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Abstract Nonadherence to prescribed medication is a

common barrier to effective treatment, and current options

to determine adherence are limited. This study describes

development of an aggregate adherence measure based on

population pharmacokinetics (PK), and its comparison to a

subjective questionnaire, the Morisky 8-item medication

adherence scale (MMAS8), in a trial of psychiatric patients

on stable doses of oral aripiprazole. A comprehensive

model was first built using plasma drug concentration data

from 24 clinical studies comprising 448 patients with over

13,500 observations. Application of this model to inde-

pendent patient profiles for a given drug-dosing regimen

were used to generate the primary aggregate adherence

metric, a ratio of observed versus expected plasma expo-

sures at steady-state. Although the metric is capable of

comparing relative adherence across groups, simulations

showed that the metric is not sufficiently sensitive as an

individual diagnostic in all cases. There were no trends

observed between results from calculated aggregate ad-

herence metrics and total scores from MMAS8 in a single-

visit clinical trial of 47 patients with bipolar 1 disorder or

schizophrenia who were on stable doses of aripiprazole,

although a strong association was observed for one

MMAS8 question. The range of the metric calculated for

patients was between 0.16 and 3.15. The described

approach of a novel ‘‘reverse’’ application of population

PK to quantify relative adherence with an aggregate mea-

sure may be influential for both clinical and pharmaco-

metric communities.

Keywords Aggregate adherence metric � Population
pharmacokinetics � Steady-state plasma drug

concentrations � Simulation � Aripiprazole

Introduction

There is currently great interest in the pharmaceutical and

clinical literature regarding nonadherence to a prescribed

medication [1–5]. Nonadherence is highly prevalent and

remains a major barrier to achieving optimal health out-

comes. In psychotic disorders in particular, a conservative

estimate for nonadherence to prescribed medication is

50 % based on current literature [6]. Additionally, in psy-

chiatry, poor adherence has been associated with symptom

exacerbation [7, 8], relapse [9–12], rehospitalization [13]

and an increased risk of suicide [14–16]. Despite the well-

replicated association between adverse clinical outcomes

and sub-optimal medication adherence, deviation from

medication adherence is difficult to detect and current

methods to determine adherence have substantial limita-

tions. These various methods and their respective limita-

tions have been extensively reviewed elsewhere [17].

Previous efforts handling medication adherence have

focused onmaximizing the accuracy of ingestion records for

analyses [18–20], or describing observed adherence patterns

derived from electronic monitoring systems [21], pharmacy

claims [10], or other methods. In the present work, the goal

was to specifically quantify a measure of relative adherence

across psychiatric patients, and, subsequently, use sparse
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plasma sampling to evaluate whether or not subjective re-

sults from a clinical questionnaire could serve as a surrogate

measure for adherence levels. The Morisky 8-item

medication adherence scale (MMAS8), previously validated

for hypertension patients [13], was used for the subjective

questionnaire, whereas steady-state plasma drug exposure

was selected as the objective measure. Our goal was to

assess correlation between the subjective measure, pur-

ported to detect medication nonadherence, and the objective

measure of relative expected steady-state exposures of

aripiprazole. We wished to assess whether or not subopti-

mal, subjectively measured, adherence behavior would be

associated with lower steady-state plasma drug exposures.

To construct an aggregate adherence metric, a novel ‘re-

verse’ application of population pharmacokinetics (POPPK)

