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Abstract Regulatory elements are more evolutionarily con-
served and provide a larger mutational target than coding re-
gions of the human genome, suggesting that mutations in non-
coding regions contribute significantly to development and
disease. Using a computational approach to predict gene reg-
ulatory enhancers, we found that many known and predicted
embryonic enhancers cluster in genomic loci harboring
development-associated genes. One of the densest clusters of
predicted enhancers in the human genome is near the genes
GMDS and FOXCI. GMDS encodes a short-chain mannose
dehydrogenase enzyme involved in the regulation of hind-
brain neural migration, and FOXC/! encodes a developmental
transcription factor required for brain, heart, and eye develop-
ment. We experimentally validate four novel enhancers in this
locus and demonstrate that these enhancers show consistent
activity during embryonic development in domains that over-
lap with the expression of FOXCI and GMDS. These four
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enhancers contain binding motifs for several transcription fac-
tors, including the ZI/C family of transcription factors.
Removal of the ZIC binding sites significantly alters enhancer
activity in three of these enhancers, reducing expression in the
eye, hindbrain, and limb, suggesting a mechanism whereby
ZIC family members may transcriptionally regulate FOXC1
and/or GMDS expression. Our findings uncover novel en-
hancer regions that may control transcription in a topological
domain important for embryonic development.

Keywords Transcription factor - Development - Enhancer -
Gene regulation

Introduction

Enhancers are gene regulatory elements—DNA regions that
bind transcription factor proteins to control the timing, ampli-
tude, and tissue specificity of gene expression [1]. The tran-
scription factor binding sites within enhancers often have
highly specific motifs, and small mutations in these binding
sites can reduce or destroy binding affinity between the en-
hancer and the transcription factor, leading to alterations in
gene expression. In a canonical example of a mutation in an
enhancer causing a developmental disorder, a single point
mutation in a limb-specific enhancer of the Shk (Sonic
Hedgehog) gene is sufficient to cause preaxial polydactyly
[2].

In this study, we demonstrate a computational approach to
predict enhancers, named EnhancerFinder [3], which we used
to identify a dense cluster of novel enhancers located in a
topologically associating domain (TAD) containing the genes
FOXCI and GMDS. FOXCI is a forkhead box transcription
factor that is expressed in the mesenchyme of the developing
somites, heart, bone, brain, and other tissues. The mouse
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homolog Foxcl has been studied extensively, with Foxc/-null
mutants being pre- or perinatal lethal. In humans, complete
lack of FOXC1 is also typically pre- or perinatal lethal, and
deletions and point mutations in FOXC/ contribute to eye and
brain developmental disorders [4]. GMDS is a short-chain
mannose dehydrogenase enzyme that catalyzes the production
of GDP-fucose from GDP-mannose. Fucosylated glycans are
known to regulate cell-cell adhesion, and thus GMDS may
play a role in the regulation of cell migration and axonal path-
finding. Recent studies of the zebrafish GMDS mutants
slytherin and towhead have highlighted the role of
fucosylation in neural development. Slytherin mutants, which
have a point mutation in GMDS, have severe hindbrain mal-
formation and motor dysfunction that result from improper
migration of hindbrain neural precursors [5]. The towhead
mutation in zebrafish is less severe, resulting from a mutation
of a conserved Trp residue to an Arg, manifesting in the mal-
formation of the vagal nerve nuclei [6].

We tested four of the predicted enhancers in the
FOXC1/GMDS domain and found that they consistently
drive expression in developing embryonic tissues where
these genes are also expressed. These enhancers contain
computationally predicted binding sites for many tran-
scription factors, including ZIC transcription factors
(zinc finger of the cerebellum). We showed that remov-
ing ZIC binding sites from these enhancers significantly
reduces enhancer expression in the hindbrain, eye, and
limb, suggesting that ZIC genes may be involved in the
transcriptional regulation of FOXC!I and/or GMDS.

