obtain large-scale information at

multidimensional biological expression levels. An integrated
analysis that encompasses multiple biological layers, such as
transcripts, proteins, or metabolites, provides a comprehensive
approach to gain a more detailed understanding of the
molecular mechanisms underlying public health and disease.8

In this study, we collected the publicly available ribonucleic
acid (RNA)-seq data, including 572 tissues (normal = 35, EC
= 537). Death-associated protein kinase-3 (DAPK3) and
recombination signal binding protein for immunoglobulin
kappa J region (RBPJ) were identified as the potential
prognostic genes to affect the patients’ prognosis. Based on
the above two genes, a linear model was constructed to
evaluate the risk of being malignant in EC patients. Meanwhile,
the biopsies (EHA = 3, EAH = 4, EH = 6, and EC = 7) were
collected for proteomic data generation by liquid-chromato-
gram tandem mass spectrometry (LC-MS/MS). In prognostic
gene validation, the DAPK3 protein was found in our
proteomics analysis. Through protein−protein interaction
analysis, a DAPK3 binding partner called myosin light chain
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9 (MYL9) was found to significantly affect the EC patients’
prognosis, making us speculate that MYL9 might be closely
related to EC. Four of the six genes were further validated by
qRT-polymerase chain reaction (PCR) and western blotting,
including three exosome-related genes (HSPE1, RAB14, and
SEC31A) and one prognostic gene (MYL9). To investigate the
relationships at both transcriptomic and proteomic levels, we
also compared their shared genes and the biological
annotations from the significantly changed genes during EC
incidents, finding that most exosomal proteins might
participate in tumorigenesis. EHA and EAH have similar
patterns of feature proteins involved in exosomes, indicating
they might carry a higher risk compared with EH. Altogether,
the utilization of integrative analysis based on a multiomics
strategy can be used to discover the prognostic genes for the
clinical diagnosis of EC.

■ EXPERIMENTAL PROCEDURES
Sample Preparation for MS. After washing with ice-cold

phosphate-buffered saline, approximately 50−100 mg of
uterine tumors and normal tissues were cut into small pieces.
Samples were then homogenized by a homogenizer (Bertin
Precellys, France) at 4 °C and processed with the following
settings: 8 × 20 s at 5500 rpm, break 30 s. The freeze-crushed
tissue samples were precipitated with ice-cold acetone at −20
°C overnight. The protein precipitant was centrifuged at
14,000g for 30 min. The tissue was washed separately with 1
mL of acetone and then air-dried on ice. Tissues were softly
homogenized separately in 500 μL of lysis buffer (8 M urea,
100 mM Tris, pH 8.0, 1:100 v/v MCE protease inhibitor
cocktail). Lysates were precleared by centrifugation at 20,000g
for 30 min at 4 °C and protein concentrations were
determined by a Bradford assay (Thermo Fisher Scientific).
Proteins were reduced with 10 mM dithiothreitol for 30 min at
37 °C and subsequently alkylated with 55 mM iodoacetamide
for 45 min in the dark. Before digestion, samples were loaded
into the Microcon Ultracel YM-30 filtration devices (Millipore,
Billerica, MA, USA) and centrifuged at 14,000g for 20 min.
After three washes in 50 mM ABC, trypsin (Pierce, Thermo
Fisher Scientific) solution was added to the filter (enzyme-to-
protein ratio 1:100 w/w), and samples were incubated at 37
°C overnight. Peptides were collected by centrifugation,
followed by an additional wash with 50 mM ABC. The
digestion was stopped by acidifying the solution to a final
concentration of 1% (v/v) formic acid. Tryptic peptides were
desalted on a C18 SPE and dried for LC-MS/MS analysis.
LC-MS/MS Analyses. All analyses were performed using an

EASY-nLC 1200 system (Thermo Fisher Scientific) on an
Orbitrap 480. After reconstituting peptides in 20 μL of 0.1%
FA, 1 μg of the peptide mixture was injected and loaded
directly onto a C18 column (25 cm/75 μm, 2 μm beads,
Thermo Fisher Scientific) and separated with a 90 min
gradient from 4 to 40% B at 300 nL/min in typically.
Parameters are as follows in Full MS/data dependent�MS2
TopN mode: mass analyzer over m/z range of 350−1500 with
a mass resolution of 60,000 (at m/z = 200) in a data-
dependent mode, 1.6 m/z isolation window. Twenty of the
most intense ions are selected for MS/MS analysis at a
resolution of 15,000 using the collision mode of HCD.
Data Acquisition. Tandem MS data were queried against a

