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Proteins in serum or plasma hold great potential for use in
disease diagnosis and monitoring. However, the correla-
tion between tumor burden and protein biomarker con-
centration has not been established. Here, using an anti-
body colocalization microarray, the protein concentration
in serum was measured and compared with the size of
mammary xenograft tumors in 11 individual mice from the
time of injection; seven blood samples were collected
from each tumor-bearing mouse as well as control mice
on a weekly basis. The profiles of 38 proteins detected in
sera from these animals were analyzed by clustering, and
we identified 10 proteins with the greatest relative in-
crease in serum concentration that correlated with
growth of the primary mammary tumor. To evaluate the
diagnosis of cancer based on these proteins using either
an absolute threshold (i.e. a concentration cutoff) or self-
referenced differential threshold based on the increase in
concentration before cell injection, receiver operating
characteristic curves were produced for 10 proteins with
increased concentration, and the area under curve was
calculated for each time point based on a single protein or
on a panel of proteins, in each case showing a rapid
increase of the area under curve. Next, the sensitivity and
specificity of individual and optimal protein panels were
calculated, showing high accuracy as early as week 2.
These results provide a foundation for studies of tumor
growth through measuring serial changes of protein con-
centration in animal models. Molecular & Cellular Pro-
teomics 14: 10.1074/mcp.M114.046516, 1024–1037, 2015.

Proteins in blood have long been used as biomarkers for
cancer disease management (1, 2). Proteins up-regulated in

cancer cells may be found at higher concentration in blood,
and their use for disease prognosis and response to therapy
is well established (3). For example, CA-125 has been used as
a biomarker to monitor the tumor progression and treatment
response of ovarian cancer (4). The prospect of screening and
diagnosing cancer based on the detection of blood-based
biomarkers has generally not been fulfilled. Compared with
single point detection, time course analysis of biomarkers in
serially collected samples can improve the accuracy of bio-
marker detection, is notably used to help diagnose prostate
cancer in man using prostate-specific antigen, and is widely
used to evaluate progression of tumors.

Recently, Gambhir and co-workers (5, 6) proposed a math-
ematical model relating secreted blood biomarker levels to
tumor sizes for ovarian cancer. Lutz et al. (5) proposed the first
model with protein excretion into circulation assumed to be
proportional to tumor volume and to have a fixed half-life,
finding that protein concentration is linearly correlated with
tumor size. Later Hori and Gambhir (6) improved the model by
incorporating dynamic protein levels over time and consider-
ing protein secretion from non-tumor tissues as confounding
factors. Their model was used to predict the earliest time
point at which a tumor could be detected based on estimates
about growth and excretion rates of tumors. The authors
studied CA-125, a Food and Drug Administration-approved
biomarker for ovarian cancer, and used the excretion rates
and half-life available from the literature. They found that
when considering the contribution of healthy cells to the CA-
125 concentration in serum tumors could only be detected
when they reach tens of millimeters in diameter, which based
on known tumor growth rates would be more than 10 years
after initiation (6). Although this study provided a framework
for the analysis of blood-based protein biomarkers and dis-
ease progression, experimental validation is missing, and no-
tably individual variation and the fluctuations of protein excre-
tion over time were not considered in the model.

Mouse models have long been used in cancer research and
notably to study breast cancer protein biomarkers (7). Trans-
genic mice as well as human cancer xenografted into mice
have been exploited to uncover circulating cancer-related
proteins and tumor cells (8–13). Time course analysis can
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improve the accuracy of biomarkers and help evaluate the
course of cancer progression. One challenge to time course
studies in mice is that at most 50–100 �l of blood can be
collected weekly without causing harm to the animals that
upon processing translates to only 20–40 �l of plasma. This
small volume is insufficient for many analytical methods and
makes multiplex analysis even more challenging. Previous
longitudinal studies either sacrificed individual mice at each
time point to extract all the blood at once or pooled the blood
extracted from many mice, resulting in the loss of information
of individual subjects over time. Recently, a transgenic mouse
model was used to characterize the change in plasma pro-
teome at different stages of breast tumor development (14).
Plasma samples were collected from tumor-bearing and con-
trol mice at three tumor stages and during tumor regression,
and the plasma pools from 5–11 mice were measured using
mass spectrometry. The plasma proteins that changed in
abundance were grouped by their involvement in a number of
physiologic processes such as wound repair and immune
response, and many of them were found to be tumor microen-
vironment-derived proteins. However, individual variations
could not be studied.