Materials and methods
Enhancer identification

Enhancers tested in this study were computationally predicted
using EnhancerFinder [3], a machine-learing approach that in-
tegrates thousands of genetic and epigenetic data sources to pre-
dict developmental human enhancers. The machine-learning al-
gorithm in EnhancerFinder is unique compared to other enhancer
prediction approaches, as it was trained using 700 in vivo-
validated developmental enhancers from the VISTA Enhancer
Browser [7]. The algorithm uses sequence motifs and patterns
of transcription factor binding and histone modifications to dis-
tinguish these validated enhancers from random genomic regions
or from sequences that were tested by VISTA but showed no
enhancer activity. The resulting 84,301 novel enhancer candi-
dates are predicted to be active in a variety of embryonic tissues.

Computational analysis of enhancer clusters

For every gene in the human genome (based on an October
2012 download of the UCSC Genome Browser RefGene
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track), we counted the number of predicted enhancers within
500 kilobases (kb) upstream or downstream of the transcription
start site. While it is hard to know which gene an enhancer is
actually regulating, we assumed that 1 megabase (Mb) would
be a wide enough distance to capture many of the functional
gene-enhancer pairs. We ranked genes based on the number of
associated enhancers and thereby identified the loci with the
densest clusters of enhancer candidates in the human genome.
The GREAT tool [8] was used to annotate the biological
functions of the 1321 genes with the densest clusters of pre-
dicted enhancers (top 5 % of all human genes). To test if these
genes are enriched for particular functions, we used the
hypergeometric test, with the default GREAT settings and
the “basal plus extension” association rule (proximal 5 kb
upstream, 1 kb downstream, plus distal up to 100 kb).

Selection of enhancers for functional studies

We focused on a dense cluster of enhancers, which is located in
the chromosome band 6p25.3 at the genomic coordinates listed
below (hg19) and contains 72 enhancers within 1 Mb. Three of
the enhancers (CE1-3) are located in the ~10-kb intergenic re-
gion that falls between the neurodevelopmental genes FOXC1
and GMDS. CE4 is in the second intron of GMDS, approximate-
ly 90 kb from FOXCI. CE1-4 range in length from 995 to
1431 bp. DNA for these regions was synthesized rather than
amplified via PCR, but the primers shown below have been used
in a related study to amplify the same regions [3] (CE1, located
at hgl9 chr6:1614904-1616335, forward primer
AGACCCCTGTTAGTTTCGCT and reverse primer
ATTAGCTGATTCCCCGCCAT; CE2, located at
chr6:1616341-1617336, forward primer
AAATAGCCTCTGTAAAAAGCTTTAGG and reverse primer
GACTGACACAGTCTCTTGGTCCT; CE3, located at
chr6:1619847-1620844, forward primer
GAGTCGAGTCCTCGGAGC and reverse primer
TATGACTACGACGGCAGAGG; CE4, located at
chr6:1702408-1703763, forward primer
CAGTAGCTGGACTCCGACTC and reverse primer
ACTTCCACCCAGCACAGAAA). Wild-type enhancer se-
quences consisted of the human reference genome (hgl9) for
each region indicated. ZIC-enhancer sequences were comprised
of the reference genome sequence with all computationally pre-
dicted ZIC binding sties removed. Position weight matrices for
ZIC1 and ZIC3 from the April 2011 release of the TRANSFAC
database of experimentally derived transcription factor binding
motifs were used to identify ZIC binding sites. The consensus
sequence of ZIC binding sites is GGGGTGGTC.

Associating enhancers with genes

To link enhancers to potential target genes, we used published
TADs in human embryonic stem cells. TADs are stable
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features of mammalian genomes that delineate regions of local
3D chromatin interactions, and the boundaries of these do-
mains remain largely consistent across cell types and between
species [9]. The topological domain that contains FOXC],
GMDS, and the predicted enhancers is defined by chromo-
somal position chr6:1400001-2680000 (6p25.3-6p25.2)
(hg19) and spans 1.28 Mb.