was applied to oral aripiprazole treatment. In a standard

POPPK analysis, doses are administered and recorded, and

plasma sampling over time is used as the basis for the de-

velopment of structural and statistical models. In our ‘re-

verse’ application of POPPK, we started by building a PK

model from historical clinical trial data, then drew plasma

samples from an independent population, and finally used

model outputs to generate a metric of observed versus ex-

pected exposures, driven by average adherence levels. The

analysis was conducted in multiple stages. First, a compre-

hensive population PK model of oral aripiprazole was built

with 24 studies submitted as part of the original new drug

application [22]. The PK model was to be fixed for the pur-

pose of estimating independent patient profiles for given

prescribed dosing regimens, and a simple ratio of observed

versus expected exposures at steady-state was adopted as the

primary metric for comparison. Second, simulations were

conducted to assess the extent to which the calculated metric

might be interpretable at the individual level (as opposed to

the group level). Finally, MMAS8 scores and plasma blood

concentrations of aripiprazole were measured during a

clinical trial and evaluated for comparison using the devel-

oped population PK model. The work stream and results

from this analysis may be influential for the clinical and

pharmacometric communities alike; however, it is the ‘‘re-

verse’’ application of population PK to quantify relative

adherence across groups that is truly unique.

Methods

Population PK model

A POPPK model was developed for oral administration of

aripiprazole using data from 24 clinical studies comprising

448 individuals with over 13,500 observations. A 2-com-

partment model with first-order absorption was found to

best describe the data. Interindividual variability terms

were present on all structural model parameters, and a

proportional residual error model was used. Additionally,

three off-diagonal covariance elements were included be-

tween the volume of the central compartment (VC), the

intercompartmental transfer rate (Q), and the volume of the

peripheral compartment (VP, Fig. 1). The heterogeneous

nature of data collection and inconsistent availability of

covariates across studies inherently manifested in some

modeling limitations. The ultimate intention of the mod-

eling effort was to capture a robust upper-bound of the true

magnitude of variability in the general population for the

structural model parameter values. Therefore, it was pre-

ferred to include all data and accept a larger unexplained

variability on the population parameters, rather than to

select a subset of studies with comprehensive covariate

information and reduce the unexplained variability. Addi-

tionally, it is believed that any improvement in explained

variability would only strengthen the application of the

model application that is discussed in the following sec-

tions. It is assumed that adherence in a clinical trial setting

provides an upper boundary for adherence levels in the real

world (e.g., white-coat phenomenon). It is also assumed

that the presence of any patient reporting error in dosing

times increases the magnitude of observed variability in the

population and (along with the large sample size) is in line

with the objective of providing an upper-bound of the true

magnitude of variability on the parameters.

This article focuses on describing a novel application of

POPPK, and therefore it does not show the full details of

pharmacometric model construction. Nonetheless, brief

model diagnostics and parameter estimates are provided

(Figs. 1, 2), and the final model equations are present in the

supplementary material. Although the highest observed

concentrations tended to be underpredicted (which is not

uncommon for oral medications without intravenous data),

model performance was adequate: visual predictive plots of

observed versus predicted concentrations for the 24 studies

used in building the model are presented as supplementary

material.

Simulations

To assess whether or not the aggregate adherence metric

could be used as an individual diagnostic, in addition to its

primary purpose of comparison across groups, 31 days of

possible dosing events were simulated for 5000 subjects

equally assigned to either an adherent or a nonadherent

group. Subjects in the adherent group were assigned an

80 % probability of taking each scheduled dose, while

patients in the nonadherent group were assigned a 40 %

probability of taking each scheduled dose. Whether a dose

was taken for each subject was decided using independent

Bernoulli calls with success rate consistent with the
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probability of a dosing event given the subject’s adherence

group. Four concentration time points were simulated for

each subject at the end of the 31 days to closely follow the

design of a subsequent clinical study: concentrations were

simulated at 8, 9, 10, and 11 h after the dosing event. As

performance at the individual level is not the primary focus

of this work, this simplified version of adherence presents a

baseline assessment. It is assumed that performance of the

aggregate adherence metric at the individual level would be

reduced with more complicated models of adherence.