Measuring proteins in blood at concentrations that are rel-
evant for biomarker discovery remains a technological chal-
lenge. Arguably the most popular proteomics technology is
mass spectrometry; however, it suffers from a bias toward
high abundance molecules that mask those of low abun-
dance. The enzyme-linked immunosorbent assay (ELISA) and
more specifically sandwich immunoassays constitute the gold
standard when it comes to detecting proteins at very low
concentrations in samples such as serum or plasma (15).
These assay formats have been multiplexed in the form of
antibody microarrays and bead-based assays and used to
detect proteins in small volumes of blood (16–19). However,
multiplexing has a negative impact and can severely compro-
mise assay performance because it increases vulnerability to
cross-reactivity among the proteins measured and the mix-
ture of reagents required for these assays, limiting the multi-
plexed sandwich assays to between 1 and 50 targets depend-
ing on the antibodies (20, 21). New assay formats that
address this reagent-driven cross-reactivity have been devel-
oped (21), and we recently presented an antibody colocaliza-
tion microarray (ACM)1 that replicates the performance of
single-plex ELISA but is multiplexed and scalable (20). With
the ACM, capture antibodies (cAbs) are arrayed on a slide,

and each detection antibody (dAb) is spotted on the antigen-
cAb spot such that only a single pair of antibodies is used in
each microspot, thus avoiding reagent-driven cross-reactivity
(21) caused by mixing of the different dAbs. Moreover, we
presented a hand-held version of the ACM using a so-called
snap chip transferring prespotted and stored antibodies from
microarray to microarray, which avoids the spotting proce-
dure during an assay, thus greatly simplifying the operation,
that was used to measure 10 proteins simultaneously (22).

In this work, we present a temporal analysis of protein con-
centration in the serum of individual tumor-bearing mice by
measuring 50 proteins using a snap chip ACM. Human MDA-
MB-231-1833TR breast cancer cells, which are representative
of the triple-negative breast cancer subtype, were injected or-
thotopically into mice, and blood was collected each week while
recording tumor volume. Among the 50 human proteins ana-
lyzed, 38 were detected in the serum of tumor-bearing mice,
and 10 of these displayed a temporal increase. Protein concen-
tration and tumor size were compared, and the proteins that
increased the most during tumor growth were identified. Can-
didate biomarkers to discriminate between tumor-bearing and
healthy mice were validated at each time point after cancer cell
injection using ROC curves based either on (i) an absolute
threshold or (ii) a self-referred differential methods. The earliest
time point at which cancer could be diagnosed was evaluated
for both individual proteins and selected protein panels, and the
sensitivity and specificity of both methods were compared for
different time points of tumor growth.

EXPERIMENTAL PROCEDURES

Materials—Matched antibody pairs for sandwich immunoassays
and human antigens used in this study are listed in supplemental
Table 1. G-CSF and GM-CSF mouse antigens were purchased from
PeproTech, and TNF-RI mouse antigens were from R&D Systems.
Streptavidin-conjugated Cy5 was purchased from Rockland. Phos-
phate-buffered saline (PBS) tablets were obtained from Fisher Scien-
tific. Tween 20 and glycerol were purchased from Sigma-Aldrich.
Bovine serum albumin (BSA) was obtained from Jackson Immuno-
Research Laboratories. BSA-free StabilGuard Choice Microarray Sta-
bilizer was purchased from SurModics, Inc. Aminosilane-coated
slides were obtained from Schott North America, and nitrocellulose-
coated slides were purchased from Grace Bio-Laboratories, Inc.
ELISA kits for human G-CSF and human sTNF-RI/TNFRSF1A were
purchased from R&D Systems.

Injection of Cancer Cells into Mice and Collection of Mouse Sera—
All animal experiments were conducted according to the protocol
approved by the McGill University Animal Care Committee. One mil-
lion MDA-MB-231-1833TR cells (an MDA-MB-231 variant that me-
tastasizes to bone (23)) were injected into the fourth mammary fat pad
of SCID/beige mice in 50:50 PBS:Matrigel (BD Biosciences). Blood
samples were collected through the saphenous vein 1 week prior to
and weekly following the injection of tumors cells. All mice were over
20 g, which allowed us to collect 100 �l of blood per mouse maximum
per week, corresponding to 15–40 �l of serum depending on the
collection volumes. At the end of the study, the mice were sacrificed,
and their blood was collected. Serum was isolated by centrifugation
of blood samples in microcuvette tubes (Sarstedt), and the isolated
sera were stored at �80 °C for further analysis.

1 The abbreviations used are: ACM, antibody colocalization mi-
croarray; PBST, PBS containing 0.1% Tween 20; dAb, detection
antibody; cAb, capture antibody; ROC, receiver operating character-
istic; AUC, area under curve; G-CSF, granulocyte colony-stimulating
factor; GM-CSF, granulocyte/macrophage colony-stimulating factor;
TNF-R, tumor necrosis factor receptor; EGFR, epidermal growth fac-
tor receptor; uPA, urokinase-type plasminogen activator; uPAR,
urokinase-type plasminogen activator receptor; CEA, carcinoembry-
onic antigen.
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Measurement and Calculation of Tumor Volumes—In this study, we
measured the length and width of the tumors at each time point using
a caliper and calculated the tumor volume with an ellipsoid model
(24).