Transgenic mouse enhancer assay

Mouse enhancer assays were carried out in transient transgen-
ic mouse embryos generated by pronuclear injections of en-
hancer constructs into FVB embryos. Human DNA sequences
were inserted upstream of the Hsp68 minimal promoter and a
lacZ reporter gene. The embryos were collected and X-gal
stained at E11.5. In this assay, the minimal promoter should
only activate the lacZ reporter gene when the candidate en-
hancer region effectively recruits and binds transcriptional
machinery. Following standard annotation procedures [7],
we required that consistent expression patterns be present in
three or more embryos to consider the candidate region an
enhancer. This assay includes two negative controls: the emp-
ty vector injection and PCR-negative embryos of injected con-
structs. Background expression of these controls is considered
in our annotation criteria. Neither of the controls exhibits the
expression patterns seen in the CEs. CEl, 2, 3, and 4 all met
this annotation criterion. Transgenic mice were generated by

Cyagen Biosciences, whose facility meets and often exceeds
animal health and welfare guidelines. Animals were eutha-
nized using techniques recommended by the American
Veterinary Medical Association. All procedures were carried
out in line with Gladstone Institutes and University of
California guidelines.

Identification of upstream regulators of FOXC1/GMDS

Genome-wide locations of predicted transcription factor bind-
ing sites were generated using the Find Individual Motif
Occurrences (FIMO) tool from the MEME suite of bioinfor-
matics tools [10], based on the April 2011 release
TRANSFAC database of experimentally derived transcription
factor binding motifs [11], with a FIMO score threshold of 10e
—5. We intersected these predicted binding sites with the ge-
nomic coordinates of the four enhancers using the
IntersectBed tool from the BedTools suite of bioinformatics
tools [12].

To determine which genes were expressed in the develop-
ing brain, we used the fetal brain data from the GNF Atlas2
database [13]. The fetal brain data included in GNF Atlas2 is
based on a Clontech pooled sample of normal whole brains
from 59 spontaneously aborted male and female Caucasian
fetuses, ages 20-33 weeks. All array data was mapped to
RefSeq gene names (RefGene track downloaded from the
UCSC Genome Browser January 2014). Genes with an
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Fig.1 The genomic landscape surrounding FOXC! and GMDS includes
four candidate enhancers tested in this study, shown in a screenshot from
the UCSC Genome Browser. The top panel shows the entire topological
domain that includes FOXC! and GMDS, highlighted in green. The
smaller region surrounding the four candidate enhancers is highlighted
in blue and shown in greater detail in the lower panel. The genomic
location, genes, and candidate enhancers are shown along with publicly

available data tracks of conservation (100 Vertebrates Basewise
Conservation by PhyloP) and ENCODE data of enhancer-related
histone modifications H3K27ac and H3K4mel, and transcriptional
activation-related histone modification H3K4me3 (“layered” view of
seven cell lines including GM12878, H1-hESC, HSMM, HUVEC,
K562, NHEK, and NHLF)
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expression score greater than or equal to 64 were considered
expressed. To assess known gene expression patterns in the
developing mouse, we viewed images of in situ hybridizations
of E11.5 and E14.5 mouse embryos from the Allen Brain Map
(http://developingmouse.brain-map.org/) and the Eurexpress
Transcriptome Atlas (http://www.eurexpress.org/ee/). To
assess known gene expression in the developing human
brain, we viewed RNA-seq data from the BrainSpan Atlas
of the Developing Human Brain (http://www.brainspan.

A cE1

Expression domains of note

org/). Genes with RPKM (reads per kilobase per million)
values greater than 1 were considered to be expressed [14].