Three sets of simulations were conducted to test the

performance of the adherence metric under constant

Fig. 1 Summary for the

population PK model developed

for oral aripiprazole. a Example

of 2-compartment structural

model used to describe

aripiprazole PK. Model

parameters include the first-

order absorption rate constant

(ka), the theoretical volume of

distribution of the central

compartment (VC), the first-

order inter-compartmental

transfer rate (Q), the apparent

clearance of the drug from the

central compartment (CL), and

the theoretical volume of

distribution of the peripheral

compartment (VP). b Final

model parameter estimates with

the following covariate values:

the effect of weight on VP

(WT_VP), CL (WT_CL), and Q

(WT_Q), the effect of age on VP

(AGE_VP), CL (AGE_CL), and

the effect of CYP2D6 poor

metabolizer phenotype on CL

(2D6PM_CL)

Fig. 2 Diagnostic plots for the aripiprazole population PK model

described in Fig. 1a predicted versus observed concentrations. The

blue line represents the line of identity; the red line represents the best

fit for the data and covers only the range of observed data points. b A

plot of the conditional weighted residuals versus time. The overlaid

fitted line is a Loess plot (Color figure online)
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population parameters (thetas) and different variance con-

ditions: (1) the original model unchanged, (2) the coeffi-

cient of variation (CV) of the apparent clearance term

decreased by half, and (3) all interindividual variability

terms reduced by half, with the relevant covariance terms

reduced by one fourth as Cov(aX,bY) = abCov(X,Y),

where both a and b are equal to 0.5 and X and Y are

separate eta terms. Covariate values for the simulation

dataset were resampled as a block (with replacement) from

the original model-building data set. This was done to

ensure maintenance of the covariance structure expected

from the model.

Using the simulated individual predicted (IPRED) con-

centrations, data sets were generated to estimate individual

parameter values under the assumption that all dosing

events occurred (e.g., 100 % adherent). All model pa-

rameter estimates were fixed with the exception of the in-

terindividual variability term for apparent clearance

(CLapp) and the residual variability. Given the sparse

sampling nature of the profiles, a three-phase sequential

estimation methodology was used (designed to mimic what

would be used for application to the clinical data as ex-

plained below); simulation and estimation control stream

examples are provided as supplementary materials.

Aggregate adherence metric

Upon completion of parameter estimation under the as-

sumption of full adherence, an aggregate adherence metric

was calculated for each subject. Given that all values of

model parameters were fixed to prior estimates (with the

exception of the interindividual variability term on CLapp

and residual error term), it may be asserted that significant

deviations from the expected value—after accounting for

relevant covariate values—are partially attributable to

nonadherence (or over-adherence, i.e., taking too much

medication). The underlying idea is that systematic non-

adherence contributes to deviations in expected drug ex-

posures at steady-state (AUCss), which may be observed

and at least partially quantified. The following metric was

calculated for each subject:

ADHMET ¼ AUCSS;obs

AUCSS;exp
¼ Dose

s�CLobs

�
Dose

s�CLexp
¼ CLexp

CLobs
ð1Þ

AUCSS,obs is the observed area under the concentration–

time curve at steady-state, based on the Bayesian post hoc

estimate of clearance following the estimation procedure in

NONMEM; AUCSS,exp is derived from the expected value

for clearance given a subject’s covariate values from the

final POPPK model; and s is the dosing interval (24 h). The

final equation for the expected value of clearance in the

model was:

CLexpðL=hrÞ ¼ TVCL ¼ 3:88þWTA � 0:0251½
� WT � 74:19ð Þ � 0:0167 � ðAGE � 32Þ�
� ð1� 0:478 � 2D6PMÞ

ð2Þ

WTA is a binary variable indicating subject’s weight

B115 kg (0 = no, 1 = yes) and 2D6PM is a binary vari-

able indicating subject’s CYP2D6 poor metabolizer phe-

notype (0 = no, 1 = yes). CYP2D6 genotype is a well-

documented covariate for aripiprazole metabolism, and the

remaining covariates in this model are similar to those

found in previous internal reports (data not published). The

final observed CV for the apparent clearance parameter in

the developed model was *39 %, indicating that fully

adherent subjects may generate adherence metrics, as de-

scribed above, between *60 and 140 %. Consequently,

our initial test decision boundary for a nonadherent subject

via the aggregate adherence metric (Eq. 1) was assigned to

\60 % for the simulations testing utility at the individual

level.