Preparation of Capture and Detection Antibody Microarrays on
Slides—cAb solutions with 20% glycerol and 1% BSA in PBS were
spotted on an aminosilane slide with 0.4 nl per spot, snapped with a
nitrocellulose slide (assay slide) using the snap apparatus for 1 min,
and then separated, and the antibody spots were transferred to the
nitrocellulose slide. dAb solutions containing 20% glycerol and 1%
BSA in PBS were printed on another aminosilane slide (dAb slide) with
0.8 nl per spot. The concentrations of the cAbs and the dAbs in
printing buffers are listed in supplemental Table 1. An inkjet spotter
(Nanoplotter 2.0, GeSiM Gesellschaft fuer Silizium-Mikrosysteme
mbH) was used for printing at a relative humidity of 80%. The center-
to-center distance between spots was 400 �m.

The transfer slides and the assay slides were fixed in two chucks of
a snap apparatus and snapped together for antibody transfer. A
rubber cushion was used behind each slide, and a spacer was sand-
wiched between the two slides to ensure reliable reagent transfer (22).
After snapping, the assay slide with transferred cAbs was incubated
at 4 °C overnight in a sealed chamber and then washed three times
with PBS containing 0.1% Tween 20 (PBST) for 5 min each time on
the shaker at 450 rpm. Next, the slide was blocked with StabilGuard
for 1 h on the shaker at 450 rpm and dried with nitrogen gas.

Storage of the Snap Chip Slides—Both the assay and dAb slides
were stored in a �20 °C freezer sealed in an airtight bag with
desiccant.

Sandwich Immunoassays with 50 Proteins—Sealed bags of assay
slides were removed from the freezer and kept at room temperature
for 30 min before opening to avoid condensation. To make standard
curves, 50 proteins were spiked in PBS containing 0.05% Tween 20
at the concentrations listed in supplemental Table 1, and 5-fold,
seven-point dilution series were prepared. A buffer solution without
any proteins was also prepared as a blank control. All mouse serum
samples were diluted five times using PBS containing 0.05% Tween
20. GFP was used in each array for data normalization. The assay
slides were clamped with 16-compartment slide module gaskets
(Grace Bio-Laboratories, Inc.), and then 75–80 �l of each serially
diluted standard protein solutions and diluted mouse serum samples
were incubated on the assay slides on the shaker at 450 rpm at 4 °C
overnight. The slides were then rinsed three times with PBST on the
shaker at 450 rpm for 5 min each time followed by a brief rinse with
distilled water and dried with nitrogen gas. The sealed bags of dAb
slides were removed from the freezer and kept at room temperature
for 30 min, then the bags were opened, and the dAb slides were
incubated in a humidity-saturated Petri dish for 20 min to rehydrate
glycerol droplets containing antibodies. Next, the assay and the dAb
slides were fixed in the snap apparatus and snapped together for 1
min. Following separation, the assay slides were incubated in a hu-
midified Petri dish for 1 h, then clamped with the gasket, and rinsed
four times with PBST on the shaker at 450 rpm for 5 min. The assay
slides were then incubated with 2.5 �g/ml streptavidin-conjugated Cy
5 for 20 min on the shaker at 450 rpm, then rinsed three times with
PBST on the shaker and once with distilled water, and dried using
nitrogen gas.

Scanning of the Slides and Data Analysis—The slides were
scanned using a microarray laser scanner (Axon GenePix 4000B) with
the 635 nm laser. The net fluorescence intensity of a spot was
extracted using Array-Pro Analyzer version 4.5 (Media Cybernetics)
by subtracting the background signal in the vicinity of each spot.

Heat maps were produced using the Spearman’s rank correlation
coefficient between the protein levels. For each of the seven time
points, the rank was computed for each protein, and the absolute

difference between each Spearman coefficient was used to deter-
mine the similarity matrix for hierarchical clustering analysis. The
Z-score represents the distance between a data point and the mean
in units of the standard deviation.

For all top ranked 10 proteins, the concentrations for all 14 mice at
seven time points were normalized between 0 and 1 using the follow-
ing formula: (x � min(x))/(max(x) � min(x)). In the absolute threshold
method, the disease cohort consisted of the 11 tumor-bearing mice
and the blood concentration of the proteins at that specific time point.
The control values for each time point consisted of the concentration
of proteins from three control mice at seven time points, adding up to
21 “controls.” This control cohort was used both for ROC calculation
and for calculating the sensitivity and specificity described further
below. In the differential method, for each disease and each control
mouse, the (normalized) average concentration from weeks �1 and 0
were subtracted from the concentration at each time point. For ROC
curve calculation, the control cohort comprised the concentration
value for each of the three control mice; there were thus three controls
for each of the five specific time points. ROC curves were calculated
and plotted using GraphPad Prism 6 (GraphPad Software).