Results

EnhancerFinder is a computational tool that predicts develop-
mental enhancers based on positive examples of biologically
active developmental enhancers [7] and negative examples

B Foxc1-lacZ

CE1 X-gal Positive: 5
Cerebral Cortex 2/5
Cortical mesenchyme 1/5
Eye 3/5
Hindbrain- neural 2/5
Limb 3/5
Midbrain 3/5
Spinal cord 4/5
CE2
CE2 X-gal Positive: 3
Eye 1/3
Hindbrain-mesenchyme | 1/3
Hindbrain- neural 1/3 A
Limb 1/3
Somitic mesenchyme 113
Spinal cord 33
CE3 X-gal Positive: 12
Branchial arch 112 D cmDs
Cortical mesenchyme 112
Eye 6/12
Forebrain-neural 2/12
Hindbrain- neural 2/12
Limb 312 1
Midbrain 312 } |
Somitic mesenchyme 3/12 { /.
Spinal cord 6/12 [ R - A
CE4 CE4 X-gal Positive: 10
Cortical mesenchyme 2/10
Facial mesenchyme 1/10
Forebrain-neural 2110
Hindbrain- neural 5/10
Hindbrain-skin 1/10
Limb 1/10
Midbrain 3/10
Somitic mesenchyme 3/10
Spinal cord 5/10

Fig. 2 a An analysis of four computationally identified enhancers, with
annotated tissue expression in the E11.5 mouse embryo. Tissues are noted
in bold if they have lacZ expression half or more of the embryos for a
given enhancer. b An E11.5 foxcl-lacZ embryo, X-gal stained.
Arrowhead notes cortical mesenchymal expression. E14.5 in situ
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hybridizations of ¢ foxc/ and d gmds in the E14.5 mouse brain.
Arrowhead notes mesenchymal expression in ¢ and hindbrain neural
expression in d. Data from the Eurexpress transcriptome atlas (http://
WWw.eurexpress.org/ee/)


http://developingmouse.brain-map.org/
http://www.eurexpress.org/ee/
http://www.brainspan.org/
http://www.brainspan.org/
http://www.eurexpress.org/ee/
http://www.eurexpress.org/ee/

Neurogenetics (2016) 17:1-9

from genomic background. This method uses a multiple ker-
nel learner (similar to a support vector machine) and charac-
terizes genomic regions through an integrated profile of a
large number of genetic and epigenetic data sources. Using
in vivo-validated examples to train EnhancerFinder and inte-
grating hundreds of sequence motifs and functional genomics
experiments make this approach more accurate at identifying
biologically active enhancers compared to other approaches
[3]. For this study, we started with the 84,301 candidate de-
velopmental enhancers predicted by EnhancerFinder across
the human genome. We then examined the genome-wide dis-
tribution of EnhancerFinder’s predicted enhancers and found
that they cluster near loci that contain important developmen-
tal genes. Since developmentally active genes typically rely
on tight regulation to exhibit robust spatio-temporal expres-
sion patterns, these enhancers likely play a role in coordinat-
ing normal development. Genes with the highest number of
nearby enhancers in the human genome (Supplemental
Table 1) are enriched for several biological functions related
to development including epithelial cell development, arterial
development, and dorsal/ventral neural tube patterning.
Many genes essential for normal development fall within
clusters of EnhancerFinder’s predicted developmental en-
hancers. Neighboring genes FOXCI and GMDS are found in
one of the densest enhancer clusters in the genome, with 72
predicted nearby enhancers over a 1-Mb range. These genes
and 104 predicted enhancers fall within a single TAD of local
chromatin interactions in human embryonic stem cells [9], in-
dicating that these regions have 3D structural interactions

Fig. 3 Cryosections of reporter A
embryos, a noting hindbrain CE1
neural expression and b facial/
cortical mesenchyme, see
arrowheads. Sections are 10 um,
horizontally cut, counterstained
with FastRed
B
CE4
.
7
/ L P
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during embryonic development. GMDS and FOXCI are the
only two protein-coding genes fully contained within this
TAD. Three long non-coding RNA genes are also encoded in
this domain, as well as the 3’ end of myosin light-chain kinase
MYLK4. Boundaries of topological domains are often consis-
tent across cell types and evolution [9], suggesting that the
topological domain that contains FOXC1 and GMDS is present
in many developing tissues during development (Fig. 1).