Clinical data

The clinical trial conducted for this analysis enrolled 47

patients (31 male) 18–55 years of age, with a current di-

agnosis of bipolar 1 disorder (n = 15) or schizophrenia

(n = 32) (Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition, Text Revision [DSM-IV-TR]

criteria, NCT02050854). Patients had been treated with

oral aripiprazole (10, 15, 20, or 30 mg) for at least 2 weeks

before blood sample collection in order to presume steady-

state. Blood samples for measurement of aripiprazole

plasma concentrations were collected from eligible patients

at visit arrival (hour 0) and at 1, 2, and 3 h post-arrival.

Patients reported the date and time of the last taken dose of

aripiprazole, and completed the MMAS8. Aggregate ad-

herence metric (Eq. 1) values were plotted against total

MMAS8 scores and also against responses to individual

MMAS8 questions. The study was conducted in accor-

dance with International Conference on Harmonisation

Good Clinical Practice guidelines for conducting, record-

ing, and reporting trials, as well as for archiving essential

documents. Consistent with ethical principles for the pro-

tection of human research subjects, no procedures were

performed before study candidates had signed the informed

consent form (ICF). The ICF, protocol, and amendments

for this trial were approved by the institutional review

board or independent ethics committee.

Hardware and software

Data manipulation and data set creation were performed

with user-written code in the Java programming language
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within the NetBeans8.0 integrated development environ-

ment. NONMEM 7.2 was used for PK model building,

simulation, and estimation. Graphics were constructed in

the R statistical programming language (v.3.0.3).

Results

Simulations

Figure 3 shows the relationship between the aggregate

adherence metric and the true underlying adherence at the

individual level from simulations (Fig. 3a), as well as the

misspecification rate of the adherence metric (±SE) at the

individual level, with respect to observed deciles of the true

adherence (Fig. 3b). Using a value of 0.6 as the adherence

decision boundary, the misspecification rate for classifying

a patient as adherent given the current study design was

much lower than for classifying a patient as nonadherent.

‘‘Type I Misspecification’’ indicates that the error is similar

to a type I (alpha) error rate, equivalent to accepting the

null hypothesis when a true difference exists. Likewise, the

‘‘Type II Misspecification’’ is analogous to a type II (beta)

error rate, similar to rejecting the null hypothesis when no

true difference exists. The crossover pattern around 0.55 in

Figs. 3 and 4 represents the switch from nonadherent

Fig. 3 Results from simulations to assess the relationship of the

calculated adherence metric to the true simulated adherence.

a Observed adherence metric, calculated with Eq. 1 versus the true

simulated adherence. The solid reference lines represent the 0.6

adherence decision boundary specified from the original model. A

best-fit linear regression line is overlaid. bMisspecification rate of the

calculated adherence metric with respect to the 0.6 adherence

decision boundary (vertical reference line) within each decile of

adherence. The misspecification rate (open circles) are plotted on the

left boundary of the respective decile group, that is, the

misspecification rate of those patients who were between 20 and

30 % is represented by the open circle at x = 0.2. The error bars

represent the calculated standard error of the proportion. Two separate

lines are plotted for the misspecification of nonadherent patients and

adherent patients. The misspecification error for the nonadherent

patients is[ 0 to the left of the 0.6 reference line, and 0 to the right of

the vertical reference line. Conversely, the misspecification error for

the adherent patient group is[ 0 to the right of the 0.6 reference line,

and 0 to the left of the vertical reference line
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misspecification to adherent misspecification based on the

60 % decision boundary. In the closest deciles near the

decision boundary (50–60 and 60–70 %), where perfor-

mance is expected to be the least sensitive, the difference in

misspecification rate for classifying a patient as adherent

versus nonadherent was approximately twofold (26.1 vs.

57.6 %, respectively). However, the misspecification rate

was below 20 % for patients who were either\30 % ad-

herent or patients who were C80 % adherent.

