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Background: The treatment and prognosis for muscle-invasive bladder cancer (MIBC)
and non-muscle-invasive bladder cancer (NMIBC) are different. We aimed to construct a
nomogram based on the multiparametric MRI (mpMRI) radiomics signature and the
Vesical Imaging-Reporting and Data System (VI-RADS) score for the preoperative
differentiation of MIBC from NMIBC.

Method: The retrospective study involved 185 pathologically confirmed bladder cancer
(BCa) patients (training set: 129 patients, validation set: 56 patients) who received mpMRI
before surgery between August 2014 to April 2020. A total of 2,436 radiomics features
were quantitatively extracted from the largest lesion located on the axial T2WI and from
dynamic contrast-enhancement images. The minimum redundancy maximum relevance
(mRMR) algorithm was used for feature screening. The selected features were introduced
to construct radiomics signatures using three classifiers, including least absolute
shrinkage and selection operator (LASSO), support vector machines (SVM) and random
forest (RF) in the training set. The differentiation performances of the three classifiers were
evaluated using the area under the curve (AUC) and accuracy. Univariable and
multivariable logistic regression were used to develop a nomogram based on the
optimal radiomics signature and clinical characteristics. The performance of the
radiomics signatures and the nomogram was assessed and validated in the validation set.

Results: Compared to the RF and SVM classifiers, the LASSO classifier had the best
capacity for muscle invasive status differentiation in both the training (accuracy: 90.7%,
AUC: 0.934) and validation sets (accuracy: 87.5%, AUC: 0.906). Incorporating the
radiomics signature and VI-RADS score, the nomogram demonstrated better
discrimination and calibration both in the training set (accuracy: 93.0%, AUC: 0.970)
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and validation set (accuracy: 89.3%, AUC: 0.943). Decision curve analysis showed the
clinical usefulness of the nomogram.

Conclusions: The mpMRI radiomics signature may be useful for the preoperative
differentiation of muscle-invasive status in BCa. The proposed nomogram integrating
the radiomics signature with the VI-RADS score may further increase the differentiation
power and improve clinical decision making.
Keywords: bladder cancer, muscle-invasive status, multiparametric magnetic resonance imaging, nomogram,
radiomics, Vesical Imaging-Reporting and Data System
INTRODUCTION

Bladder cancer (BCa) remains one of the most commonly
diagnosed cancer in urological diseases. According to the
degree of tumor invasion, BCa is classified as either muscle-
invasive bladder cancer (MIBC) or non-muscle-invasive bladder
cancer (NMIBC). About 75% of newly diagnosed BCa patients
have NMIBC while the remaining patients have MIBC (1).

Determining muscle invasion status is critical in treatment
decision making. MIBC patients should receive radical cystectomy
as the gold standard while NMIBC patients are treated to preserve
the bladder (2). Therefore, accurately differentiating MIBC from
NMIBC is critical for BCa patients. However, precisely diagnosing
muscle invasiveness preoperatively is not an easy task.

Currently, the cystoscopic biopsy is commonly used for
tumor diagnosis and clinical staging. However, this approach is
invasive and expensive. In addition, it was reported that 20% to
80% of lesions were misdiagnosed due to variations in
performing cystoscopic biopsy (3), and upstaging to MIBC
occurred in 32% of cases that were diagnosed as NMIBC
according to the initial cystoscopic biopsy (4). Magnetic
resonance imaging (MRI) is usually used in the detection of
BCa and is also increasingly used to preoperatively predict the
muscle-invasive status (5, 6). Multiparametric MRI (mpMRI)
can provide high spatial and contrast resolution images, regional
anatomic structures and identification of the urinary bladder
layers, which contribute to reducing staging errors (5, 6). Several
sequences including conventional T1- (T1WI) and T2-weighted
imaging (T2WI) and more advanced sequence such as dynamic
contrast-enhancement (DCE) and diffusion-weighted imaging
(DWI) has demonstrated reliable results for diagnosing muscle
invasiveness of BCa (7–10). However, this approach is expertise-
dependent, and its diagnostic performance is not sufficiently
accurate (9, 11). In addition, there currently insufficient data
on the use of advanced MRI techniques to allow for a
recommendation to be made in the guidelines (12).

