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Abstract

Pulse oximetry is a noninvasive and low-cost physiological monitor that measures blood oxygen 

levels. While the noninvasive nature of pulse oximetry is advantageous, the estimates of oxygen 

saturation generated by these devices are prone to motion artifacts and ambient noise, reducing the 

reliability of such estimations. Clinicians combat this by assessing the quality of oxygen saturation 

estimation by visual inspection of the photoplethysmograph (PPG), which represents changes in 

pulsatile blood volume and is also generated by the pulse oximeter. In this paper, we propose six 

morphological features that can be used to determine the quality of the PPG signal and generate a 

signal quality index. Unlike many similar studies, this approach uses machine learning and does 

not require a separate signal, such as ECG, for reference. Multiple algorithms were tested against 

46 30-min PPG segments of patients with cardiovascular and respiratory conditions, including 

atrial fibrillation, hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. 

These signals were independently annotated for signal quality by two clinicians, with the union of 

their annotations used as the ground-truth. Similar to any physiological signal recorded in a 

clinical setting, the utilized dataset is also unbalanced in favor of good quality segments. The 

experiments showed that a cost-sensitive Support Vector Machine (SVM) outperformed other 

tested methods and was robust to the unbalanced nature of the data. Though the proposed 
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algorithm was tested on PPG signals, the methodology remains agnostic to the dataset used, and 

may be applied to any type of pulsatile physiological signal.
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1. Introduction

Pulsatile physiological signals are often noninvasive recordings of blood-related 

physiological measurements used in health monitoring. The quality of these recordings is a 

major concern in healthcare [1,2], as many vital physiological measurements (e.g., 

respiratory rate, heart rate, and oxygen saturation) are extracted from these signals. The 

pulsatile nature and similarity of patterns across these signals [3] makes it possible to 

develop a general algorithm for quality assessment. Additionally, due to the optical sensors 

used for noninvasive recording of pulsatile signals, the prominent noise sources 

contaminating these signals are also the same, i.e., motion artifacts and ambient light [3]. 

Thus, in this paper six morphological features and a machine learning framework are 

introduced in order to measure the quality of any pulsatile physiological signal and detect 

segments of poor quality. As an initial application, the algorithm was tested on PPG signals 

generated from pulse oximeters.

1.1. Pulse oximetry

Pulse oximetry is a low-cost noninvasive tool that has been widely employed in healthcare to 

extract vital signs such as oxygen saturation and heart rate from the recorded pulsatile 

signal. Arterial oxygen saturation (SaO2) is defined as the ratio of oxygenated hemoglobin 

to the combined amount of oxygenated and deoxygenated hemoglobin present in arterial 

blood, and it is indicative of cardiovascular and respiratory status. A photoplethysmograph 

(PPG), which represents changes in pulsatile blood volume signal, is recorded by the pulse 

oximeter and is used in estimating the oxygen saturation non-invasively. The estimated value 

of SaO2 using pulse oximetry is called peripheral oxygen saturation (SpO2). Currently pulse 

oximeters use a weighted average method to compute values of SpO2, however this estimate 

is prone to many artifacts including ambient light, motion, and those due to low perfusion 

[3]. Thus, the reliability of SpO2 is highly dependent upon the quality of the PPG signal. 

Signal quality is becoming more relevant due to the increasing use of telemedicine, as well 

as the need to reduce false alarms in intensive care units [1,2]. Additionally, studies have 

shown that medical data quality affects the performance of clinical decision support systems 

significantly [4–7].

In the literature there are several studies of pulsatile signal quality (especially PPG signal), 

but many of these works use either an incomplete dataset, other simultaneous signals, or did 

not take a machine learning approach. For instance, in Ref. [8] a novel online algorithm 

based on gradient ascent was proposed to estimate the quality of pulsatile signals. However, 

the ECG signal was used as an input (and reference) of their algorithm.
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In Ref. [9] four morphological and temporal features are extracted and used as states in a 

Kalman filter to adaptively accept or reject signals based on their quality. In Ref. [10], a 

novel method using repeated Gaussian filters for localizing segments of pulses was 

developed, with cross-correlation of consecutive pulse segments used to calculate a signal 

quality index. However, their proposed algorithm has no learning process and the threshold 

on SQI is calculated experimentally. In Ref. [11] three SQI algorithms are proposed to 

analyze the effect of motion artifact on PPG signal, with only one of them solely relying on 

PPG signal while the other two rely on red and infrared signals. In Ref. [12], authors defined 

an SQI and focused on reliability of heart rates obtained from ECG and PPG collected using 

wearable sensors. Their proposed SQI algorithm is essentially a cascade of decision rules on 

RR intervals and heart rate combined with adaptive template matching. In Ref. [13] kurtosis 

and Shannon entropy were used in a statistical framework for detecting motion and noise 

artifact with multi-site (i.e., ear, finger, and forehead) PPG signals. In each segment of PPG, 

the kurtosis and entropy are compared with thresholds and their fusion is used as a metric 

for artifact detection. It was concluded that forehead and finger sensors have the highest and 

lowest contamination respectively. In Ref. [14], a framework was proposed in which PPG 

beats are detected and their quality estimated by comparing the beats with a template. For 

each beat a quality index is calculated using the normalized root mean squared error of each 

beat with respect to the template derived from the surrounding pulses using dynamic time 

warping barycenter averaging. The principle drawback of the proposed algorithm is its 

limitation to offline settings. In Ref. [15], an algorithm was presented in which beats are first 

localized, after which they are resampled to enforce equal beat duration, with beat quality 

estimated by calculating the similarity between consecutive beats. In this framework, spline 

interpolation is used as the resampling method to ensure the equality of beat duration, and 

the Pearson correlation coefficient is used to measure the similarity between the two 

consecutive resampled PPG beats. The classification in this method relies on a threshold that 

is determined by enforcing the quality of sensitivity and specificity of training data. In Ref. 