human database using Proteome Discoverer version 2.4
software (Thermo Fisher Scientific). The normalized abun-
dance of a given protein was calculated from the average area

of the three most intense peptide signals. For this software,
proteins for which area intensities were below the minimum
range or were not detected were assigned an area of zero. For
the proteins that were identified by multiple UniProt9 IDs
(release 2023/12/26).
The transcriptome profiling (RNA-seq), which was

preprocessed by fragments per kilobase of an exon model
per million mapped fragments (FPKM), was from the EC
project of the Cancer Genome Atlas (TCGA)10 database,
including 537 tumor samples and 35 normal samples. The
analyses were based on the genes expressed in all samples using
a cutoff value of FPKM ≥1.
Computational Analyses. Software tools used for this

study were available as open source packages under the R
v4.2.2 environment, including: “tidyverse”11 v2.0.0 for basic
data operations, such as data cleaning; “missForest”12 v1.5 for
empty value filling; “limma”13 v3.54.1 for differential
expression analysis; “pheatmap”14 v1.0.12 for plotting all
samples’ abundance and classification; the DAVID15 database
for terms enrichment, such as KEGG16 and GO term;17

“Boruta”18 v8.0.0 for feature selection; “survival”19 v3.5-5 and
“survminer”20 v0.4.9 for drawing survival curve and Cox
regression; “leaps”21 v3.1 for best subset regression (BSR);
“glmnet”22 v4.1-7 for lasso regression with 10-fold cross
validation; “pathview”23 v1.40.0 for alterations specific path-
ways demonstration.
Quantitative Reverse Transcription Polymerase

Chain Reaction. Transfer the accurately weighed RNA
extraction sample to a liquid nitrogen precooled mortar and
grind the tissue with grinding (liquid nitrogen needs to be
continuously added to the mortar during the grinding process)
until it is ground into powder. Then, an appropriate amount of
RNA extraction reagent was added to the powder and mixed
well. The above mixture was transferred to a centrifuge tube
and thoroughly mixed by repeatedly pipetting and blowing. Let
it stand at room temperature for 5 min, then centrifuge at
12,000 rpm at 4 °C for 5 min. Carefully aspirate the
supernatant and transfer it into a new centrifuge tube before
proceeding with subsequent RNA extraction operations. The
process of RNA extraction was done using the Trizol reagent
(Accurate Biotechnology, Changsha, China) according to the
manufacturer’s protocol. Total RNA was quantified by a
spectrophotometer (Nano-Drop ND-2000), and 2 μg of total
RNA was reverse transcribed to complementary DNA using
the reverse transcriptase kit (Accurate Biotechnology, Chang-
sha, China) according to the manufacturer’s instructions. The
messenger RNA (mRNA) levels of the pS2 gene were detected
by RT-PCR using the SYBR Green Premix qPCR Kit
(Accurate Biotechnology, Changsha, China) in the Bio-Rad
CFX Connect PCR system.
The primer of HSPE1-forward (5′-3′) was CAACAG-

TAGTCGCTGTTGGA, and that of HSPE1-reverse (5′-3′)
was CCTCCATATTCTGGGAGAAGAAC.
The primer of MYL9-forward was (5′-3′) GTCCCAGATC-

CAGGAGTTTAAG, and that of MYL9-reverse (5′-3′) was
CATCATGCCCTCCAGGTATT.
The primer of SEC31A-forward was (5′-3′) GAAGTTGT-

GATTGCCCAGAATG, and that of SEC31A-reverse (5′-3′)
was GCACCAGAAGCTACCAGATTAG.
The primer of MSN-forward was (5′-3′) CCACCTGGCT-

GAAACTCAATAA, and that of MSN-reverse (5′-3′) was
GGACACATCCTCAGGGTAGAA.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00375
ACS Omega 2024, 9, 14489−14499

14490

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The primer of RAB14-forward was (5′-3′) GGAGCGATT-
TAGGGCTGTTA, and that of RAB14-reverse (5′-3′) was
ACCAGCTGCTTAAGTGGTTAT.
The primer of DAPK3-forward was (5′-3′) CGTTCAC-

TACCTGCACTCTAAGC, and that of DAPK3-reverse (5′-
3′) was CCGAAGTCGATGAGCTTGAT.
Western Blotting Analysis. 30 μg of EVP proteins were

boiled using 4 × sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) loading buffer at 95 °C for 10
min, run on 15% SDS-PAGE gels (polyacrylamide gel
electrophoresis), and transferred onto poly(vinylidene di-
fluoride) membranes (Millipore, USA). Membranes were
sequentially blocked with 5% nonfat milk (w/v) and incubated
with primary antibodies, including an Exosome Panel Kit
(Abcam, ab275018) and Anti-GAPDH (TransGen Biotech,
HC301-01), overnight at 4 °C. After washing three times with
1× TBST, membranes were incubated with antimouse (Cell
Signaling, 7076S) or antirabbit (Cell Signaling, 7074S)
secondary antibodies for 1 h and washed again to remove
unbound antibodies. Bound antibody complexes were imaged
by a ChemiDoc Imager (Bio-Rad).