The Vesical Imaging-Reporting and Data System (VI-RADS),
based on mpMRI, was released in 2018 and is regarded as an
imaging protocol and reporting criterion for bladder MRI which
provides a more meticulous distinction between clinical stages that
were previously difficult to differentiate by conventional MRI
interpretation (3). The integration of T2WI, DWI, and DCE is the
cornerstone for standardizing the VI-RADS reporting system. VI-
RADS provides five-point scores that predict the possibility of
2

muscle invasiveness by BCa. The reported accuracy of VI-RADS
in predicting MIBC has exceeded 85% in recent validation studies
(13–17) with a great inter-reader agreement and reviewer
acceptance (17, 18), so VI-RADS has obtained novel interest and
acceptance and has been adopted by many radiologists and
institutions in clinical routine. Recent studies reported that VI-
RADS also had the potential to differentiate BCa patients with
extravesical extension (19) and select high riskNMIBC patients who
are a candidate for repeated transurethral Resection (16). Despite its
promising prospects, VI-RADS still relies on experienced
radiologists, which could inevitably result in human error.

An additional objective method is radiomics, which converts
medical images into quantitative mineable data that are
subsequently analyzed with artificial intelligence, applying the
useful features to guide clinical decision making. It has recently
drawn great attention for the preoperative prediction of tumor
staging, lymph node metastasis, prognosis, therapeutic response
and muscle-invasive status (20–24). Moreover, DCE modality
has conventionally been considered useful for pathological
staging and histological grading in bladder cancer (9), but the
radiomics signature of DCE has never been analyzed in previous
studies to the best of our knowledge.

Therefore, in our study, we aimed to 1) develop and validate
radiomics signatures from T2WI and DCE modalities to identify
muscle invasion in BCa, and 2) construct a nomogram
integrating the VI-RADS score and radiomics signature to
improve differentiation power.
MATERIALS AND METHODS

Ethics
The studies involving human participants were reviewed and
approved by the Ethics Committee of Shanghai Tenth
People’s Hospital.

Patients
We retrospectively collected 185 patients with surgical resection
of a pathologically confirmed BCa from August 2014 to April
2020 at our institution. Due to its retrospective nature, the
informed consent of patients was waived. The inclusion and
exclusion criteria of our study were presented in Supplementary
Figure 1. We randomly allocated 7/10 of eligible patients to the
training set and the remaining to the validation set in a 7:3 ratio.
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Image Acquisition
All examinations were performed using a 3-T MRI scanner
(Magnetom Verio: Siemens, Erlangen, Germany), equipped
with an 8-channel phased-array coil. Axial T1WI (TR/TE, 600/
11), turbo-spin-echo nonfat-suppressed T2WI with a slice
thickness of 4 to 6 mm in axial and coronal planes and turbo-
spin-echo fat-suppressed T2WI in the sagittal plane with a slice
thickness of 6 mm was performed. Axial DCE fat-suppressed
T1WI with a slice thickness of 3mm were performed after
injection of Gadopentetate administered at a dose of 0.1
mmol/kg at a rate of 1.5 to 2 ml/s. Five to six sets of CE
images including three orthogonal planes were acquired 20 to
131 s after the injection of contrast agents. Pre-contrast imaging
was also needed. DWI was performed with breathing-free spin-
echo echo planar imaging sequence in axial including high b
value (800–1,000 s/mm2) to display BCa with high contrast to
surrounding tissues. Due to the inconsistency of the b value, the
DWI images were not included in the study.

VI-RADS Score Evaluation
Two experienced radiologists (F Xu and T Xu), familiar with the
VI-RADS algorithm (3) and blinded to the patients’ clinical
information, independently evaluated the MRI images based on
the 5-point VI-RADS scoring system (Figure 1). Tumor size and
the number of tumors were recorded based on the schematic
map. For patients with multiple lesions, the lesion with the
maximal diameter in the bladder lumen was selected and
measured, and the VI-RADS score was considered the highest
one. Discordance between the VI-RADS scores of the two
radiologists was carefully corrected by consensus.