For the time course analysis, the sensitivity and specificity of indi-
vidual proteins and a protein panel were calculated for both the
absolute threshold and differential method for each week. The six
proteins whose area under curve (AUC) values are highest in week 3
using either absolute or differential methods were selected for time
course analysis. For the absolute threshold method, the threshold for
a positive diagnostic was defined as a measurement higher than the
average plus two standard deviations of the 21 controls. For the
differential self-referenced method, the threshold for a positive diag-
nostic was defined as a concentration above the average of weeks
�1 and 0 (for the same mice) plus 2 times the average of the standard
deviations that were calculated from the seven time points for the
three control mice. For a protein panel, the same aforementioned
calculation method was applied to each protein first, and then either
the averaged threshold or averaged baseline was used. Sensitivity
was defined as the true positive rate, and specificity was defined as
the true negative rate.

RESULTS

Fabrication of Antibody Microarrays—The procedure for
making antibody microarrays and performing the multiplex
immunoassay in an ACM format with a snap chip (22) is
illustrated in Fig. 1. In ACMs, each dAb is delivered only to the
corresponding cAb spot, thus avoiding cross-reactivity and
false positive signals. Whereas previously only one snap and
transfer were performed (22), we implemented a novel “dou-
ble transfer” protocol that we recently developed to improve
the alignment between cAb and dAb microarrays.2 Briefly,
whereas previously only the dAbs were transferred to the
assay slide by snapping, here both cAb and dAb microarrays
are transferred to minimize misalignment and thus increase
the density of spots that may be transferred (Fig. 1). We
established a snap chip targeting 50 human proteins (supple-
mental Table 1) comprising cancer biomarkers, cancer-re-
lated proteins, and cytokines. For all assays, standard curves
were established for each target protein.

Validation of the Snap Chip Immunoassay—To assess
whether the assays effectively discriminate between the hu-

2 H. Li, J. D. Munzar, A. Ng, and D. Juncker, submitted manuscript.
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man proteins secreted by the xenograft tumor from mouse
proteins, the interspecies cross-reactivity was assessed.
Cross-reactivity to mouse proteins was not expected as the
antibody pairs we used were produced in mice (25), but we
nonetheless tested it experimentally for three recombinant
mouse proteins, G-CSF, GM-CSF, and TNF-RI. Binding of
mouse proteins was undetectable up to the maximal assay
concentration of 400 ng/ml, indicating that the antibodies are
indeed specific for human proteins.

Next, we compared the snap chip immunoassay with a
commercial ELISA for G-CSF and TNF-RI. These two proteins
were measured in 16 mouse serum samples comprising 14
sera collected at the end of the study and two samples of
mixed mouse serum samples from earlier time points (for
more details, see below). Duplicate measurements of each
sample were made for both snap chip and ELISA (supplemen-
tal Fig. 1). The correlation, r, for G-CSF and TNF-RI proteins
was 0.94 and 0.82, respectively. The slope of the curve for
G-CSF was 0.97, whereas it was 1.5 for TNF-RI. Such differ-
ences are commonly observed for immunoassays (26, 27).
This discrepancy might be due to different antibody clones
used in the two methods, although they were purchased from
the same vendor, or the use of different buffers imposed
by the use of the snap chip and of a mixture of the proteins for
the dilution series. We do not expect this difference to affect

the results of the time course measurements as relative
changes are assessed.

Serum Protein Levels Measured during the Growth of Pri-
mary Mammary Tumor Xenografts in Mice—Human triple-
negative breast cancer cells (MDA-MB-231-1833TR) were in-
jected into the mammary pad of 11 mice, and Matrigel devoid
of breast cancer cells was injected into three control mice.
Tumors grew in all 11 mice and were measured weekly start-
ing at week 2, the first time point at which they were palpable.
Initial blood samples were collected 1 week and �1 h before
cell injection, and then on a weekly basis starting on the 2nd
week. In total, seven samples were collected from each
mouse, adding up to 98 samples in total. The concentrations
of the 50 proteins in each sample were measured with the
snap chip, which could accommodate up to 16 samples per
chip (slide), whereas on some chips, one column of 8 wells
was used for establishing the binding curve. Among 50 pro-
teins measured with ACM, the levels of 38 proteins were
above the limits of detection of the assay for at least one time
point and thus considered measurable in mouse sera. The
remaining 12 proteins were not detected in the serum.

A hierarchical clustering was performed for 38 human pro-
teins based on the average concentration across the 11 mice
at each time point (Fig. 2). Ten proteins, clustered from EGFR
down to MMP-3, show increasing concentrations over time.

FIG. 1. Schematic outlining the process flow for preparing the slides and performing an antibody colocalization microarray in a snap
chip format. a, dAbs are spotted onto an aminosilane-coated slide that is stored in a freezer. cAbs are spotted onto another aminosilane-
coated slide with the same spotting layout and transferred to a nitrocellulose-coated assay slide followed by blocking and storage in a freezer.
b, both slides are removed from the freezer prior to use. The assay slide is incubated with sample solutions, and then the dAbs are transferred
to the assay slide by snapping followed by incubation with streptavidin-Cy 5. Next, the assay results are imaged with a fluorescence microarray
scanner, and the data are analyzed.