Misspecification rates from additional simulations

changing the degree of variance in the model parameters

are displayed in Fig. 4. For clarity, the standard errors are

not included as the intent is to show relative effect of al-

tering the variance structure rather than statistical sig-

nificance. For these simulations, the decision boundary was

kept constant at 0.6. When the CV of the clearance pa-

rameter was reduced from *40 to 20 %, there was an

improvement in type I misspecification rate (Fig. 4, dashed

line). When all CV terms were reduced by half (including

covariance terms), there was no apparent improvement in

type I misspecification of nonadherent behavior, but there

was a marked decrease in misspecification of adherent

behavior (Fig. 4, dotted line). Separate comparisons were

made after moving the decision boundary to 0.8 for

Fig. 4 Adherence metric results from simulations to assess the

performance of the adherence metric under different variance

parameter values within the population PK model. Two separate

lines are plotted for each simulation. Misspecification error of patients

in the nonadherent group is presented to the left of the vertical

reference line at x = 0.55 under the ‘‘Type I Misspecification’’

heading, similar to a type I (alpha) error rate, similar to accepting the

null hypothesis when a true difference exists. Likewise, the ‘‘Type II

Misspecification’’ is analogous to a type II (beta) error rate, similar to

rejecting the null hypothesis when no true difference exists. The

misspecification error for the nonadherent patients is[ 0 to the left of

the x = 0.55 reference line, and 0 to the right of the vertical reference

line. Conversely, the misspecification error for the adherent patient

group is[ 0 to the right of the 0.6 reference line, and 0 to the left of

the vertical reference line. The results from the model with all

variance parameters being kept the same are shown as the solid blue

line with open circles; the results of the model with only the CV of the

apparent clearance parameter decreased by half are shown as the

dashed green line with open triangles; and the results of the model

with all parameter CVs decreased by half are shown as the dotted line

with plus symbols (Color figure online)
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simulations with 20 % CV on the clearance parameter (not

shown). Under these conditions, the misspecification rate

around the decision boundary was approximately 50 and

40 % for type I and type II misspecification, respectively.

The increase in type-II misspecification with decreased IIV

and a decision boundary set at (1 - CVCL)/100 suggests

that the true underlying adherence levels are also con-

tributing to the type-II misspecification rates; in other

words, a highly adherent population and a model with low

IIV will still yield a relatively high type-II error rate near

the decision boundary. Provided the decision boundary is

not near the upper limit of adherence for the population, the

results demonstrate that the aggregate adherence metric

may serve as an indicator of adherence or nonadherence in

cases where the observed metric is well outside the ex-

pected variability range for the clearance parameter.

This simplified scenario of adherence simulations

demonstrate that ADHMET values are not appropriate for

individual level diagnostics; however, utility as an indi-

vidual diagnostic is unrelated to its appropriateness as a

measure of relative adherence within groups, and its ability

to serve as the basis for a statistical comparison across

groups under presumed conditions of homogenous

variance.

Clinical PK results

Summary statistics of the aggregate adherence metric for

the 47 patients evaluated in this study are provided in

Table 1. The average (mean) adherence metric calculated

for the clinical data (back calculated from the log-domain)

was 0.679, with a median value of 0.644, and a range of

0.163–3.131. Figure 5 shows the distribution of the loga-

rithm of the adherence metric in the population with the

corresponding QQ-plot comparing the distribution to a

hypothetical normal distribution. Interestingly, there was a

significant difference in ADHMET values across gender in

this study (see supplementary material); however, this re-

lationship is not explored in more detail as the primary

comparison is based solely on questionnaire responses, and

their ability to serve as surrogates for nonadherent behavior

a priori.

Clinical questionnaire correlations

In general, there was no trend observed between the ag-

gregate adherence metric and the observed total score on

the MMAS8 (Fig. 6). However, upon inspection of re-

sponses to individual questions, a strong association was

observed for one question, and one additional question

showed a potential association. Question 4 on the MMAS8

showed a strong relationship in the log-domain and when

tested using a non-parametric Kruskal–Wallis test in the

linear domain (P = 0.011 and P = 0.02, respectively).