Region of Interest (ROI) Segmentation
One radiologist (F Xu) with bladder MRI reading experience of
over 5 years manually drew tumor ROIs along the edges of the
lesion on each slice for the entire tumor with the maximal
diameter in each patient’s bladder lumen (Figure 2). Then, all
ROIs were merged for the whole tumor volume ROI. Volumes of
interest (VOIs) were then manually segmented on T2WI images
and during the fifth phase of DCE images (60 s after injection of
the contrast agent) via a free open-source software package (ITK-
SNAP, version 3.6.0; http://itk-snap.org). After 30 days, the VOIs
of 40 randomly selected patients were repeatedly segmented by
the same radiologist and another radiologist (T Xu) for intra-
and inter-observer repeatability tests. The intra- and interclass
correlation coefficients (ICCs) were used to evaluate the intra-
and inter-observer agreement on feature extraction.

Feature Extraction
After segmenting the ROI of the tumor, radiomics features were
extracted applying the PyRadiomics platform which can extract
standardized radiomics features from medical images (http://
www.radiomics.io/pyradiomics.html) (25). In this study, we
identified four classes of imaging features, including shape and
size-based features, image intensity (first-order features), textural
features and wavelet features. In total, 2,436 radiomics features
were extracted from axial T2WI and DCE images using the
Frontiers in Oncology | www.frontiersin.org 3
PyRadiomics platform. Each radiomics feature was then
normalized into its Z-score.

Feature Screening and Radiomics
Signature Construction
Feature screening not only serves as a dimension-reduction
approach but also selects features that could provide deeper
insight into the differentiation task. ICC was calculated for the
extracted radiomics features, and features with ICC>0.75 were
selected for further analysis.

Then, we used the minimum redundancy maximum
relevance (mRMR) algorithm to rank features with mutual
information (MI). The mRMR algorithm is a supervised
feature selection model which initially calculates the MI
between features and a target variable. It ranks the features via
maximizing MI with respect to the target variable and then
minimizes the average MI for features with higher rankings. In
this way, the top 40 features were selected.

Subsequently, these 40 top-ranking radiomics features were
introduced into a classifier to construct a radiomics signature for
muscle-invasive status differentiation. In this study, we
developed three classifiers for muscle-invasive status
differentiation, including the least absolute shrinkage and
selection operator (LASSO), random forest (RF), and support
vector machine (SVM) algorithms.

LASSO adds the penalty for non-zero coefficients to the sum
of the absolute value (L1 penalty). The features that minimally
influence the target variable are removed, and the features with
non-zero coefficients were selected. The radiomics score of the
LASSO classifier was calculated by summing the selected
radiomics features weighted by their coefficients.

A nonlinear SVM-based recursive feature elimination (SVM-
RFE) algorithm was performed to determine the optimal subset
of features for SVM classifier construction. The goal of the SVM-
RFE algorithm was to rank and select features. The selection
process included backward elimination in each iteration, wherein
features that had the least impact on improving the
differentiation power of the classifier were omitted. In addition,
the SVM-RFE algorithm was used to investigate the optimal
number of radiomics features to develop a SVM classifier with
the highest accuracy.

Random Forest-Feature Selection (RFS-FS) was used to rank
feature importance according to the Mean Decrease in the Gini
index and to determine the optimal number of features to
develop an RF classifier with the lowest differentiation error.