■ RESULTS AND DISCUSSION
Data Processing and Analysis Strategies. The whole

flowchart of this study is shown in Figure 1. We first collected
the RNA-seq data of EC from the TCGA10 database and
prepared the expression data and clinical information for the
further associated analysis.24−26 To provide enough data for
the model validation, we also divided the whole RNA-seq data
set into two equal subsets: the training and the testing data set.
The differentially expressed genes (DEGs) between the normal
and cancer samples were combined with the prognostic genes

screened out by univariate Cox regression for the selection of
the genes whose expression is positively correlated with the
hazard ratio by the least absolute shrinkage and selection
operator (LASSO) regression for biomarker discovery. BSR
was performed to reduce the count of independent variables
for model simplification. Finally, a linear model was
constructed for the risk score prediction and validated by the
whole RNA-seq data set and the testing data set.
At the proteomic level, four types of biopsies were collected

and calculated by two strategies: one was that the EC and non-
EC (EHA/EAH/EH) samples were compared to get the
significantly changed proteins along the tumorigenesis; another
strategy was that the feature proteins of the three non-EC
samples were measured by the random forest algorithm. After
biological annotations, some hints were found to indicate the
possible conversion from nontumor to tumor, and exosomes
were finally found to possibly participate in the conversion of
nontumor to tumor.
Discovery of Prognosis-Related Genes. Data mining

based on publicly available data plays a vital role in addressing
clinical issues. In this study, we collected RNA-seq data from
35 normal individuals and 537 EC patients from the TCGA10

database. 4932 genes with more than 1 FPKM were identified
that were expressed in all samples. To optimize model
generalization during the training process, the size of the test
set was made equal to that of the training set. According to the
screening methods and criteria discussed above, 346 prognosis-
related genes (hazard ratio ≠1) were found in the training set
(n = 266). To link survival information and genes’ abundance,
the prognosis-related genes were intersected with the DEGs.
27 genes with positive correlations between abundance and
hazard ratio were screened out, including 3 up-regulated DEGs

Figure 1. Flowchart of the whole study.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00375
ACS Omega 2024, 9, 14489−14499

14491

https://pubs.acs.org/doi/10.1021/acsomega.4c00375?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00375?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00375?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00375?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with HR >1 and 24 down-regulated DEGs with HR <1.
LASSO regression with 10-fold cross-validation was performed
based on the 27 genes to get the optimal lambda value that

came from the minimum partial likelihood deviance (Lambda
min = 0.015), which was related to 13 potential biomarker
candidates (Figure 2A,B). For further analysis by BSR, the

Figure 2. (A) LASSO coefficient profiles of training set genes. (B) LASSO regression with 10-fold cross-validation obtained 13 prognostic genes by
minimum lambda value. (C) Best three biomarker candidates from BSR. (D) Kaplan−Meier survival analysis of DAPK3, RBPJ, and SLC40A1. (E)
Forest plot of three prognostic genes from the multivariate Cox regression analysis. (F) Expression of the three genes in normal and EC tissues. (G)
Kaplan−Meier survival analysis of the risk score model. (H) Model evaluation.
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optimal three prognostic genes were selected according to the
lowest value of the Bayesian information criterion in the

evaluation process of model performance, namely DAPK3,
RBPJ, and SLC40A1 (Figure 2C). Through Kaplan−Meier