We tested seven candidate enhancer (CE) regions and val-
idated five novel developmental enhancers near FOXC/ and
GMDS using a transgenic mouse enhancer assay. We saw that
these five enhancers are active at E11.5 in various embryonic
tissues. We chose embryonic day E11.5 as it is an active stage
of brain patterning and development and is 1 day prior to
when differentiated structures are apparent [15]. Figure 2
shows representative images of CE1—4 from the transgenic
mouse assay, as whole embryos, highlighting enhancer activ-
ity in different tissues. Associated tables detail the expression
patterns of these CEs in the transgenic enhancer assay. A
given anatomical region of the embryos was noted in bold
when it showed expression in greater than half of the X-gal-
positive (+) embryos. For instance, CE1 showed expression in
the developing limb in three out of five X-gal-positive embry-
os (Fig. 2). Additional tissues that showed expression in more
than half of the X-gal-positive embryos included the eye
(CEL, 2), the spinal cord (CE1-4), and the midbrain (CE1).
Expression in the hindbrain neural tube was also seen in
embryos for each enhancer, although it was seen most
frequently in CE4 (Figs. 2a, 3a). Interestingly, a few
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Table 1  Transcription factors with more than 12 predicted binding

motifs found in CEs

Transcription factor name Total inall CEs CEl CE2 CE3 CE4
ESRI1 130 58 12 53 7
ELK1 75 29 11 17 18
ZIC3 71 37 10 11 13
PAXS 66 29 2 23 12
DEAFI 62 31 5 9 7
SP1 56 9 6 38 3
PAX3 50 26 3 12 9
MYF6 48 16 7 18 7
ZIC1 48 26 6 12 4
SMAD4 41 15 5 4 7
FOXOl1 40 15 15 - 10
SOX13 39 13 6 15 5
EGR1 38 10 5 19 4
MYB 38 8 11 6 13
GATA1 37 3 3 2 29
E2F1 33 14 1 17 1
ATF6 32 11 7 6 8
TBP 31 6 7 6 12
ISL2 30 6 8 2 14
YY1 30 1 18 3 8
PBX1 27 2 15 4 6
CAD 24 7 12 3 2
CDX1 23 6 4 2 1
ELF1 23 6 5 6 6
ELF5 23 9 6 5 3
IK 23 9 3 8 3
IRF3 23 7 9 4 3
SP2 23 6 2 14 1
PAX4 22 12 4 3 3
HNF4A 21 6 8 1 6
IRF4 21 12 - 4 5
MAFB 21 6 7 2 6
SOX9 21 4 11 2 4
ARID3A 20 1 8 1 10
CTCF 20 15 - 3 2
PAX6 20 5 4 6 5
SMAD3 20 4 5 5 6
CEBPA 19 6 7 1 5
FOXO03 19 4 9 - 6
GATA2 19 2 1 1 15
IRF6 19 11 1 4 3
FOXJ1 18 6 5 2 5
PAX8 18 4 5 2 7
TTF1 18 7 5 4 2
USF2 18 8 2 4 4
VDR 18 6 3 3 6
AR 17 8 3 4 2
CEBPB 17 2 7 1 7
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Table 1 (continued)

Transcription factor name Total in all CEs CEl CE2 CE3 CE4

SPIB 17 6 - 4 7
E2F3 16 6 - 10 -
POUSF1 16 2 5 - 9
SP3 16 7 4 5 -
ARIDSA 15 2 6 1 6
ESRRA 15 5 4 — 6
RXRA 15 6 5 - 4
SP100 15 1 3 8 3
SRY 15 1 12 - 2
TBXS 15 6 3 2 4
GATA3 14 4 1 - 9
LEF1 14 5 5 4 -
NF1 14 2 6 4 2
ZBTB4 14 5 - 2 7
EGR2 13 4 3 6 -
PPARA 13 2 5 3 3
GLIS2 12 2 6 - 4
MAFA 12 2 3 1 6
MAX 12 6 3 3 —
SF1 12 6 — 3 3
SOX2 12 3 4 - 5