The three classifiers were all trained using 10-fold cross-
validation on the training set to determine the optimal parameter
configuration for each classifier and were then tested on the
validation set. The differentiation performance of each classifier
was compared applying the receiver operating characteristic
(ROC) curve and calculated by the area under the curve
(AUC). Accuracy, sensitivity, specificity, negative-predictive
value (NPV), and positive-predictive value (PPV) both in the
training and validation sets were calculated based on the Youden
index (26). The radiomics classifier with the highest AUC and
accuracy was regarded as the optimal radiomics signature.
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Combination Model and Nomogram
Development
The clinical characteristics, including age, sex, MRI-determined
number of tumors, MRI-determined tumor size and VI-RADS
score, were prepared for building a combination model on the
Frontiers in Oncology | www.frontiersin.org 4
training set. These factors, together with the radiomics score
generated from the optimal radiomics signature, were tested
using univariate analysis. Significant factors in the univariate
analysis were put into a step-wise multivariate logistic regression
analysis to develop a combination model applying the likelihood
FIGURE 1 | Typical images of VI-RADS scores. VI-RADS, Vesical Imaging-Reporting and Data System; DCE, dynamic contrast-enhancement; DWI, diffusion-
weighted imaging.
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ratio test. The coefficients of factors selected by the multivariate
logistic regression were applied to develop a nomogram.
Variance inflation factors (VIF) were calculated to diagnose the
collinearity of the multivariate logistic regression.

Decision curve analysis (DCA) was utilized to investigate the
clinical utility of the nomogram for decision making. Sensitivity,
specificity, accuracy, AUC, and calibration curves were employed
to evaluate the performance of the nomogram. Harrell’s
concordance index (C-index) and Hosmer-Lemeshow test were
performed to quantitatively measure the degree of fit of the
nomogram. In addition, we used integrated discrimination
improvement (IDI) and net reclassification improvement
(NRI) to investigate the incremental diagnostic utility of the
nomogram compared with VI-RADS scores (27).
STATISTICAL ANALYSIS

Statistical analysis was conducted with R statistical software
(version 3.6.1 R, https://www.r-project.org/). R packages used for
statistical analysis were listed in the Supplementary Table S1. The
clinical factors between the training and validation sets were
Frontiers in Oncology | www.frontiersin.org 5
compared applying the Student’s t-test, the Chi-square test, or the
Mann-Whitney U test, as appropriate. Differences in the radiomics
score among multiple groups were evaluated using one−way
ANOVA followed by Dunnett’s post−hoc test. A forward
stepwise selection was used with Akaike’s information criterion
(AIC) as the stopping rule. In this study, muscle invasion was
regarded as positive. All differentiation classifiers were developed on
the training set and validated on the validation set. All tests were
2-tailed, and P values<0.05 were regarded as statistically significant.
RESULTS

Patient Population
One hundred and eighty-five patients (123 NMIBC patients and
62 MIBC patients) were randomly separated into a training set
(129 patients) and a validation set (56 patients). The
characteristics of patients in the two data sets were listed in
Table 1. There were no significant differences in clinical factors
including patients’ sex, age, tumor size, tumor number, VI-
RADS scoring and MIBC (≥pT2) prevalence between the
training and validation sets.
FIGURE 2 | Radiomics workflow (left) and study flowchart (right) of our study. mRMR, minimum redundancy maximum relevance, ICC, intra- and interclass
correlation coefficient; LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine; VI-RADS, Vesical Imaging-
Reporting and Data System.
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Radiomics Signature Construction
Based on the standard of ICC>0.75 in the intra- and inter-
observer tests, 1,136 features from DCE images and 1,166
features from T2WI images were highly robust and selected for
subsequent analysis. The mRMR algorithm was performed to
rank features according to their relevance-redundancy index and
filter out the redundant and irrelevant features, from which the
top 40 features were retained. Subsequently, the RF, SVM, and
LASSO classifiers were trained on the training set using the top
40 features. The differentiation abilities of radiomics classifiers
were tested on the validation set.

The LASSO classifier was performed to select the optimized
subset of features and calculate the radiomics score for each
patient. Twenty-one features with non-zero coefficients were
screened based on minimum criteria (Figures 3A, B). The
coefficients and the calculation formula were presented in
Supplementary Figure 2.

With 40 features chosen by the RFS-FS algorithm, an RF
classifier with the lowest cross-validation error was developed via
148 growing trees (Figures 3C, D).

The top 10 features selected by the SVM-RFE algorithm were
then used to build an SVM classifier with the highest accuracy for
evaluating the muscular invasiveness of BCa (Figures 3E, F).