Protein Time Course in a Cancer Mouse Model

Molecular & Cellular Proteomics 14.4 1027

http://www.mcponline.org/cgi/content/full/M114.046516/DC1
http://www.mcponline.org/cgi/content/full/M114.046516/DC1


The next cluster of seven proteins from NT-3 to TNF-RII also
shows a clear increase of average values over time but with
significant fluctuation. Further down in the list, no clear trends
are visible. The proteins clustered at the bottom, starting from
IL-4, show moderate signals at week �1 and low signal levels
for time point 6, and some of them are relatively high for time
point 5. HER2 was not detected in the mouse serum as
expected because triple-negative breast cancer cells were
used to grow tumors. CA 15-3, which is used clinically to
evaluate response to therapy in breast cancer (28), did not
cluster with the discriminating proteins at the top. CA15-3 did,
however, increase in concentration during the first 3 weeks
after cancer cell injection but then decreased, and fluctua-
tions were observed in individual mice. For further analysis,
we decided to focus on the 10 proteins clustered at the top of
the heat map.

The time course of tumor growth is shown in Fig. 3, top left
panel. The results show important variations from animal to
animal. Although variability in tumor growth is generally

known, it should be noted that all cancers originated from a
cell line with reduced genetic variability compared with natural
tumors and were implanted in mice with similar genetic back-
ground, and yet widely varying growth rates and final tumor
volumes are observed despite the homogeneous genetic
background. To further investigate the 10 increased proteins
found in Fig. 2, we plotted their concentrations during tumor
growth for both individual mice and the average of all tumor-
bearing and control mice. Six proteins (G-CSF, IL-8, TNF-RI,
uPA, uPAR, and GM-CSF) increased continuously during the
growth of human xenografts with only small fluctuations, and
the remaining four proteins (EGFR, CEA, MMP-3, and FAS)
also increased but with significant fluctuation (Fig. 3). EGFR
shows relatively high signals in control mice, which might be
due to the cross-reactivity of antibodies with other antigens
(20). Regardless, on average, a clear trend is visible for EGFR
as the signal rises significantly. The fluctuation in protein
concentrations in samples taken prior to cancer cell injection
(week �1 and week 0) and of control animals might be as-

FIG. 2. Hierarchical cluster analysis of the 38 human proteins detected in mouse sera. The average concentration of each protein of the
11 tumor-bearing mice subtracted by the average concentration of three control mice is shown. Row Z-scores were used for color rendering.
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cribed to the variability in sample collection and serum and
the specificity of the antibodies. The correlation between tu-
mor size and protein concentration was not consistent among
mice. Mice M3456 and M3464 grew large tumors, and the

concentration of proteins in blood was also high in relation to
the other mice. However, M3460 shows a moderately sized
tumor but high concentrations of proteins in the blood, indi-
cating that the correlation between protein concentration and

FIG. 3. Tumor volumes and protein concentrations during the time course of tumor growth. Top left panel, tumor volume of the 14 mice
(comprising three controls) calculated for weeks after the injection of cancer cells and fitted with an exponential growth curve. The remaining
panels show the time course of the 10 proteins (G-CSF, IL-8, TNF-RI, uPA, uPAR, GM-CSF, CEA, MMP-3, FAS, and EGFR) that increased
during the growth of the human breast cancer xenografts in mice. For each protein, curves on the left show average (Avg) protein levels for
the tumor-bearing mice and controls during the growth of tumor, and curves on the right show protein levels during the time course for each
of the 11 individual tumor-bearing mice and three controls. Error bars on the average curves are the standard deviations of protein
concentrations among mice. M3451–M3465 represent the identity of each mouse.
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tumor size is not consistent among different mice as will be
further discussed below.

Correlation of Protein Levels with Tumor Volumes—With
mice, it becomes possible to track the time course of tumor
size and protein concentration in blood for an extended pe-
riod of time, allowing one to directly probe a model linking the
two. We plotted the six proteins whose levels increased con-
tinuously along with the growth of the tumor burdens for each
of the 11 tumor-bearing mice (Fig. 4). We found that the
protein levels and the tumor volumes were linearly correlated
for all mice (supplemental Table 2).

Time Course Analysis of Sensitivity and Specificity of Pro-
tein Biomarkers—For the diagnosis and monitoring of recur-
rence, the differential change in concentration (sometimes
also called the velocity (1)) is often more accurate. Indeed, this
measure intrinsically takes into account personal variation
and defines individual baselines. Here, we wanted to test
whether differential, self-referred diagnosis would outperform
diagnosis relying on a population average-based threshold in
mouse cancer models. The ROC curves of the 10 individual
proteins as well as of the linear combination of the normalized
variation of the 10 proteins for each time point are plotted. The
ROC curves calculated using absolute and differential meth-
ods for the six proteins that linearly correlated with tumor
burden are shown in Figs. 5 and 6. The ROC curves for the
four proteins that increased but fluctuated are shown in sup-
plemental Figs. 2 and 3. The AUC shows that diagnostic
accuracy for all the proteins increased progressively during