For each transcription factor, the total number of predicted binding sites is
shown along with the number of predicted binding sites in each CE.
These genes are all expressed in the fetal brain (GNF Atlas2 [13] pooled
sample of fetal whole brain)

embryos had expression in the cortical mesenchyme
(CEl, 3, 4) where Foxcl is expressed endogenously
(see Figs. 2b, 3b), although this expression was not
consistent across many embryos. CE4 is more likely to
be regulating GMDS as GMDS is expressed in the de-
veloping hindbrain neural tube, whereas Foxcl is re-
stricted to the surrounding mesenchyme (Fig. 2c, d).
CES5 showed consistent expression in the eye (data not
shown).

The four identified CEs contain binding motifs for hun-
dreds of transcription factors. To better understand the re-
gion’s transcriptional regulation in brain development, we fil-
tered this list to include transcription factors and co-factors
expressed in the developing brain that have at least 12 predict-
ed binding motifs in at least one of the enhancers. We identi-
fied a large number of potential transcriptional regulators,
widening the number of potential transcriptional regulators
of FOXC1/GMDS expression. The neurodevelopmental tran-
scription factors ZIC1 and ZIC3 are amongst the genes with
the highest numbers of predicted binding motifs in the CEs
(Table 1). Figure 4a shows the enhancer landscape near
FOXC1/GMDS and the location of predicted ZIC binding
sites. ZIC genes, including Zicl and Zic4, are known to be
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active in the developing hindbrain [16], suggesting that they
may regulate GMDS hindbrain expression.

To further investigate the role of ZIC proteins in the regu-
lation of our identified enhancers, we made mutant enhancer
constructs that lacked ZIC binding sites. We then used our
transgenic mouse enhancer assay to test whether removing
these sites affects expression noted in Fig. 2. We found dimin-
ished neural expression in three of the four brain CEs (Fig. 4).
For the mutant CE4 construct, we did not recover enough
embryos to make substantive conclusions (only two X-gal-

A

positive embryos were recovered). Of note, many regions
where at least half of the X-gal-positive embryos had expres-
sion in with the wild-type (WT) enhancer no longer had robust
expression. This included expression in the eye (CE1 and 2),
limb (CE1), spinal cord (CE2 and 3), and midbrain (CE1).
Also, a number of regions gained expression that was not seen
in the WT embryos, including the branchial arch and facial
mesenchyme. While mouse ZIC1 or 3 do not appear to be
expressed in these structures, ZIC2 is expressed in the devel-
oping upper and lower jaws (Figure S1). Thus, ZIC2 may be
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Fig. 4 a An image from the UCSC Genome Browser showing the
enhancer landscape near FOXC1 and GMDS. The top panel shows all
four CEs. The lower panel is zoomed in to the regions immediately
surrounding the enhancers, to highlight the ZIC1 binding sites. b E11.5
whole-mount images of ZIC mutants CE1-3. CE4 only yielded two X-

gal-positive embryos and was thus not used in the analysis. Tissues that
have lacZ expression in at least half of the X-gal-positive embryos in WT
but not in ZIC enhancers are noted in red. Arrowheads mark regions of
interest
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inhibiting craniofacial expression in the WT context and the
lack of ZIC binding sites in the mutant enhancers may lead to
disinhibition and activation of expression in craniofacial
tissues.