Performance of the Radiomics Signatures
for Muscle-Invasive Status Differentiation
The performance of three radiomics signatures (LASSO, SVM,
and RF classifiers) for muscle-invasive status differentiation was
Frontiers in Oncology | www.frontiersin.org 6
showed in Figure 4. The SVM and RF classifiers led to relatively
consistent performance, while the LASSO classifier had more
capacity in muscle-invasive status differentiation both in the
training and validation sets. In this way, the optimal radiomics
signature generated by the LASSO classifier was selected for
further analysis.

Among the 21 features selected for the LASSO classifier, 10 of
them were from T2WI and 11 of them were from DCE.
Furthermore, these features were not highly correlated with
each other (Pearson correlation coefficients ranging from 0.005
to 0.325; Supplementary Figure 3).

The optimal cutoff value for radiomics score was −0.093
determined in the training set. According to the optimal cutoff
value, the accuracy and AUC of the radiomics signature in
muscle-invasive status differentiation were 90.7% and 0.934
(95% confidence interval (CI): 0.893, 0.976, P value<0.01) in
the training set and 87.5% and 0.906 (95% CI: 0.821, 0.992, P
value<0.01) in the validation set, respectively (Figures 4A, D, E).

NMIBC patients had significantly higher radiomics scores
than MIBC patients in both data sets (Figures 5A, B). In
addition, patients with higher T stages or VI-RADS scores had
significantly higher radiomics scores in the combined training
and validation set (Figures 5C, D).

The waterfall plot showed that patients with high radiomics
scores had a strong tendency for muscle invasion in the
combined training and validation sets, which indicated that the
muscle-invasive status of BCa patients could be correctly
predicted based on the cutoff value of the radiomics signature
(Figure 5E).

We further evaluated the performance of the radiomics
signature in 52 BCa patients with VI-RADS scores of 3. The
radiomics signature exhibited a relatively favorable
differentiation with an accuracy of 86.5% and an AUC of 0.833
(95% CI: 0.650–1.000, P value<0.01) (Supplementary Figure
4A). The DCA plot indicated that the radiomics signature had
the highest clinical net benefit with wider threshold probabilities
compared with other clinical factors in this subgroup
(Supplementary Figure 4B).

Development and Performance of the
Nomogram
The important clinical factors and the radiomics score calculated
by radiomics signature were investigated applying univariate and
multivariate regression (Table 2). Three factors, including MRI-
determined tumor size, VI-RADS and radiomics scores were
significantly associated with BCa muscle-invasive status
(P<0.001) in the univariate regression. After multivariate
analysis, the radiomics score and VI-RADS remained strong
independent predictors for muscle-invasive status differentiation
with the lowest AIC value (AIC=58.86). Regarding the
collinearity diagnosis, the VIF of candidate predictors ranged
from 1.660 to 2.754, indicating that there was no collinearity. The
risk score was calculated based on the formula as follows:
(1.385 × radiomics score) + (1.796 × VI-RADS score) − 5.648.

Then, a nomogram was generated by incorporating the
radiomics score and VI-RADS score for muscle-invasive status
TABLE 1 | Baseline patient characteristics.

Characteristic Number of Patients (%) P value

Training Set
(n = 129)

Validation Set
(n = 56)

Sex
Men 109 (84.5) 44 (78.5) 0.398a

Women 20 (15.5) 12 (21.4)
Age (years)
<65 48 (37.2) 20 (35.7) 0.870a

≥65 81 (62.8) 36 (64.3)
MRI-determined tumor size (cm)
<3 82 (63.6) 37 (66.1) 0.868a

≥3 47 (36.4) 19 (33.9)
MRI-determined number of tumors
Single 89 (69.0) 38 (67.9) 0.865a

Multiple 40 (31.0) 18 (32.1)
VI-RADS score
1 18 (14.0) 7 (12.3) 0.499b

2 36 (27.9) 12 (21.1)
3 33 (25.6) 19 (33.3)
4 20 (15.5) 6 (10.5)
5 22 (17.1) 12 (21.1)