the time course of tumor growth as might be expected for
these mouse models. The low AUC values for mouse from
weeks 0 and �1 using the absolute threshold method indicate
that the results reflects a change in the mouse except for
TNF-RI where already a high AUC values arises before; this
may be due to a measurement artifact or a coincidental higher
expression in the specific subset of mice. For most proteins,
the differential method and the absolute threshold analysis
yielded a similar diagnostic accuracy. Using the differential
method, IL-8 achieved the best performance of AUC � 1 for
all the time points after injection of cancer cells, which is also
reflected in its time course curves for each individual mouse
shown in Fig. 3. Interestingly, the AUC already reaches a high
value after only 2 weeks. For example, in week 2, MMP-3 and
IL-8 show an AUC � 1 with absolute and differential methods,
respectively (supplemental Figs. 2 and 3).

The ROC curve of the 10-protein panel was outperformed
by individual proteins that yielded higher AUCs. A backward
elimination protocol (29, 30) was used to identify panels with
higher sensitivity and specificity for both differential method
and threshold analysis. Following the removal of each individ-
ual protein from the panel, the sum of sensitivity and speci-
ficity was calculated, and only the panels with better or equiv-
alent accuracy were selected for further elimination. Using this
procedure, we found 37 combinations with between eight and
four proteins with sensitivity � 1 and specificity � 1 for every
time point as listed in supplemental Table 4. CEA, FAS, and
uPAR appeared in all 37 combinations. To further select the

FIG. 4. Comparison between tumor
volume and protein concentration of
the six proteins G-CSF, IL-8, TNF-RI,
uPA, uPAR, and GM-CSF in serum for
each of the 11 mice along with linear
regression curves. Despite the genetic
homogeneity of the mice, important vari-
ations are seen among mice. A high or
low excretion rate for one protein is often
mirrored by the excretion rate for other
proteins, suggesting that metabolic dif-
ferences between tumors underlie this
variation.
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best combinations and taking advantage of the control time
points at weeks �1 and 0, we calculated the diagnostic
specificity using the absolute threshold-based method and
found eight combinations with a specificity of 0.96.

The sensitivity and specificity were computed for six indi-
vidual proteins whose AUC � 1 at week 3 using either the
absolute or differential method. The optimal protein panel
comprising CEA, FAS, uPAR, and IL-8 was computed using
an absolute threshold of two standard deviations above the
average of the control mice or using the differential method

with a limit set as the average standard deviation above the
value at weeks �1 and 0 (see “Experimental Procedures” for
details). The sensitivity and specificity for each time point are
shown in Fig. 7. At week 2, the sensitivities of G-CSF and IL-8
were higher for the differential threshold, and those of uPA,
MMP-3, and EGFR were higher for the absolute threshold.
The sensitivity improved monotonically for most individual
proteins. Relatively large fluctuations are observed for the
specificity that can be accounted for by the small number of
control mice. CEA gives the most accurate classification with

FIG. 5. ROC curves of the 10-protein panel and six individual human proteins at each time point before and after injection of cancer
cells using the absolute threshold method. For overlapping curves for AUC � 1, the color from the earliest week at this value is shown.
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both measurements between weeks 2 and 6 because the
assay signals in tumor-bearing mice are higher than those in
the control mice. The specificity is similar for both methods
except for IL-8 and uPA. EGFR showed a relatively low sen-
sitivity using the differential method that can be ascribed to
the fluctuations in concentration observed in our measure-
ments. Despite the fluctuations observed, our measurements
achieved relatively high sensitivity and specificity starting

from as early as the 2nd week depending on the proteins in
question.

DISCUSSION

In this study, we detected 38 human proteins in mouse
serum, and the 10 selected proteins found to increase over
time in the sera of tumor-bearing mice had previously been
linked to triple-negative breast cancer, consistent with the

FIG. 6. ROC curves of the 10-protein panel and six individual proteins at each time point after cancer cell injection using the
self-referenced differential method. Some curves with AUC � 1 are invisible due to overlap with other curves. Unlike for the absolute
threshold, no ROC curves were plotted for weeks �1 and 0 because they are not meaningful.
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cancer subtype of MDA-MB-231 cells. G-CSF has been re-
ported to be a support drug in chemotherapy of triple-nega-
tive breast cancer (31). Higher concentrations of IL-8 were
found to be correlated with the invasion and metastasis proc-
ess for MDA-MB-231 cells (32–34). TNF-RI is associated with
poor prognosis in breast cancer patients on its own (35). The
uPA/uPAR system is involved in multiple steps of tumor for-
mation and progression (36, 37), and the uPA/uPAR genes
were found to be overexpressed in MDA-MB-231 cell lines
(38). GM-CSF is a cytokine functioning in tumor progression
and has been found to be overexpressed in MDA-MB-231
and other breast cancer cells (39). CEA was found in the blood
of triple-negative breast cancer patients and was docu-
mented in the majority of patients with metastatic breast
cancer (40). EGFR is a cell surface receptor that has been
found to be expressed in many human tumor cells including
MDA-MB-231 cells; it contributes to cancer cell proliferation
and migration (41–43) and can function as a potential thera-
peutic target in triple-negative breast cancer (44). MMP-3 is
involved in tumor invasion and metastasis and has been re-
ported to be highly overexpressed in MDA-MB-231 cells (45).
FAS was found to mediate non-apoptotic functions in triple-

negative breast cancer cells (46, 47). These previous studies
indicate that these proteins function in different aspects of
triple-negative breast cancer and therefore are concordant
with a higher concentration in blood as the tumor grows.