Question 6 on the MMAS8 showed a potential association

in the log-domain (P = 0.076). Figure 7 shows box plots

for the distribution of calculated adherence metrics within

each response group for questions 4 and 6; plots for all

individual MMAS8 questions are provided as supplemen-

tary material. Additionally, despite the observed relation-

ship with ADHMET values and gender, there was no

correlation between gender and responses to questions 4 or

6 (see supplementary material).

Discussion

In clinical practice, subjective interpretation of patient re-

sponses is often used as a means for decision-making.

When such responses are intended to identify nonadherent

behavior to a prescribed medication regiment, there is little

evidence as to whether or not these responses will correlate

with differences in objective measures of systemic expo-

sure, which is ultimately the goal of treatment. This work

was initiated to assess whether any such correlations exist

between a particular clinical questionnaire designed to

detect nonadherent behavior and expected plasma drug

exposure levels in psychiatric patients on stable doses of

aripiprazole. In other words, would results from a subjec-

tive questionnaire correlate with objective observations of

steady-state plasma drug exposures in a representative

patient population? To address this question, a novel ‘‘re-

verse-engineering’’-based approach to sparse sampling

population PK was applied.

From a pharmacometric standpoint, nonadherence to a

prescribed medication may lead to decreased systemic

exposure. However, nonadherence is bidirectional and can

manifest as higher than intended systemic exposure when

extra doses are taken. The clinical consequences and

pharmacometric challenges of unobserved nonadherence

has been discussed at large [1, 16, 18–20, 23, 24]. Despite

this acknowledgment, little widespread utility has been

found from using POPPK modeling as a tool for estimating

Table 1 Summary statistics for aggregate adherence metric calcu-

lated from clinical data

N Mean Median Range

Descriptives in log domain

47 -0.387 -0.44 -1.83–1.148

Descriptives back-calculated to linear domain

47 0.679 0.644 0.163–3.151

Descriptives expressed as percent (%)

– 67.9 64.4 16.2–315.1
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adherence levels. Most efforts to mitigate nonadherence

have focused on surrogate measures of compliance, such as

electronic monitoring or patient journals [18, 19], while

little effort has been made to quantify the degree to which

nonadherence may be expected in a given population a

priori under naturalistic conditions. The approach de-

scribed in the current work provides a pharmacometric

measure enabling the comparison of relative adherence

across groups and, to our knowledge, has not been previ-

ously explored. Such a measure might be used in other

areas during drug development; examples include using the

ADHMET approach to distinguish between groups of re-

sponders and non-responders, or using observed ADHMET

percentiles as a potential stratifier in a hazard function for a

particular outcome.

The goal of establishing relative adherence levels to oral

aripiprazole treatment post-approval allowed utility of the

entire family of PK studies that were conducted during the

approval process of this currently marketed drug. This is a

unique use-case scenario for a pharmacometric analysis,

given that most such analyses are performed to inform the

approval process. We believe this approach offers a new

avenue by which pharmacometricians and clinicians may

collaborate to provide unique solutions throughout the

entire lifespan of a compound. In this case, the lack of

correlation of the aggregate adherence metric with the total

score of the MMAS8 is noteworthy because study coordi-

nators may use such questionnaires to set various inclusion

criteria based on the implied inference of such a score.