[16], a real-time PPG quality assessment is presented with focus on reduction of the energy 

consumption and false alarms. The proposed method determines the quality of a PPG 

segment in a four-step hierarchical decision-making process, with each step comparing a 

feature against a threshold. The features used are maximum absolute amplitude, local 

amplitude maxima, the zero-crossing rate, and autocorrelation. The potential limitations of 

the aforementioned approaches include not employing any machine learning method and 

reliance upon empirical thresholds that determine the quality of PPG segments.

In many pulsatile signal quality assessment methodologies, morphological or Signal Quality 

Index (SQI)-based features are extracted and utilized by machine learning algorithms. In 

Ref. [17] dynamic time-warping (DTW) is first used to align each beat to match a running 

template, after which four signal quality metrics are extracted. In their best performing 

method, the four signal quality metrics, a fusion SQI, and the number of beats are presented 

to a multilayer perceptron (MLP) neural network. The algorithm’s performance was tested 

on an expert-labeled database of 1055 six-seconds segments of PPG. The weights of the 

trained MLP are specific to the type of data on which it is trained, requiring re-training in 

order to assess the quality of each type of pulsatile signal. In Ref. [18] the author developed 

a signal quality algorithm for PPG using eight SQIs, including perfusion, kurtosis, and 
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skewness. Four classifiers were tested to classify the 106 1-min recordings into excellent, 

acceptable, or unfit, with skewness yielding the best performance. In Ref. [19], PPG signals 

of patients with atrial fibrillation were divided into segments of 30 s, after which 42 

temporal and spectral features (e.g., mean, median, standard deviation, Shannon entropy, 

median frequency, and spectral entropy) were extracted from each segment. Three machine 

learning methods (support vector machine, k-nearest neighbors, and decision tree) were then 

investigated, with support vector machine outperforming the other two methods.

In studies such as [1,2,20], multiple intensive care unit signals were considered to estimate 

the signal quality for false alarm reduction. More specifically, in Ref. [1] a relevance vector 

machine (RVM) was trained with 114 physiological and signal quality features extracted 

from the ECG, PPG, and arterial blood pressure waveforms to reduce false alarms in an 

intensive care unit (ICU). In Ref. [2] a temporal vector of samples from many waveforms 

including respiration waveform, PPG, and multiple ECG leads were used in an adaptive 

filtering and prediction algorithm called MCAF to generate point-by-point SQI. In Ref. [20] 

a supervised machine learning algorithm was used to classify alerts as real or artifacts in 

online noninvasive vital sign data streams (heart rate, respiratory rate, peripheral oximetry) 

to reduce alarm fatigue and missed true instability.

The proposed method in this paper is primarily related (in terms of feature space) to Ref. 

[21], in which morphological features such as pulse amplitude, trough depth difference 

between successive pulse troughs, and pulse width are used in conjunction with multiple 

heuristic thresholds to divide 104 1-min fingertip PPG signals into good and artifact signals. 

The result of their proposed algorithm was then compared with expert-generated labels. This 

approach is limited by its use of heuristics and its need for a simultaneous ECG signal for 

reference.

To overcome the limitations of prior works, in this paper an automatic machine learning 

framework is designed based on features extracted solely from the PPG signal to classify 

beats and intervals as good or poor quality. A cohort of patients with hypoxia, acute heart 

failure, pneumonia, acute respiratory distress syndrome (ARDS) and other respiratory 

conditions was created for this study. PPG signals from this cohort were manually annotated 

by two clinicians to produce a gold standard, to which the performance of the algorithm was 

compared. Additionally, the proposed algorithm is also tested against a public dataset.

2. Material

The primary dataset used in this study is part of an ongoing ARDS project, consisting of 

patients treated at Michigan Medicine. In an effort to compare the proposed algorithm to 

published methods, the publicly available dataset CapnoBase was used. However, the 

primary focus of this paper is on the ARDS database.

2.1. ARDS dataset

As a part of ongoing research at Michigan Medicine, a retrospective cohort of adult patients 

hospitalized between November 2016 and June 2017 with moderate hypoxia, acute heart 

failure, pneumonia, acute respiratory distress syndrome (ARDS) and other respiratory 
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conditions was created. All these patients required mechanical ventilation during the first 7 

days of their hospitalization. We acquired data from bedside telemetry monitors of all 

patients, which is currently stored in the Michigan Center for Integrative Research in Critical 

Care (MCIRCC) Databank. The PPG recording equipment used in this study is Masimo 

LNCS DCI adult reusable sensor with GE Medical PDM interface. The sampling frequency 

of the PPG signals in the dataset is 60 Hz.

For the current pulse oximetry quality study, 46 30-min segments of PPG signal from 

different patients with various cardiovascular and respiratory conditions including atrial 

fibrillation, hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism were 

extracted. 27 (out of 46) of these patients are male, the average age of the patients is 57 

years old, and 37 (out of 46) are Caucasian. Among these 46 30-min segments, only 12 

segments are almost entirely normal, 20 segments contain long episodes of atrial fibrillation 

and sinus tachycardia, and the rest contain sporadic short-term abnormalities (finger tapping, 

premature atrial contractions and etc). Two clinicians independently reviewed PPG signals 

for uniform, pulsatile changes in the waveform, based on their experience interpreting such 

waveforms in clinical settings. Waveforms without a clear pulsatile signal (regardless of 

arrhythmic episodes, only based on morphology) that a clinician would not have trusted as 

accurate in a clinical setting were annotated as poor quality segments. Also, certain pulsatile 

waveforms suspicious for artifact, e.g., finger tapping, were also annotated as poor quality. 