In a previous study using a HER2/neu-driven inducible en-
dogenous cancer mouse model, 36 candidate protein bio-
markers were found to be increased in the mouse plasma
using mass spectrometry (8). The proteins identified were
distinct from those identified in this study; however, in con-
sideration that the cell line used here represents a triple-
negative cancer, it is expected that different markers would
be found. Some of the proteins were detected at the pg/ml
range in this work, lower than ng/ml concentrations for most
of the 36 proteins detected using mass spectrometry in the
previous work.

Considering that we are only measuring human proteins,
which are not expected in the blood prior to starting the
experiment, one would not expect to obtain a detectable
signal prior to tumor cell inoculation, but a number of proteins
show weak to moderate signals in week �1 and week 0 (Fig.
2). Cross-reactivity to mouse proteins is possible for the an-
tibodies, which are not of murine origin, but unlikely for most

FIG. 7. Time course of sensitivity and specificity calculated with the absolute threshold-based method and differential measurement
for the six proteins whose AUC � 1 at week 3 as well as the panels with sensitivity � 1 and specificity � 1.
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proteins given that most capture antibodies are mouse anti-
bodies (see supplemental Table 1). The variability observed
may in part arise from the difference in matrix between the
binding curves made in buffer and the actual measurements
that were conducted in serum, which is known to generate a
background signal. Hence some signals that appear above
the limit of detection may in fact be below. This issue is a
general challenge faced by all sandwich assays such as
ELISA due to the absence of a reference sample.

Gambhir and co-workers (5, 6) proposed mathematical
models relating protein levels with tumor volumes and pre-
dicted that with the limits of detection of current ELISA tumors
could not be detected until they reach tens of millimeters in
diameter. Despite the relatively large size of tumors, the con-
centration of proteins was only in the pg/ml range (Fig. 3),
which is close to the limit of detection of ELISA and the snap
chip ACM and similar in concentration to those found in
humans. Considering that the volume of blood in a mouse is
�2500 times less than that in a human (48), the relatively low
concentration of cancer proteins in the blood of mice can be
ascribed to a number of factors. This xenograft model elicits
much less vascularization than many natural tumors and rap-
idly develops a necrotic core within the tumor. In addition,
differences in protein shedding and vascular permeability as
well as different half-lives of the proteins in blood could all
contribute to reduce the concentration of tumor proteins in
blood (6). Moreover, proteins from stromal cells surrounding
the tumor, which are also altered, are expected to be released
into the blood and to contribute to the increase in concentra-
tion (14, 49). However, because the antibodies used here are
specific for human proteins, stromally released proteins could
not be measured here. Indeed, the protein concentrations
measured in this work are lower than those in a previous study
using an inducible endogenous HER 2/neu mouse model that
measured proteins at high ng/ml range (14), suggesting that
the xenograft cancer model might yield lower protein concen-
trations in blood.

We found that protein concentration was proportional to
tumor size in agreement with the model proposed by Lutz et
al. (5) (Fig. 4). However, the necrotic core of these xenograft
tumors that arises for volumes as small as 300–500 mm3 (�8
mm in diameter) might break the direct relation between tu-
mor volume and cell numbers. Cells are mainly proliferating
within a viable rim at the edges of the tumor, and hence one
would expect that the contribution to proteins in the blood
would originate from those cells. This would imply that bio-
marker concentration would be correlated to tumor surface
area. When comparing the protein concentration with the
surface area of the ellipsoid tumor, a linear regression pro-
vides the best fit with comparable accuracy relative to volu-
metric fits (supplemental Tables 2 and 3). The tumor outer
layer is in fact heterogeneous, and hence secretion may occur
both from the outer surface and from within the tumor, pro-
viding a plausible explanation for the results observed. Ex-

tending the growth time toward larger tumors might help
resolve this question; however, the tumor sizes reached the
maximal allowable tumor volumes under the approved animal
use protocol.

