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Abstract
Mycoviruses, just as the fungal endophytes they infect, are ubiquitous biological entities on Earth. Mycoviruses constitute a 
diverse group of viruses, and metagenomic approaches have—through recent discoveries of been mycoviruses—only recently 
began to provide evidence of this astonishing diversity. The current review presents (1) various mycoviruses which infect 
fungal endophytes and forest pathogens, (2) their presumed origins and interactions with fungi, plants and the environment, 
(3) high-throughput sequencing techniques that can be used to explore the horizontal gene transfer of mycoviruses, and (4) 
how the hypo- and hypervirulence induced by mycoviral infection is relevant to the biological control of pathogenic fungi.
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Fungal endophytes and mycoviruses

Fungi that reside inside living organisms without causing 
visible symptoms during at least one part of their life cycle 
are generally known as endophytic fungi [1, 2]. These fungi 
are hyperdiverse and ubiquitous, existing in all major habi-
tats—marine, plant, animal, lichen, and soil [3–7]. There-
fore, it is not surprising that endophytes perform various 
functions. For example, mycorrhizal fungi, endophytes, 
and lichens drive nutrient cycling and influence biomass 
production through a mutualistic relationship [8]. Leaf, 
litter and soil fungi include symbiotrophs, saprotrophs, or 
decomposing fungi which can degrade leaf and litter [7, 
9–11]. In grass species, endophytes get shelter, nutrition, 
and transmission by host propagules; as a favor, endophytes 
increase host protection from herbivores and increase toler-
ance against different kind of stress factors, such as drought 
[12]. In contrast, tree endophytes are horizontally transmit-
ted and predominantly non-systemic in that their life cycles 
are quite cryptic and they often exert a neutral influence on 
their host [13].

Endophytes have a wide variety of functions—from 
mutualistic or symbiotic to pathogenic—that depend on host 
and/or environmental conditions [14]. For example, endo-
phytes can help a plant become resistant to certain pathogens 
[15, 16], harmful fungi (e.g., Melamspora rust in poplar) and 
herbivorous insects [17, 18].

Viruses that multiply in fungi are generally known as 
mycoviruses [19]. The first mycovirus was discovered when 
the cause for mushroom die-back disease was investigated 
[20], after which the knowledge base concerning myco-
viruses has expanded gradually. At present, hundreds of 
mycoviruses have been discovered [21], with most of the 
known species having a doubled-stranded RNA (dsRNA) 
genome, and a small share having either a single-stranded 
RNA (ssRNA) and single-stranded DNA (ssDNA) genome. 
A schematic representation of a dsRNA virus is provided 
in Fig. 1. According to ICTV (https ://talk.ictvo nline .org/), 
mycoviruses are classified into seven families, yet many spe-
cies are not included in the existing classification system, 
which is based on genomic structure, virion structure, the 
amino acid sequence of the RNA-dependent RNA polymer-
ase (RdRp), and the presence or absence of coat protein. 
The Totiviridae, Partitiviridae, Megabirnaviridae, Chryso-
viridae, Quadriviridae and Reoviridae are most abundant 
mycovirus families [22–25]. Mycoviruses are not considered 
infectious per se (with a few exceptions), as they lack an 
extracellular route for infection and spread exclusively via 
spore production and hyphae conjugation.

Edited by Seung-Kook Choi.

 * Abu Bakar Siddique 
 abu.ba.siddi@gmail.com

1 Department of Ecology and Environmental Sciences (EMG), 
Umeå University, Umeå, Sweden

http://orcid.org/0000-0002-3178-523X
https://talk.ictvonline.org/
http://crossmark.crossref.org/dialog/?doi=10.1007/s11262-020-01763-3&domain=pdf


408 Virus Genes (2020) 56:407–416

1 3

The estimated number of fungal endophyte species has 
constantly increased as environmental sampling and high-
throughput sequencing (HTS) technologies have evolved 
and become cheaper for researchers. Recent estimates sug-
gest that it is likely that between 1.5 and 10 million fungal 
endophyte species exist [26, 27], and scientists have stated 
that 30–80% of fungal species may be infected with myco-
viruses [23, 25]. These estimates of the sheer number of 
fungal endophyte species suggests that recent discoveries 
of novel mycoviruses are just the tip of the iceberg, with 
most mycoviruses still undiscovered. During the last few 
years, most mycovirus research has focused on identifying 
the viruses which infect the pathogenic fungi of important 
crops, as these discoveries could be relevant to the bio-
logical control of harmful fungi. As a result, the mycovi-
ruses which infect non-pathogenic fungi have largely been 
overlooked. Hence, as most endophytes remain undiscov-
ered due to a presumed lack of pathogenicity, latent forest 
pathogens could be a great resource for novel mycovirus 
discovery.