Fig. 1 illustrates a 24-second segment of PPG signal annotated for signal quality by both 

clinicians. The union of their labels is used as ground-truth for the algorithm. This cohort is 

primarily used in order to develop and validate the proposed algorithms.

2.2. CapnoBase dataset

The CapnoBase (CB) dataset [10] consists of 42 8-min finger transmissive PPG recordings 

(29 pediatric, 13 adult) collected during elective surgery and routine anesthesia with a 

sampling frequency of 300 Hz. This dataset also includes signal annotations adjudicated by 

a research assistant.

3. Methodology

In this section, an overview of signal annotation, the proposed algorithm, and validation 

framework is provided. The advantages of the proposed methodology are three-fold: 1) 

applicability to any source of pulsatile physiological signals; 2) independence from any 

synchronized reference signal; 3) adaptivity to any dataset. As discussed below, the 

adaptivity of the proposed framework to any pulsatile physiological signal or any dataset is 

due to the normalization within the defined morphological features and the auto-calibration 

of the algorithm to the non-artifact changes of the signal. This approach can be applied to 

any source of pulsatile waveform; thus, in this section it is assumed that the signal under 

assessment is PPG.

3.1. Algorithm development and features

One of the advantages of the algorithm is that it only uses PPG, and no other synchronized 

signal such as ECG is needed. Additionally, it is fully automated. The input of the algorithm 
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is a PPG signal and its sampling frequency, and the output is a classification of segments 

into “good” or “poor” quality. For any interval, the output can be a number between 0 and 1 

that can be construed as a signal quality index (SQI).

3.1.1. Preprocessing and calibration—In the preprocessing phase, a raw PPG signal 

is first filtered using a band-pass Butterworth filter with a 0.5–5 Hz pass band as suggested 

in Ref. [21]. The next step is peak detection, wherein potential peaks are only considered if 

the minimum temporal distance between two consecutive beats is 70% of the mean PPG 

beat period. Heart rate is adaptively extracted from the power spectrum of the most recent 20 

s of PPG signal, as the frequency between 1 Hz and 3 Hz having maximum power spectrum 

determines the heart rate.

Unlike many algorithms in the literature that use ECG a reference for beat detection (e.g., 

Ref. [21]),the proposed algorithm is independent of any other signal. Moreover, positive and 

negative peaks are detected independently, resulting in two heart rate signals that should be 

approximately the same. As described later, the difference between these two heart rate 

signals is used as a feature of the algorithm, for any significant dissimilarity is due to 

abnormality in beat morphology. Fig. 2 depicts examples of raw and filter PPGs with 

detected positive and negative peaks.

3.1.2. Morphological features—First, six morphological signals/measurements are 

extracted that are used later to extract features (Fig. 2): (1) beat waveform with positive peak 

(the interval between two negative peaks), (2) beat waveform with negative peak (the 

interval between two positive peaks), (3) change in absolute amplitude between two 

consecutive negative peaks, (4) change in absolute amplitude between two consecutive 

positive peaks, (5) heart rates extracted from positive peaks and negative peaks (or pulse 

width) and (6) absolute positive to negative peak amplitude, i.e., the AC component. The 

next step is to use the extracted signals/measurements to calculate morphological features. 

All of the proposed features are based on some distance or dissimilarity from baseline values 

or templates. One can think of these templates and baseline values as adaptive averages 

extracted from normal beats/signals that have already been seen. For now, assume the 

algorithm is provided with these adaptive averages and focus on the features; later it is 

described how these averages can be calculated.

Let fs be the sampling frequency and suppose T = tk k ∈ ℕ, tk = k 1
fs

 is the set of time 

samples in the PPG signal. Assume fPPG:T V is the PPG signal amplitude function and 

V is the bounded set of these amplitude values, i.e. 

V = vk k ∈ ℕ, tk ∈ T, vk = fPPG tk ∈ ℝ . The features are then extracted as follows:

3.1.2.1. Normalized pulse duration.: Suppose P+ and P− are respectively the set of 

positive and negative peak locations defined as

P+ = pi
+ i ∈ ℕ, pi

+ ∈ T: ∀t ∈ pi − 1− , pi− ⊆ T, fPPG pi
+ ≥ fPPG t
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P− = pi− i ∈ ℕ, pi− ∈ T: ∀t ∈ pi − 1
+ , pi

+ ⊆ T, fPPG pi− ≤ fPPG t .

Then for each consecutive pair of positive peaks pi − 1
+ , pi

+ ∈ P+ 2
 or negative peaks 

pi − 1− , pi− ∈ P− 2
 define the normalized pulse duration, ∇pi, as

∇pi =
∇pi − ∇p

∇p ,

where

∇pi = pi − pi − 1 =
pi
+ − pi − 1

+ pi − 1, pi ∈ P+ 2

pi− − pi − 1− pi − 1, pi ∈ P− 2

and ∇p is the baseline value (as defined in section 3.1.3) of pulse duration. An example of 

∇pi can be seen in Fig. 2. Given that for every interval between two consecutive positive 

(negative) peaks there is a negative (positive) peak, each value of ∇pi is only associated with 

the interval between the first positive (negative) peak to the next negative (positive) peak.