Some of the most important findings of this study are (i) the
significant fluctuations in the relations linking the protein con-
centration and tumor volume and (ii) the variability in the
excretion rates among different mice. As illustrated in Fig. 4,
for many proteins and many mice, the data points are not
aligned with the linear fit and fluctuate above and below the fit.
These results indicate that the relationship between excretion
rate and blood concentration is not constant and may vary
because of environmental factors and metabolic activity. Ad-
ditionally, the range of slopes for protein concentration versus
tumor volumes varies significantly. M3459 is typically charac-
terized with the lowest slopes, whereas M3460 has the high-
est slopes. The highest and lowest ratios between protein
excretion rate normalized for tumor volume for the six proteins
measured were found for IL-8 and TNFR-I. For IL-8, the slope
of M3460 is 6.5 � 10�4, and that of M3459 is 1.7 � 10�4,
corresponding to a ratio of 3.8, and for TNFR-I, the slope for
M3460 is 7.8 � 10�3, and that for M3459 is 1.6 � 10�3,
corresponding to a ratio of 4.9. These results indicate that in
addition to different excretion rates as a function of tumor
volume even larger fluctuations in protein secretion rates arise
between mice with highly similar genetic background and that
they can arise independently of tumor growth rates. The var-
iability in protein concentration will add uncertainty in the size
of the tumor that may be detected and might prevent the
establishment of precise concentration cutoffs for cancer di-
agnosis considering large personal variations among human
patients at least when using single protein biomarkers. In-
deed, studies of breast cancer growth in human patients
monitored by mammography screening have shown large
variations between patients (50). Interestingly, the excretion
rates of different proteins are conserved relative to other mice;
i.e. a mouse that had a high concentration of one protein in
blood also had a high concentration of the other five proteins
that were studied here. This may reflect the metabolic activity
of a single tumor that leads to a consistent excretion rate for
different proteins. If the same relationships hold true in human
tumors, one protein could be used for normalization of the
values.

As shown from the ROC curves, the blood-based classifi-
cation identified tumor-bearing mice after only 2 weeks when
many tumors were not yet palpable (Figs. 5 and 6). The AUC
values for most of the 10 individual proteins outperform the
multiprotein panel diagnostic. The panel is simply the collec-
tion of all proteins, and hence it would be expected that some
individual proteins outperform it. Finally, we evaluated the
sensitivity and specificity of individual proteins for specific
thresholds determined based on the standard deviation of the
measurement (Fig. 7). Among the six proteins with the highest
sensitivity and specificity, three overlapped with the ones that
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continuously increased during tumor growth (G-CSF, IL-8, and
uPA) whose ROC curves are shown in Figs. 5 and 6, whereas
three were distinct (CEA, MMP-3, and EGFR). Following back-
ward elimination, optimal protein panels with higher specificity
and sensitivity were identified for both the absolute threshold
and differential methods (supplemental Table 4). Interestingly,
three of these eight combinations consisted of only four pro-
teins comprising CEA, FAS, uPAR, and either IL-8, TNF-RI, or
G-CSF. FAS was neither among the six top proteins for AUC
or the sensitivity/specificity analysis but was essential to the
high performance of the protein panel. The other five combi-
nations comprised five proteins, and the panels were either a
combination of the above proteins or one panel included uPA
and another included GM-CSF.

The use of each time point as a negative control afforded a
sufficient number of negative controls, but for future bio-
marker studies, it is recommended to increase the number of
negative controls to achieve more robust statistics. This study
found little differences between absolute threshold and differ-
ential measurements. There are several factors that may con-
tribute to the high accuracy of both approaches, namely the
genetic similarity of mice and of the injected cancer cells, the
selectivity of our analysis for xenograft proteins, and the lim-
ited number of control mice. Future studies may overcome
some of the limitations of our study and use both larger
cohorts of control mice and validation cohorts (8) as well as
more advanced statistical analysis (51, 52). Finally, measuring
protein levels using high sensitivity antibody microarrays from
induced or spontaneous mouse cancer might uncover other
facets of protein concentration in blood that are not replicated
by xenograft tumors.

In summary, we measured 50 proteins in serial serum sam-
ples from a human xenograft breast tumor model and found
10 proteins that increased in concentration as the tumors
grew. For six of these, concentration and tumor volume were
linearly correlated. To the best of our knowledge, this is the
first study to monitor protein levels at multiple time points in
multiple individual xenograft-bearing mice. It will be interest-
ing to evaluate whether these proteins will also be found in the
blood of human triple-negative cancer patients. To evaluate
proteins secreted from the tumor microenvironment, samples
could be measured in parallel with antibody arrays targeting
mouse proteins (14). Such time course studies might be re-
peated with genetically induced cancers in mice and thus
study a protein excretion time course in vascularized tumors
but also include contributions of the stromal tissue. ROC
curves showed that the diagnostic accuracy with identified
proteins increased progressively during the time course of
tumor growth for both absolute threshold and differential
methods. For most individual proteins and the protein panel,
the differential measurement showed similar sensitivity and
specificity as the absolute threshold-based measurement.
Optimal protein panels were selected and outperformed indi-
vidual proteins. It will be interesting to see whether the same

trends will persist with larger cohorts and in other cancer
models. Time course studies within an early diagnosis para-
digm are logistically difficult for human cancer, but it may be
possible to use antibody colocalization microarrays to study
the response to therapy in both neoadjuvant and adjuvant
settings by serially collecting blood and monitoring the con-
centration of multiple proteins (53).
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