Pathologic tumor (pT) stage
<pT2 85 (65.9) 38 (66.7) 0.866a

≥pT2 44 (34.1) 18 (31.6)
MRI, magnetic resonance imaging; VI-RADS, Vesical Imaging-Reporting and Data
System.
aStatistical analysis performed using chi-square test.
bStatistical analysis performed using Mann-Whitney U test.
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differentiation (Figure 6A). The nomogram further improved
the differentiation power with the AUC of 0.970 (95% CI, 0.939–
1.000, P value < 0.01) in the training set and 0.943 (95% CI,
Frontiers in Oncology | www.frontiersin.org 7
0.881–1.000, P value < 0.01) in the validation set (Figure 6B).
The calibration plots suggested marked concordance between
prediction and observation both in the training set and validation
A B

D

E F

C

FIGURE 3 | Development of the three classifiers. (A) Selection of the tuning parameter l in the LASSO classifier via 10-fold cross-validation based on minimum
criteria. (B) LASSO coefficient profiles of the 21 radiomics features. A vertical line was drawn at the selected value, where the optimal l resulted in eight non-zero
coefficients. (C) Selection of the optimal number of growing trees (ntree=148) with the lowest discriminative error in the RF classifier. (D) Feature selection process
using RFS-FS and 10-fold cross-validation in the training set: 40 features with the lowest discriminative error were selected for predictive classifier development.
(E) Feature selection process using SVM-RFE and 10-fold cross-validation in the training set: 10 features with the highest discriminative accuracy were selected for
SVM classifier development; (F) SVM-RFE is used to rank features according to the feature importance, and the top 10 features were selected for SVM classifier
development. LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine; RFS-FS, RF-feature selection; SVM-RFE,
SVM-based recursive feature elimination.
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set (Figure 6C). Harrell’s C-indices of the nomogram were 0.966
(95% CI, 0.945–0.987) and 0.906 (95% CI, 0.874–0.938) in the
training and the validation sets, respectively. The Hosmer-
Lemeshow test yielded nonsignificant P values of 0.537 and
0.929 in the training and the validation sets, respectively,
indicating good calibration power.

The DCA plots showed that the radiomics score and the
VI-RADS score had a relatively consistent clinical net benefit,
and the nomogram combining radiomics score and VI-
RADS score had the highest clinical net benefit both in the
training set and validation set (Figures 6D, E). Furthermore,
compared with the VI-RADS score, the nomogram also
significantly improved diagnostic accuracy for muscle-invasive
status differentiation (overall category-based NRI, 0.325; NRI
indices for events and nonevents, 6.5% and 26.90%, respectively;
IDI, 0.118, P<0.001), and similar results were also observed in the
training set and the validation set, respectively, which were
showed in Table 3.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

In this study, we sought to evaluate the ability of mpMRI
radiomics features extracted from DCE and T2WI to
discriminate MIBC from NMIBC. For each mpMRI modality,
we extracted most of the radiomics features mentioned in the
current literature. After evaluating reproducibility by ICC and
eliminating redundancies by mRMR, we used the remaining
features to develop radiomics signatures. Three mpMRI
radiomics signatures (LASSO, RF, and SVM) were constructed
and validated for the preoperative differentiation of MIBC
from NMIBC.

The results showed that the optimal radiomics signature,
generated by the LASSO classifier, achieved favorable
differentiation performances in the training and validation sets
for the prediction task. As a VI-RADS score of 3 is an equivocal
category for muscle-invasive status differentiation, we further
investigated the performance of the radiomics signature in BCa
A B

D E

C

FIGURE 4 | Performance of three classifiers for the preoperative differentiation of muscle-invasive status. ROC curves of LASSO (A), RF (B), and SVM classifiers (C)
in the training and validation sets. The predictive performance of the three classifiers in the training (D) and validation sets (E). CI, confidence interval; ROC, receiver
operating curve; AUC, area under the ROC curve; LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine; NPV,
negative predictive value; PPV, positive predict value.
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A B