Although the CEs are located very close to FOXC/ and
GMDS, they may also regulate other nearby genes. FOXF?2
and FOXQ! are located 215 and 300 kb, respectively, up-
stream of FOXCI and the CE cluster. These genes are
expressed in many of the same mouse tissues as the CEs (as
seen in in situ images of E11.5 mouse embryos from the Allen
Brain Map). Although these other potential target genes are
not in the same TAD as the CEs in human embryonic stem
cells, the genomic distance separating them from the CE clus-
ter is well within the range of enhancer function. Together,
FOXC1, GMDS, FOXF2, and FOXQI may represent loci
for enhancer-driven changes in gene expression that could
affect the developing embryo.

Discussion

Here, we have applied a novel computational approach for
discovering enhancers, called EnhancerFinder. We found that
many enhancers cluster around developmentally relevant
genes, such as transcription factors that are necessary for con-
trolling cell identity. By identifying novel enhancers,
EnhancerFinder provides new avenues of investigation re-
garding the regulation of gene expression during embryonic
development. We characterize a cluster of predicted enhancers
around the genes FOXCI and GMDS, both of which are
known to regulate diverse developmental processes in multi-
ple tissues. We found that these enhancers are contained with-
in a single TAD, suggesting a common underlying structural
constraint that may link these enhancers to FOXC/ and
GMDS. With the large number of EnhancerFinder-predicted
regions that cluster within this domain, the FOXCI and
GMDS locus appears to be densely packed with regulatory
elements, meriting future investigation.

Using an embryonic mouse transgenic assay, we show that a
set of novel enhancers drives expression in many of the regions
that express FOXC1 and/or GMDS. We also provide sequence-
based evidence that ZIC protein family members such as ZIC1
are likely candidate regulators of expression from these en-
hancers. To support this, we show that the tissue-specific activ-
ity of these enhancers is dependent upon the presence of ZIC
transcription factor binding motifs in the enhancers.

A number of developmental processes are regulated by
GMDS and FOXCI. GMDS controls the production of
fucosylated glycans, which in turn regulates cell migration
and adhesion, as well as the formation of axonal projections
and synapses [4, 5, 17]. Notch signaling is also regulated via
the fucosylation of EGF-like repeats in the Notch receptor, the
disruption of which was shown to contribute, at least in part, to
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the slytherin GMDS mutant phenotype [5]. FOXCI controls
the development of a number of tissues, including the mesen-
chyme that surrounds the nervous system, as well as the so-
matic mesenchyme, heart, kidney, and eye. FOXCI mutations
in humans result in developmental malformations of the cere-
bellum and eye, Axenfeld-Rieger syndrome, and Dandy-
Walker malformation [4]. These disorders likely result from
defective meningeal development and disrupted
mesenchymal-neuroepithelial interactions during embryonic
development.

The specific role of regulatory elements in the FOXCI/
GMDS locus during brain development is unclear.
Specifically, it is unknown what role non-coding mutations
around the FOXC1/GMDS locus might play in developmental
disorders such as Dandy-Walker syndrome. A small number of
the transgenic embryos tested in this study showed mesenchy-
mal enhancer expression suggestive of the FOXC/-like expres-
sion, although the number was too few to make any definitive
conclusions. Neuronal expression was seen more consistently,
similar to neuronal GMDS expression in the embryonic brain.
Given the role of GMDS in hindbrain development in zebrafish
[5, 6], it is possible that mutations in enhancers surrounding the
FOXC1/GMDS locus may disrupt GMDS expression and thus
cerebellar development. Also, ZIC genes in humans and in
mice have been shown to be involved in Dandy-Walker cere-
bellar malformations [16, 18], which is interesting given the
particularly high number of ZIC binding motifs in enhancers
near FOXC1 and GMDS. Thus, these novel enhancers provide
mechanistic insight into means by which these two genes are
regulated in a variety of tissues in the developing embryo. The
initial characterization of the FOXC1/GMDS regulatory envi-
ronment we present here may help inform further areas of re-
search regarding developmental malformations that result from
mutations in this locus.
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