3.1.2.2. Normalized negative-to-negative peak jump.: Define the set 

A− = fPPG P− = Pi
− i ∈ ℕ, ∀pi− ∈ P−, Pi

− = fPPG pi−  as the set of negative peak 

amplitudes, and let ∇P− be the baseline value for negative-to-negative peak jump and ∇P be 

the baseline value for amplitude change from negative to positive (or positive to negative) 

peaks, i.e., the baseline value for the AC component. For each pair of consecutive negative 

peaks pi − 1− , pi− ∈ P− 2, the normalized negative-to-negative peak jump, ∇Pi
−, is 

defined as

∇Pi− =
∇Pi− − ∇P−

∇P ,

where ∇Pi
− = Pi

− − Pi − 1
− .

3.1.2.3. Normalized positive-to-positive peak jump.: Similar to previous section, 

suppose A+ = fPPG P+ = Pi
+ i ∈ ℕ, ∀pi

+ ∈ P+, Pi
+ = fPPG pi

+  is the set of positive peak 

amplitudes and ∇P+ is the baseline value for positive-to-positive peak jump. For each pair of 

consecutive positive peaks pi − 1
+ , pi

+ ∈ P+ 2, the normalized positive-to-positive peak 

jump, ∇Pi
+, is defined as

∇Pi
+ =

∇Pi
+ − ∇P+

∇P ,
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where ∇Pi
+ = Pi

+ − Pi − 1
+ .

3.1.2.4. Normalized beat amplitude jump.: Suppose P = P− ∪ P+ is the set of positive 

and negative peak locations and A = A− ∪ A+ is the set of peak amplitudes. Then for any 

consecutive positive and negative peak pi − 1, pi ∈ P2, the normalized beat amplitude 

jump, ∇Pi, is defined as

∇Pi =
∇Pi − ∇P

∇P ,

where ∇Pi = Pi − Pi − 1 .

3.1.2.5. Dissimilarity measure of positive-peaked beats.: As described in Ref. [17], due 

to nonlinear and non-stationary changes in beat morphology, a nonlinear time-based 

stretching or compression of beats is necessary to perform effective template matching. As 

mentioned earlier in this section, beat waveforms with positive peak (interval between two 

negative peaks, see Fig. 2) are extracted and normalized into the range [0,1]. Then, dynamic 

time warping (DTW) is used to align the PPG with a template as constructed in section. 

3.1.3. A brief description of DTW algorithm for PPG is provided in Ref. [17]. Finally, KL 

divergence [22] is used to measure the difference between the aligned PPG beat and the 

template, which is formulated as

D T+ B+ =
i 1

m
ti log

ti
bi

,

where B+ = bk
+ 1 ≤ k ≤ m  and T + = tk+ 1 ≤ k ≤ m  are two aligned time series of beats and 

template with positive peak, both of which are of length m and normalized such that 

∑i = 1
m bi

+ = ∑i = 1
m ti+ = 1. In the proposed algorithm, D(T+ ‖ B+) is used as the dissimilarity 

measure of positive-peaked beats feature.

3.1.2.6. Dissimilarity measure of negative-peaked beats.: Applying the same procedure 

as described above, a dissimilarity measure of negative-peaked beats, i.e. D(T− ‖ B−), is 

calculated in which B− = bk
− 1 ≤ k ≤ m  and T − = tk− 1 ≤ k ≤ m  are two time series of beat 

and template with negative peak, both of which are of length k and normalized such that 

i 1
k bi = i 1

k ti = 1.

3.1.3. Templates and baseline values—As described in section 3.1.2, the proposed 

features D(T− ‖ B−) and D(T− ‖ B−) require templates, while the features ∇pi, ∇Pi
−, ∇Pi

+,
and ∇Pi need baseline values. One of the distinct components of the proposed algorithm is 

that these templates and values are generated individually for each waveform. In this section 

it is described how to generate these templates.
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3.1.3.1. Initial template and baseline value generation.: Our proposed algorithm uses 

the first T seconds of each waveform in the calibration phase, during which preprocessing 

and then peak detection is performed on the segment. Based on this segment and the peak 

locations, the baseline value ∇p is the averaged pulse duration, ∇P− the average negative-to-

negative peak jumps, ∇P+ the average positive-to-positive peak jumps, and ∇P the average 

amplitude change from negative to positive peaks. In the results presented in this paper, T = 

20 seconds is chosen.

Formally, suppose P0 + 20
+ = pi

+ i ∈ ℕ, pi
+ ∈ T, 0 < pi

+ < 20  and 

P0 − 20
− = pi− i ∈ ℕ, pi− ∈ T, 0 < pi− < 20  are the sets of positive and negative peak locations 

in the [0-20] time inteival, and assume there are m positive and m negative peaks in the 20 s 

segment, i.e., P0 − 20
+ = P0 − 20

− = m (the procedure is the same if the number of positive 

and negative peaks are not equal). Similarly, A0 − 20
+ = fPPG P0 − 20

+  and 

A0 − 20
+ = fPPG P0 − 20

− . Also P0 − 20 = P0 − 20
− ∪ P0 − 20

+  and A0 − 20 = A0 − 20
− ∪ A0 − 20

+  are 

the sets of all (positive and negative) peaks and their amplitudes in the 20-second segment. 

Then

∇P+ = 1
m − 1 i 2

m
fPPG pi fPPG pi 1

∇P− = 1
m − 1 i 2

m
fPPG pi fPPG pi 1

∇P = 1
2m − 1 i 2

2m
fPPG pi fPPG pi 1

are the initial baseline values that will be used in the proposed algorithm. The value of ∇p is 

calculated based on the power spectrum of the 20 s segment, as the frequency between 1 and 

3 Hz that has the highest power is the inverse of the heart rate frequency [3], i.e., 1
∇p .

In order to extract an initial template with positive peak T+, first the m − 1 positive-peaked 

pulses are sorted with respect to their pulse width. If the template pulse duration is chosen to 

be the mode of pulse duration (the most frequent pulse duration) in the 20-second segment, 

then the template T+ can be calculated as the average of beats that have the same temporal 

duration as the mode of pulse duration. If the mode of pulse duration is not unique, the 

median of pulse duration (the middle value for pulse duration) in the 20-second segment is 

chosen, and then the beats that have the width closest to the median of pulse duration will be 

aligned (e.g., by using DTW) or interpolated and then averaged to achieve the template T+. 