D

E

C

FIGURE 5 | Performance of the radiomics score calculated by the LASSO classifier. Boxplots of the radiomics score in the training (A) and validation sets (B)
grouped by the muscle-invasive status. Boxplots of the radiomics score in the combined training and validation set grouped by T stage (C) and VI-RADS score (D),
respectively. P values were calculated using one−way ANOVA followed by Dunnett’s post−hoc test. (E) Waterfall plot of the distribution of radiomics scores and
pathologic tumor stages of individual patients in the combined training and validation sets. LASSO, least absolute shrinkage and selection operator; VI-RADS, Vesical
Imaging-Reporting and Data System; NMIBC, non-muscle-invasive bladder cancer; MIBC, muscle-invasive bladder cancer. *P < 0.05, **P < 0.001.
TABLE 2 | Univariate and multivariable regression analyses of the radiomics score and clinical factors in the training cohort.

Variables Univariate analysis Multivariate analysis

b OR (95% CI) P value b OR (95% CI) P value

Sex: Men vs women 0.514 1.671 (0.565–4.958) 0.354 – – –

Age (continuous), year −0.015 0.985 (0.956–1.016) 0.351 – – –

MRI-determined number of tumors, number −0.095 0.910 (0.782–1.058) 0.220 – – –

MRI-determined tumor size (continuous), cm 0.678 1.970 (1.479–2.625) <0.001 – – –

VI-RADS score 2.295 9.920 (4.566–21.553) <0.001 1.796 6.025 (2.417–15.022) <0.001
Radiomics score 1.756 5.788 (3.115–10.754) <0.001 1.385 3.996 (1.824–8.756) 0.001
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 9
 M
ay 2021 | Volume 11 | Article
OR, odds ratio; MRI, magnetic resonance imaging; VI-RADS, Vesical Imaging-Reporting and Data System.
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patients with VI-RADS scores of 3. The results suggested that
the radiomics signature still had favorable discriminatory power
in this subgroup. In addition, a nomogram integrating the
optimal radiomics signature with the VI-RADS score could
further improve the discriminatory power and obtain good
calibration and favorable clinical net benefit, suggesting a
promising and noninvasive clinical tool for muscle-invasive
status prediction.
Frontiers in Oncology | www.frontiersin.org 10
Muscular invasiveness in patients with BCa indicates a
negative prognosis, and the muscle-invasive status is critical for
treatment decision-making in patients with BCa (2). Currently, a
cystoscopic biopsy of suspicious bladder lesions is recommended
for preoperative T staging and muscle-invasive status
identification in BCa (28), but diagnostic sensitivity and
accuracy are frequently unsatisfactory. The incompleteness of
transurethral resection, absence of detrusor muscle, delay in the
A

B

D E

C

FIGURE 6 | Performance of the nomogram integrating the radiomics score with the VI-RADS score. (A) The nomogram integrating the radiomics score with the VI-
RADS score was constructed to predict muscular invasiveness in patients with bladder cancer. (B) ROC curves of the nomogram in the training and validation sets.
(C) Calibration curve of the nomogram in the training and validation sets. (D) DCA for radiomic signature, VI-RADS score and nomogram in the training set. (E) DCA
for radiomic signature, VI-RADS score and nomogram in the validation set. VI-RADS, Vesical Imaging-Reporting and Data System; ROC, receiver operating curve;
AUC, area under the ROC curve; DCA, decision curve analysis.
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interval from transurethral resection to radical cystectomy, and
low sensitivity of preoperative staging approaches all can lead to
misdiagnosis (28–30). This phenomenon may result in poor
outcomes due to the high rate of progression and metastasis in
MIBC (2). Hence, it is important to improve the accuracy of
tumor staging, which may optimize disease treatment and
improve outcomes for patients.

The mpMRI is regarded as an important tool for assessing the
depth of invasion in BCa. However, the evaluation of mpMRI
depends mostly on several tumor characteristics, such as the
tumor size, tumor density, regularity of tumor margins,
the pattern of enhancement and anatomic association with the
surrounding tissues, which is expertise-dependent and
subjective (31).