Figure 3. (A) Workflow of proteomic data generation. (B) Patterns of non-EC and EC feature proteins screened out by a random forest algorithm.
(C) Patterns of three types of non-EC samples. (D) Biological annotations of the feature proteins.
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analysis, it was found that the expression of genes significantly
impacted the patients’ prognosis (Figure 2D). The forest plots
(Figure 2E) and boxplots (Figure 2F) provided more details
about the three prognostic genes. To ascertain the existence of
a significant prognostic value for each gene for EC patients, we
conducted a multivariate Cox proportional hazards regression
analysis and constructed a linear model. After optimizing the
model, the two gene-based models for risk score evaluation
were established with respective Cox coefficients: risk score =
−0.009767733 × Exp (DAPK3) − 0.021571099 × Exp
(RBPJ). The risk score of each patient in the testing set was
calculated to plot the survival curve, showing that patients with
high scores had poorer life conditions compared to those with
low scores. The result suggests that the model holds a
predictive value in assessing the risk of malignancy (Figure
2G). To validate the performance of the model, both the
testing set (n = 266) and the entire data set (n = 532) were
used for evaluation. This comprehensive approach ensures a
more accurate and reliable assessment of the model’s predictive
capabilities. Time-dependent ROC analysis showed that the
AUC for the testing and the entire set were 0.622 and 0.665,
respectively (Figure 2H). Indeed, the model was constructed
using only two genes, highlighting the significant role of these
two prognostic genes in predicting overall survival among EC
patients. Collectively, these genes could potentially be valuable
biomarkers for prognosis and might even be targeted for
therapeutic interventions.
Feature Protein Selection by Machine Learning. Gene

expression has been defined as the “production of an
observable phenotype by a gene�usually by directing the
synthesis of a protein”.27 To investigate the protein character-

istics during tumorigenesis, EC and three types of non-EC
biopsies were collected for proteomic data generation using
LC-MS/MS (Figure 3A), which is a central analytical
technique for protein research and for the study of
biomolecules in general. Feature selection is a fundamental
step in many machine learning pipelines, which aims to
simplify the problem by removing useless features that would
introduce unnecessary noise. The genes were treated as
features used for the recognition of different types of samples
in this study. 61 and 42 feature proteins were identified to
distinguish between EC and non-EC types and to discern the
intragroup differences among the three types of non-EC,
respectively (Figure 3B,C). Interestingly, in the abnormal
samples, such as EHA, EAH, and EH, EHA and EAH showed
similar patterns compared with those of EH (Figure 3C). As
biological annotation showed, the up-regulated proteins in EC
were involved in extracellular exosomes and cytoplasm,
containing the same functions as the annotations of non-EC
feature proteins (Figure 3D). Additionally, the overexpressed
proteins in EHA and EAH were the same terms as the EC
feature selection, indicating that both of them might carry a
higher risk of being malignant than that of EH.
Alterations in Target Pathways during EC. Genetic

alterations as well as various cell-signaling pathways have been
implicated in EC development and progression, including the
MAPK/ERK pathway and Wnt/β-catenin signaling cascades
(together with APC/β-catenin signaling). Endometrial tumor
tissues have been shown to contain mutations in these
signaling pathways, which are generally regarded as the
primary drivers of carcinogenesis.28 MAPK/ERK expression
is critical for development, and their hyperactivation plays a

Figure 4. (A) Distributions of DEG products. (B) Biological annotations of DEGs at the transcriptomic and proteomic levels.
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well-known role in cancer development and progression.29 The
Wnt/β-catenin signaling pathway is an extremely conserved
pathway that is involved in a variety of cellular processes in the
female genital system, including development, cell prolifer-
ation, cell survival, adhesion, and motility, as well as the
regulation of the menstrual cycle.30,31 Based on the above
findings, we measured the gene products at different expression

levels. Interestingly, the genes associated with these two
pathways have reverse expression patterns (Figure S1). Along
with EC occurrence, the proteins were highly expressed, but
the RNAs were down-regulated. Although it is widely
recognized that gene expression can exhibit inconsistent
trends, the inverse expression in specific pathways, which is

Figure 5. (A) Patterns of shared DEG products. (B) Biological annotations of protein-RNA shared DEGs. (C) Biological annotations of protein-
RNA shared DEGs. (D) Expression trend of the shared 116 DEG products at two levels.
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strongly associated with cancer development, still warrants
careful consideration.
Integrative Differential Expression Analysis. The

advent of omics technologies has generated an ever-growing
number of omics datasets that allow researchers to study gene
expression at various levels. Multiomics analysis in biomedical
research could help explain the complex relationships between
molecular layers, improving disease prevention, early detection,
and prediction. To investigate the connections between
transcriptomic and proteomic levels, we measured the
significantly changed genes in tumorigenesis. The biological
annotations of DEGs (RNAs = 1322, proteins = 668) were
integrated (Figure 4A). The biological annotations were
related to cell proliferation, growth, communication, and
immigration, indicating that the DEGs have a closely tight
connection with cancer occurrence (Figure 4B).
The comparison of normal and EC from RNA-seq data

showed similar counts of up- and down-regulated genes.
However, at the protein level, overexpressed proteins make up
a significant proportion of the differentially expressed proteins
shared with the abnormal tissues (Figure 5A,B), which means
there were many variations up-regulated along with EC
incidents even though compared with the benign non-EC
samples. The biological annotations (Figure 5C) were
consistent with the cellular component annotations (Figure
4B), demonstrating that exosomes were critical for EC
development. There were 116 DEGs shared and expressed at
both the protein and RNA levels (Figure 5D). Based on the
proteomic data, DAPK3, and its binding partner MYL9 were
found. MYL9 had a tight connection with DAPK3 (confidence
= 0.926907) and had been identified as a fibroblast-specific
biomarker of a poorer prognosis for colorectal cancer.32 Low
MYL9 abundance also was reported a significant association
with the development of nonsmall-cell lung cancer.33 Thus, we
speculated that MYL9 could also be a biomarker candidate for
EC.
Validation of Exosome-Related and Prognostic