The same procedure is applied to negative-peaked beats in order to extract the template with 

negative peak T−.
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3.1.3.2. Updating template and baseline values.: As mentioned above, the first T 
seconds of each waveform is used as the calibration phase to extract initial individual-

specific templates and baseline values, with T = 20 seconds chosen for this paper. Since it’s 

possible that the first segment is noisy, the initial baseline values and templates may be 

invalid. Thus, two criteria for accepting a segment as valid are imposed:

1. The number of positive or negative peaks should be more than 0.95 × T; i.e., on 

average a heartbeat should occur at least every 0.95 s.

2. At least one third of pulse widths (pulse durations) are within 5% of pulse 

duration mode/median (as mentioned in the previous section, if the mode of 

pulse duration is not unique, the median of pulse duration is chosen for template 

width).

If both of these conditions are satisfied, the first T seconds are accepted for initial baseline 

values extraction, otherwise the T-second window is iteratively slid for 1 s until both 

conditions are satisfied (e.g., intervals of [0,20] [1,21], etc.).

Due to the non-stationary nature of the source, after the initial calculation of the baseline 

values and templates, an adaptive algorithm for updating these baseline values and templates 

is necessary, particularly if the PPG signal has long duration. As such, after calculating the 

features of each segment using the baseline values and templates of the previous segment, 

these baseline values and templates are then updated to be used in the subsequent segment. 

Similarly, an interval is accepted for updating the baseline values and templates if it also 

satisfies the two aforementioned criteria.

3.1.4. A simple algorithm—Through feature extraction, each sample is represented as 

x ∈ ℝ6

x =

∇p

∇P−

∇P+

∇P

D T+ B+

D T− B−

where ∇p, ∇P−, ∇P+, ∇P , D(T+ ‖ B+) and D(T− ‖ B−) are the features described in section 

3.1. Using a simple algorithm based on decision rules, these values can be compared with 

thresholds for classification purposes. The hypothetical thresholds for a simplistic algorithm 

can be achieved experimentally using training data. After choosing the thresholds, the six 

features can be used to classify each beat, more specifically each interval between any two 

peaks (positive to negative peaks or negative to positive peaks), into a good or poor quality 

interval. In this case, a simple algorithm assigns the “poor quality” label to each interval 

between two consecutive peaks if any of the six features are greater than the threshold. 

Formally speaking, for an interval set ℐpi − 1
pi = [pi − 1, pi] between any two consecutive peaks 

Sabeti et al. Page 10

Inform Med Unlocked. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(note that ℐpi − 1
pi ⊆ T), define the feature function ffeature : T × V ℝ6 as a function from 

the set of time samples and bounded set of PPG values to the feature space. The set of poor 

quality intervals is then

TPoor = tj ∃ℐpi − 1
pi ⊆ T s.t. tj ∈ ℐpi − 1

pi ,

ffeature ℐpi − 1
pi , fPPG ℐpi − 1

pi ≮ τ ,

where τ = [τ1, …, τ6] ∈ ℝ6 is a vector of thresholds on the six features, and the inequality is 

performed component-wise. Obviously the set of good quality signal is the complement of 

TPoor, i.e. TGood = TPoor C = T − TPoor . This algorithm is used later for threshold 

optimization as described in section 4.1.4.

3.1.5. Interval classification and signal quality index—One of the primary reasons 

for measuring PPG quality and reliability is that other important signals such as oxygen 

saturation utilize PPG in their formation. In general, oxygen saturation values are averaged 

over a moving window of PPG signal. In the ARDS dataset, the pulse oximetry hardware 

(PPG recording device) calculates every value of oxygen saturation based on the last 8 s of 

PPG signal. Consequently, having isolated poor quality beats/intervals is insufficient to label 

a PPG segment as “poor quality.” Thus, for an interval Ttk of length 8 s such that 

Ttk = ti ti ∈ T, ti − 8 < ti ≤ tk , the signal quality index (SQI) for that window is defined as

SQI T tk = 1 −
T tk ∩ TPoor

T tk
=

TGood

T tk
, (1)

which is always a number between zero and one. As discussed in section 3.4, the SQI for 

any given interval will be compared with a pre-determined rate (threshold) for classification.

3.2. Learning models and decision rules

In this paper, two different training/testing frameworks are considered: (a) A standard 

learning method in which a single model is trained on 6-dimensional samples (Fig. 4a), and 

(b) six similar models that are trained on each sample feature separately, followed by a 

decision rule (Fig. 4b). The principle reason for considering the second model is the nature 

of the proposed normalized features, i.e., for a normal PPG beat all the features are expected 

to be close to zero; while for a poor quality interval, the absolute value of at least one of 

these features is expected to be greater than a threshold. To support this argument, Fig. 3 

represents the cumulative distribution function (CDF) of the absolute value of the 

normalized negative-to-negative peak jump feature ∇Pi
−  for both classes. This figure shows 

that the larger the value of ∇Pi
− , the worse the quality, and this is valid for all the features. 