Radiomics can recognize subtle differences in intensity
distribution which cannot be easily discovered by human eyes
and can comprehensively characterize the tumor phenotype in
medical images based on high throughput quantitative image
features extracted from MRI or CT images. In the optimal
radiomics signature (LASSO classifier), 12 of 21 radiomics
features were obtained from wavelet filtered features which
implied that the wavelet transform filter was a multiscale
analytical method that could be used to investigate tumor
morphology and pathophysiology on multiple scales. Wavelet
transform filter generates eight decompositions per level (all
possible combinations of applying either a high or a low pass
filter) in each of the three dimensions (25). Wavelet filtered
features were high-dimensional radiomics features that could not
be easily deciphered by humans. Compared with visual
inspection by radiologists or low-level radiomics features, the
wavelet filtered features have a more underlying relationship
with heterogeneity and tumor biology in various cancers,
including renal cell carcinoma, prostate carcinoma, and
intrahepatic cholangiocarcinoma (32–34).

We sought to construct a more effective radiomics signature
and improve upon the previous radiomics methodology in
multiple ways. First, we extracted four classes of imaging
features, including shape and size-based features, image
intensity (first-order features), textural features and wavelet
features, which can comprehensively describe the local,
regional, and global tissue heterogeneity of BCa. Second, DCE
and T2WI radiomics features were extracted from a 3-
dimensional region rather than a two-dimensional region. In
this way, the intrinsic features of the lesions could be effectively
described. Third, the optimal radiomics signature was developed
Frontiers in Oncology | www.frontiersin.org 11
based on the mpMRI radiomics features from DCE and T2WI.
Compared with CT, mpMRI can provide different forms of soft-
tissue contrast, as well as functional parameters, and provides a
comprehensive evaluation of BCa. Specifically, T2WI permits the
evaluation of the size and morphology of lesions. DCE reflects
the microvessel permeability and issue vascularity of lesions, and
the slight submucosal linear enhancement is regarded as a useful
characteristic for the nonmuscle invasiveness condition of BCa
(8). Our study used the DCE for radiomics signature
development and muscle-invasive status identification in BCa
and showed that the radiomics signature based on the T2WI and
DCE radiomics features had a better discriminatory power
compared with previous research based on MRI (23, 35, 36).
Fourth, considering that clinical characteristics, such as sex, age,
tumor size, and tumor number are commonly applied for the
preoperative diagnosis of BCa patients, and given that the
mpMRI-based VI-RADS score has been reported to be closely
related to muscle-invasive status (37), we evaluated the
diagnostic value of incorporating these clinical characteristics
and the radiomics signature for the preoperative discrimination
of muscle-invasive status. Our study demonstrated that the
proposed nomogram integrating the radiomics signature with
the mpMRI-based VI-RADS score further improved
differentiation of muscle invasion in BCa. Calibration plots and
DCA plots demonstrated good calibration and favorable clinical
net benefit of the nomogram. The performance of this
nomogram was superior to previous nomograms based on
MRI images and clinical factors (23, 36). Finally, the software
we used is publicly available and the PyRadiomics platform is
open source for the radiomics procedure so that other
institutions can apply and validate the proposed nomogram.

Some limitations in our study should be mentioned. First, due
to the retrospective nature of our study, potential selection biases
may have occurred. Prospective clinical trials are warranted.
Second, the validation set drawn from the same institution
prevented our study from evaluating the generalizability of the
proposed nomogram to other institutions. Further external
validation from different institutions is needed to determine
the performance of the nomogram. Third, due to the lack of
prognostic information, the correlation between the proposed
nomogram and outcomes of BCa patients could not
be determined.

In conclusion, our study developed a reliable mpMRI-based
radiomics signature for preoperative discrimination of the
muscle-invasive status in BCa. The proposed nomogram
integrating the radiomics signature and the VI-RADS score
further improved the discriminatory power and may provide
added value for clinical decision making in BCa. Prospective
clinical trials and multicenter studies are warranted to validate
our results.
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