Genes. To substantiate the insights resulting from omics
data analysis, it is essential to furnish solid evidence. We
selected six genes associated with exosomes and prognosis,
including RAB14, SEC31A, HSPE1, MSN, DAPK3, and
MYL9, and measured their expression by qRT-PCR and
western blotting.
Heat shock protein family E (Hsp10) member 1 (HSPE1) is

usually used together with the cochaperonin heat shock
protein 60 (Hsp60) to maintain protein homeostasis.34 Hsp60
is well-known as being related to exosomes, so we speculated
that HSPE1 might participate in exosome activity and

cooperate with Hsp60. Moesin (MSN) is part of the ezrin,
radixin, and moesin protein families. These proteins play
crucial roles in linking the plasma membrane to the actin
cytoskeleton. MSN has been reported as a potential exosomal
protein biomarker for bladder cancer.35 Ras-related protein
Rab-14 (RAB14) is a small GTPase involved in the regulation
of intracellular membrane trafficking and vesicle transport,
which plays a crucial role in vesicular transport within cells,
especially during vesicular transport from the Golgi apparatus
to the cell surface.36 There were reports showing RAB14
protein expression was positively correlated with increased
tumor size,37 and its activity could regulate exosome secretions
and cell growth.38 Protein transport protein Sec31A (SEC31A)
is a core component of the COPII coat complex, which is
involved in the formation of transport vesicles from the
endoplasmic reticulum (ER), contributing to the efficient
transport of proteins from the ER to the Golgi apparatus. This
gene is essential for maintaining proper protein trafficking and
secretion within the cell.39 DAPK3 was a potential prognostic
gene found in RNA-seq data mining, which is a serine/
threonine kinase that belongs to the DAP kinase family.
Members of this family serve as crucial regulators of cell
apoptosis. DAPK3 plays a pivotal role in diverse biological
processes such as cell apoptosis, autophagy, cytoskeleton
remodeling, and immune response.40−42 As a DAPK3 binding
partner, MYL9 was widely reported to be overexpressed in
several colorectal cancer cell lines, promoting cell proliferation,
invasion, migration, and angiogenesis, while silencing MYL9
exerted the opposite effects.43

In Table 1, the four genes related to exosomes have the same
expression trend in RNA-seq data and qRT-PCR, except for
MSN. Table 2 and Figure 6A show the results at the RNA level
are consistent. High expression of MYL9 mRNA was
associated with worse survival status in EC patients (Figure
6B). MYL9 was validated at the protein level by western
blotting (Figure 6C). The result of univariate Cox regression
was not significant (HR = 1, p-value = 0.2), suggesting that
additional factors may synergize with MYL9 to worsen the
prognosis of EC patients. Overall, the experiments supported
our findings based on the omics data, even though the
comparisons were normal versus EC and EH versus EC.

■ CONCLUSIONS
In summary of our study, DAPK3, RBPJ, and MYL9 have been
identified as potential prognostic biomarkers for EC, and a
linear model has been developed based on these findings to
predict the patients’ prognosis. To describe the characteristics
of EC at different levels, differential expression analysis and
machine learning algorithms were adopted, finding that
extracellular exosomes might be associated with EC develop-
ment. The biological pathways named the “MAPK signaling
pathway” and “WNT signaling pathway” are well-known and
involved in tumorigenesis, and the DEG products in the two
pathways have inverse trends in this study, demonstrating that
there are potential regulation networks that exist among
multibiolayers depending on this way. Three exosome-related

Table 1. Fold Change Values of Exosome-Related Genes
From Transcriptomic Data

Table 2. Fold Change Values of Potential Biomarkers at Different Levels
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genes (HSPE1, RAB14, and SEC31A) and one prognostic
gene (MYL9) were validated by wet experiments, supporting
the omic findings resulting above. Altogether, based on the
approach of integrating multiomics data from the tran-
scriptome and proteome, we provided a landscape for a better
understanding of EC incidents.
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