Thus, in the second framework, the decision rule is simply a logical “or” operation on the 

outcomes of each trained model on individual features.
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3.3. Beat-scale analysis

One challenging aspect of the ARDS dataset is that the algorithms assign labels to each 

interval between consecutive peaks (positive peak to negative peak or negative peak to 

positive peak), while experts assign “poor quality” labels to any interval of any length – not 

necessarily to the beats. To perform beat-scale analysis, the signal annotations must be 

converted into beat-scale labels. If any subsequence of an interval between consecutive 

peaks is included in a segment annotated as poor quality segment, the label of that interval is 

“poor”, otherwise it is labeled “good”. Another challenge of the dataset – common to many 

medical datasets – is the unbalanced (also refer to as imbalanced [23–27]) proportion of 

class samples, i.e. there are far fewer poor quality features, compared to those of good 

quality. In fact, only about 5% of samples are of poor quality. Table 1 summarizes the 

percentage of poor quality samples in the dataset based on two experts annotations, their 

union and intersection. In this study, the union of labels is used as ground-truth.

3.4. Fixed interval-scale analysis

As mentioned in Section 3.1.5, the values of oxygen saturation in the dataset represent an 

average over fixed intervals of 8 s. In light of this, it’s needed to determine what percentage 

of the 8 s interval must be considered poor quality before deeming the entire interval as poor. 

A rate parameter may be used in the analysis as a threshold for the SQI (equation (1) in each 

interval of 8 s. For any value of this parameter, an interval is of poor quality if its SQI is 

greater than the rate. Hence, by changing the rate from 0 to 1, sensitivity and specificity of 

any algorithm and the inter-rater reliability of expert annotations can be calculated. Fig. 5 

illustrates the inter-rater reliability for annotations using Cohen’s Kappa against the 

aforementioned rate. As can be seen, for a fixed interval of length 8 s, changing the rate does 

not have a significant impact on inter-rater reliability. Consequently, a rate of 0.5 is used on 

the union of annotation labels to determine the ground-truth label of these fixed intervals, 

since for this rate Cohen’s Kappa is maximal.

4. Experiments

Using the ARDS dataset, 100 iterations of random subsampling is performed at the patient 

level. In each iteration the dataset is randomly divided into 2
3  training data (31 30-min 

signals) and 1
3  testing data (15 30-min signals). This results in a total of 234,739 samples at 

the beat-scale level. While the results of beat-scale analysis are also provided, we prioritize 

the performance of the proposed algorithm on intervals of fixed length (fixed interval-scale 

analysis). Though seemingly counter-intuitive, this approach can be considered sound, as 

physiological signals such as oxygen saturation are extracted based on the average value in 

fixed-length PPG segments. Hence, the reliability of these values depends on the quality of 

the fixed-length PPG segments. As mentioned earlier, another challenge of this dataset is the 

unbalanced nature of the data, hence learning methods such as a standard support vector 

machine (SVM) cannot be directly applied. As such, certain modifications are needed. In 

this study, for the first learning framework (Fig. 4a), SVM and an ensemble of trees are 

used; while for the second framework (Fig. 4b) a decision tree and a proposed learning 

method called threshold optimization are employed, which when combined with a non-
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uniform undersampling approach fits the feature space well. Fig. 6 represent the block 

diagram of the learning process.

4.1. Results

In this section, each learning method (decision tree, the ensemble of decision tree, support 

vector machine, and threshold optimization) is briefly described and their performance 

results with respect to both beat-scale and fixed interval-scale analyses are provided. Each 

result is the average of multiple simulations, each with different randomly generated training 

(31/46) and testing (15/46) sets. ROC curves are calculated for the fixed interval-scale 

analysis using the testing sets only.

4.1.1. Classification and regression trees (CART)—Using the second framework 

(Fig. 4b), a decision tree algorithm (CART, [28]) is used as its performance is more robust to 

unbalanced data. Table 2 includes the average decision tree model performance on both 

training and test dataset. As can be observed from the results, the decision tree overfit the 

training dataset. Thus, to overcome this issue, an ensemble of decision trees (Section 4.1.2) 

is employed.

Fig. 8 includes the ROC curves for the decision tree model in the fixed interval-scale 

analysis. Based on this figure, the best performance of the decision tree model yields a 

sensitivity of 88.96 and specificity of 86.30 for a rate of 0.45.

4.1.2. The ensemble of decision trees—Based on the first framework (Fig. 4a), an 

ensemble of decision trees model is used to improve performance by reducing overfitting 

and better handle the unbalanced data set. To combat overfitting, the maximal number of 

decision splits was set to be equal to the number of observations in the training sample. To 

ameliorate the unbalanced nature of the data, the RUSBoost algorithm [29] is employed. In 

this algorithm, an intelligent undersampling technique is used to balance the class 

distribution, which results in a simple algorithm with faster training times and favorable 

performance. Table 2 includes the result of the algorithm for beat-scale analysis.

Fig. 8 includes the ROC curve for the ensemble of decision trees algorithm in the fixed 

interval analysis. Based on this figure, the best result is sensitivity of 91.56 and specificity of 

91.97 with rate of 0.4.

4.1.3. SVM—In order to train an SVM to implement the first framework (Fig. 4a), the 

optimization problem needs to be modified to properly handle the unbalanced data. Consider 

a soft-margin SVM for binary classification with the following formulation:

min
w, b

1
2 w 2 + C

i
ξi

s.t. yi wTxi + b ≥ 1 − ξi ξi ≥ 0
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where (xi, yi) are sample input/label pair, w and b are parameters of the separating 

hyperplane, ξi are slack variables and C > 0 sets the relative importance of maximizing the 

margin and minimizing the amount of slack to penalize misclassifying an observation. In 

order to revise the optimization problem of binary classification to handle unbalanced data, 

C is weighted by class populations such that

Ck = Cωk, ωk = 1
2

n
nk

, k = 0, 1,

where ωk is the weight of class k, n is the total number of observations, and nk is the number 

of observations in class k. This is indeed a cost-sensitive SVM with the following 

formulation [24]:

min
w, b

1
2 w 2 + C0

i yi 0
ξi + C1

i yi 1
ξi

s.t. yi wTxi + b ≥ 1 − ξi ξi ≥ 0

As mentioned earlier, for a normal PPG beat, all the features are expected to be close to 

zero; while for a poor quality interval, the absolute value of at least one of these features is 

expected to be greater than a threshold. This suggests that a Gaussian kernel is good option, 

thus an SVM model with Gaussian kernel is considered. Table 2 contains the results of the 

SVM model in beat-scale analysis.