Although a formal validation of MMAS8 in psychiatric

patients has not been conducted, the scale has previously

been validated in patients with hypertension [25]. One

possible reason for the lack of correlation of steady-state

plasma drug concentrations with the MMAS8 total scores

is patient bias in responses when answering clinical ques-

tionnaires [26, 27]. However, in the current study, we

found that individual questions were more informative in

certain cases than the overall questionnaire score. It was

observed that MMAS8 question 4 ‘‘When you travel or

leave home, do you sometimes forget to bring along your

[health concern] medication(s)?’’ was a significant indi-

cator (unadjusted P\ 0.05) of the adherence metric in this

data set: Patients who answered ‘‘yes’’ to this question had

lower ADHMET values as a group than those who

Fig. 5 Distribution for

calculated adherence metric

values in the clinical study

population
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Fig. 6 Box plots for the

distribution of calculated

adherence metrics within each

group scoring a particular value

on the MMAS8 with the

corresponding analysis of

variance analysis (ANOVA)

P value testing for a difference

across groups for both the

ordinary and log domains. The

dashed line connects the median

values within each group

Fig. 7 Box plots for the

distribution of calculated

adherence metric within each

response group for questions 4

(left) and 6 (right), respectively.

Group medians are connected

by a dashed line, and the

corresponding t test P values are

displayed for each question.

Question 4 reads ‘‘When you

travel or leave home, do you

sometimes forget to bring along

your [health concern]

medication(s)?’’ Question 6

reads ‘‘When you feel like your

[health concern] is under

control, do you sometimes stop

taking your medication(s)?’’
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answered ‘‘no’’. Although there was no correlation with

total MMAS8 scores during a single visit investigation,

the correlation of those test scores with longer-term be-

havioral tendencies assessed by PK sampling cannot be

addressed by this work and still remains an unexplored

topic. Given that screening, enrollment, and sampling

were completed at the same visit, we believe that we

captured the most accurate reflection of patient behavior

with respect to plasma concentrations and willingness to

answer the clinical questionnaire truthfully; however, it is

also possible that patients may answer questionnaires

more truthfully in a private session with their physician,

leading to stronger correlations with medication exposure

in practice.

A limitation of this method is the a priori need for a rich

and robust data set that may be used for building a POPPK

model capable of representing an upper bound of the true

magnitude of variability associated with the model pa-

rameters. Such a data set may not exist during early clinical

development, which may partially explain previous efforts

to minimize the effect of nonadherence rather than to

quantify it. However, it is possible that an ADHMET ap-

proach may be used after Phase 2a or in late clinical de-

velopment (examples above) provided that adequate PK

sampling had been conducted in earlier phases. It should be

noted that this metric is cumulative and is not representa-

tive of adherence with the exact time of dosing; however,

while the exact time of dosing becomes more critical as the

dosing interval exceeds the terminal half-life of the com-

pound, oral therapies are commonly developed for once-

daily dosing accompanied by appreciable accumulation to

steady-state, where minor deviations in the dosing time

may not drastically affect the average profile. Another

limitation of the work is its partial dependence on observed

PK variability for a given compound, which could be a

potential limiting factor for detecting relationships from a

sample size perspective. Given that the aggregate adher-

ence metric is a convolution of expected (normal) vari-

ability and adherence factors, it is not believed to be

appropriate for indicating individual adherence levels—

this is supported by our simplified simulation example.

Additionally, because this study design dealt only with

sparse sampling and a compound with modest variability in

the clearance parameter (CV * 40 %), sensitivity and

specificity at the individual level may change with a denser

sampling strategy, lower variability in the model as a

whole, or both. However, neither the magnitude of ex-

pected variability in the population, nor the lack of sensi-

tivity at the individual level, are expected to effect the

utility of the aggregate adherence metric for group com-

parisons—only the power to which a difference may be

detected across those groups.

Conclusions

A novel ‘‘reverse’’ approach to POPPK was applied as a

primary endpoint in a clinical study to gauge the ultimate

utility of a clinical questionnaire as a surrogate for

medication exposure at steady-state. No observable rela-

tionship was found between the total score on the ques-

tionnaire (the MMAS8) and observed versus expected

plasma concentrations of aripiprazole. However, because

the clinical setting was a single-visit study of patients who

were on stable doses of aripiprazole, extrapolation of these

results to longer-term settings, or to correlations with re-

sponses provided to a physician in private, are not feasible.

This application of POPPK may address a new type of

clinical problem using pharmacometrics that is distinct

from classic pharmacodynamic modeling.
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