Fig. 8 includes the ROC curve for the fixed interval-scale performance of SVM. It can be 

seen that the best result has 93.25% sensitivity and 91.90% specificity for rate of 0.7. Fig. 7 

depicts a visual example of the SVM model used for classifying PPG signal quality on three 

intervals.

4.1.4. Threshold optimization—As it was mentioned earlier (Section 3.1.4) and 

represented in Fig. 4b, another learning algorithm that is considered here involves 

determining the optimum threshold for each feature. One approach is an algorithm that 

chooses a threshold that balances the trade-off between sensitivity and specificity. However, 

this algorithm is inefficient as “poor quality” can be reflected only in one feature, while the 

labels are assigned to all six features of the sample. For instance, a jump in positive peaks 

may only be reflected in normalized positive-to-positive peak jump and normalized beat 

amplitude jump. Moreover, unbalanced data makes such an optimization method even 

harder. An optimal algorithm would use the sample labels to extract distinct labels for each 

feature, and then uses those feature labels to find an optimal threshold. However, as 

developing such an algorithm is challenging, instead the following method is proposed.

In the proposed threshold optimization algorithm, first the good quality class is 

undersampled using a non-uniform undersampling method. First, using the training data for 

a predefined 0 < q < 1, the q-quantile of each feature is calculated, keeping only the samples 
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for which at least one feature is greater than the q-quantile of that feature. These samples are 

used to find a threshold for each feature that balances sensitivity and specificity. Since only 

about 6% of samples are of poor quality, the 0.94-quantile is chosen for the non-uniform 

undersampling procedure.

Applying the aforementioned non-uniform undersampling and the threshold optimization 

algorithm, the results of beat-scaled analysis are included in Table 2.

Fig. 8 also includes the ROC curve for the fixed interval-scale analysis of the proposed 

threshold optimization algorithm. Based on this figure, the best case has 90.05% sensitivity 

and 89.48% specificity with a rate of 0.65.

5. Discussion and comparison with other methods

Tables 2 and 3 and Fig. 8 compare the results of all four methods for beat-scale, the best 

performance of fixed interval-scale, and fixed interval-scale ROC curves, respectively. As 

summarized in Table 2, the decision tree model and threshold optimization both used the 

second framework in their learning process, while the ensemble of decision trees and SVM 

used the first framework. The ensemble of decision trees and threshold optimization are the 

two algorithms that used undersampling. Both of these methods were also significantly 

faster to train than those which used the first framework. In comparing model performance 

on the training and testing datasets, the tree based algorithms overfitted the training data, 

while SVM and the threshold optimization algorithm have almost the same performance on 

both datasets.

In addition to Table 2, the effect of uniform and non-uniform undersampling has been tested 

on SVM and decision tree: non-uniform undersampling used in threshold optimization 

reduces the performance of both algorithms, while uniform undersampling has no significant 

effect on SVM (in its cost-sensitive SVM formulation) and a negative effect on decision tree 

performance. Based on Fig. 8 and Table 3, SVM and the ensembles of decision trees 

outperform the other two methods in the fixed interval-scale analysis.

Overall, the cost-sensitive SVM with Gaussian kernel outperform the rest, while the 

proposed threshold optimization is significantly faster.

5.1. Comparison with other methods

An exact comparison of the proposed framework with other state-of-the-art algorithms on 

the ARDS dataset cannot be achieved, as the algorithms and their attendant procedures are 

not publicly available, nor are the threshold (or hyperparameter) optimization processes of 

those methods thoroughly described. Additionally, as previously mentioned many of these 

algorithms also require an ECG signal as input. This difficulty in comparison is common, as 

many of the previously proposed PPG signal quality assessment methods did not compare 

the performance of their SQI algorithm with any other methods [1,2,9–13,15,17, 18,21]. As 

a result, instead of comparing the proposed algorithm with other approaches on the ARDS 

dataset, the performance of the algorithm is compared with two other algorithms on the 

publicly available CapnoBase (CB) database used in those studies [10,14].

Sabeti et al. Page 15

Inform Med Unlocked. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this experiment on dataset there are 57149 samples at the beat-scale (Section 3.3). Similar 

to the previous experiment, 100 iterations of random subsampling at the patient level is 

performed to divide the CB dataset into 2
3  training data and 1

3  testing data. The cost-sensitive 

SVM (described in Section 4.1.3) is used for machine learning, as it outperforms other 

methods on the ARDS dataset. Finally, for SQI calculations, the fixed interval-scale analysis 

(described in Section 3.4) on windows of length 8 s with the rate 0.9 is performed. Table 4 

summarizes the comparison of the proposed framework with the best-case scenario of other 

algorithms (best-case in Refs. [10,14]: assuming that if beat detection is correctly performed, 

then quality assessment would be accurate, so the overall performance assumed to be 

affected only with beat detection). The main reason for achieving higher performance on the 

CB dataset in comparison to the ARDS dataset is the quality of PPG signal in the CB 

dataset. In contrast to the ARDS dataset, the CB data is recorded during anesthesia, making 

contaminated segments of data obvious. As such, signal quality assessment on the ARDS 

dataset is more challenging.

To analyze the effect of window length in a fixed interval-scale analysis of the quality 

assessment of the proposed algorithm, the same experiment was performed for various 

window lengths. Table 5 represents the effect of window length on quality assessment. As 

can be seen, for short window lengths the proposed framework performs poorly, while for 

window lengths greater than 4 s it performs reasonably well. This behavior is expected as 

analyzing a window with more than one beat can be more indicative of the quality of that 

interval.

The advantages of the proposed morphological features and frameworks are three-fold: 1) 

applicability to any source of pulsatile physiological signals due to the adaptive nature of the 

proposed algorithm and the definition of the normalized morphological features; 2) 

independence from any synchronized reference signal such as ECG, with the only essential 

inputs being the signal under assessment and its sampling frequency; 3) adaptivity to any 

dataset. Additionally, while many of the proposed signal quality assessment approaches did 

not use any machine learning methods [9–16], the proposed framework enables usage of 

machine learning to better investigate the quality of pulsatile signals. Also, unlike various 

state-of-the-art frameworks that use ECG signal as an input to their respective algorithms 

[1,2,20,21], the proposed framework is independent of any synchronized signal. These 

properties make the proposed framework unique.

6. Conclusion

In this paper, a machine learning framework with a set of morphological features is 

introduced that is able to measure the quality of any pulsatile physiological signal and detect 

poor quality segments. Different machine learning algorithms were tested against the ARDS 

dataset, with cost-sensitive SVM and an ensemble of decision trees outperforms all other. 

Additionally, the cost-sensitive SVM also achieved better performance in comparison with 

two state-of-the-art algorithms on a publicly available dataset.
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Fig. 1. 
Exemplary segment of PPG signals designated with “bad” quality from both experts 

(clinicians). A signal segment not annotated as bad quality is assumed to be of good quality.
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Fig. 2. 
The preprocessed (filtering and peak detection) PPG with the following signals/

measurements: (1) beat waveform with positive peak, (2) beat waveform with negative peak, 

(3) negative-to-negative peak jump, (4) positive-to-positive peak jump, (5) positive and 

negative pulse duration, and (6) backward and forward AC components.
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Fig. 3. 
Cumulative distribution function (CDF) of normalized negative-to-negative peak jump 

(∇Pi
−).
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Fig. 4. 
Two training/testing framework used in this paper: (a) a framework for training/testing 

model on 6-dimensional samples (b) a framework for training/testing six similar models on 

each 1-dimensional sample feature followed by decision rule, which basically is a logical 

“or” operation on the six outcomes.
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Fig. 5. 
Inter-rater reliability using Cohen’s Kappa.
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Fig. 6. 
A block diagram of learning process. DT: decision tree, EDT: ensemble of decision trees, 

SVM: support vector machine, TO: threshold optimization. Models (a) and (b) refer to the 

two training frameworks illustrated in Fig. 4.
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Fig. 7. 
A visual example of quality result on fixed interval-scale segments using the SVM model 

with rate (threshold on interval SQI) 0.7. In the first interval (0–8 s) both the algorithm and 

annotation have poor quality segments in beat-scale, which is less than 5.6 (8 × 0.7) seconds; 

thus, this interval is not considered poor quality by both the algorithm and the annotation. 

The second interval (8–16 s) had more than 5.6 s of poor quality beat-scale segments using 

the algorithm, but slightly less than 5.6 s of poor quality beat-scale segments using the 

annotation, therefore this interval is labeled as poor quality using the algorithm, but not 

using the annotation. The last interval (16–24 s) has more than 5.6 s poor quality beat-scale 

segments in both algorithm and annotation.
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Fig. 8. 
Comparison of ROC curves for the four methods used in this study.
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Table 1

The unbalanced nature of the ARDS dataset at beat-scale level.

Expert 1 Expert 2 Union Intersection

Percentage of poor quality samples 4.46 4.87 6.39 2.94
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Table 2

Performance comparison of decision tree (DT), the ensemble of decision trees (EDT), SVM and threshold 

optimization (TO) in beat-scale analysis. The running time is the average time needed to train the algorithms 

on 31 30-min PPG signals and test on 15 30-min PPG signals.

DT EDT SVM TO

Undersampling No Yes No yes

Framework Two One One Two

Running time (sec) 5 450 375 20

Train Accuracy 96.92 100 85.37 80.82

Sensitivity 99.92 100 86.05 82.82

Specificity 96.70 100 85.31 80.67

Test Accuracy 75.02 88.85 83.02 80.66

Sensitivity 73.01 70.03 85.45 82.38

Specificity 75.14 90.04 82.82 80.50

Inform Med Unlocked. Author manuscript; available in PMC 2020 August 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sabeti et al. Page 29

Table 3

Comparison of the best performance of decision tree (DT), the ensemble of decision trees (EDT), SVM and 

threshold optimization (TO) in interval-scale analysis. Please note that the rate in the table corresponds to the 

best performance.

Best Performance DT EDT SVM TO

Sensitivity 88.96 91.56 93.25 90.05

Specificity 86.30 91.97 91.90 89.48

Corresponding Rate 0.45 0.4 0.7 0.65
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Table 4

Comparison of quality assessment between the proposed algorithm using cost-sensitive SVM and the best-case 

scenario of the frameworks proposed in Refs. [10,14] on the publicly available Capnobase (CB) dataset.

Best Performance Proposed Method [10] [14]

Sensitivity 98.27 96.44 98.87

PPV 100 99.80 99.22
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