Origin of mycoviruses

The origin of mycoviruses remains a debated topic, with 
two main hypotheses dominating the discussion. The first 
hypothesis for how mycoviruses originated is the ancient 
coevolution hypothesis, which suggests that viruses and 
fungi coevolved over time [28]. The second hypothesis 
proposes that mycoviruses evolved from plant viruses to 
occupy the niche of infecting plant-associated fungi [19, 
25]. This theory cites previous evidence that certain myco-
viruses have foreign structural units or domains which are 
assumed to be of eukaryotic or plant origin [29]. Myco-
virus evolution is dominated by strong purifying selec-
tion; as such, low genome variability can be expected. 
Researchers are currently interested in using molecular 
biology methods to reveal how these structural units affect 
the host through either viral infection studies or simply 
expressing the element within fungal cells.

Viruses of endophytes and forest fungi

Viruses have been detected in all forms of fungi, from 
endophytes (e.g., Trichoderma harzianum) to obligate par-
asites (e.g., Puccinia striiformis) [30, 31]. Bao and Rooss-
inck [32] provided an overview of the putative viruses 
of 52 distinct endophytes, revealing that almost all endo-
phyte classes are assumed to have mycoviruses living in 
them (for a more detailed description refer to [32]). A 
large portion of the currently known mycoviruses infect 
grass endophytes, with research reporting that 53 different 
grass endophytes are infected by mycoviruses [33, 34]. 
More specifically, the dsRNA virus Epichloe festucae 
virus 1 (EfV1) was identified from the grass endophyte 
Epichloe festucae [32]. Tree endophytes can also serve 
as hosts for mycoviruses. For example, a mycovirus was 
detected in Colletotrichum gloeosporioides, an endophyte 
which harms cashew trees (Anacardium occidentale L.) 
by causing anthracnose [35]. Furthermore, viruses from 
the Endornaviridae family, which can infect plants, fungi 
and oomycetes, were found in root mycorrhizal Ceratoba-
sidium fungi [36, 37]. Ong et al. studied the fungal sym-
bionts of Pterostylis sanguinea, a wild orchid from west-
ern Australia, and found 22 novel mycoviruses from the 
investigated fungi [37]. Moreover, mycoviruses not only 
infect filamentous, phytopathogenic fungi, but have also 
been reported in edible mushrooms, which demonstrates 
their commercial significance [38, 39]. Additionally, the 
parasitic fungi of mushrooms were found to contain myco-
viruses [40].

Mycoviruses are widespread among certain forest 
fungi. For example, the fungus Gremmeniella abietina, 
which causes canker in coniferous trees across Europe 
and America, serves as a host for several mycoviruses. 
Phenotypic changes were frequently observed when the 
fungus was infected with multiple viruses. Characterizing 
these viruses, as well as understanding their evolutionary 
histories, could provide information about their route of 
transmission and interaction with the host.

Leaf-inhabiting endophytes—which are part of the myc-
obiome of a tree—demonstrate various types of trophic 
associations with their host [41], ranging from pathotrophy 
to symbiotrophy (Fig. 2). Therefore, it is expected that 
plant-inhabiting fungal endophytes will reveal diverse new 
mycoviruses [34, 42]. Another source of novel mycovi-
ruses could be the symptomatic, as well as asymptomatic, 
fungi associated with woody plants. Notably, research in 
grapevines revealed 39 viral genomes, of which 38 had 
not been previously reported [43]. Mycoviral studies are 
especially relevant when the endophyte hosting the virus 
confers a plant with protection against herbivorous insects 
[44].

Fig. 1  Schematic representation of genome organization of a dsRNA 
virus. RdRp RNA-dependent RNA polymerase, ORF open reading 
frame
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Plant‑fungi‑virus‑environment

Plants, fungal endophytes, mycoviruses, and the environ-
ment all participate in a four-way interactive system. In 
natural environments—which are constantly in flux due to 
various biotic and abiotic factors—these interactions are 
constantly shifting; for example, abiotic stress such as a 
drought can favor one of the components, such as the patho-
gen, and facilitate the infection of the host plant. Moreover, 
a change in any component of the interactive system may 
influence the whole system. As a result, a symbiotic effect 
may disappear while a new relationship arises [45]. It has 
been speculated that a symbiotic virus can make the host 
endophyte more, or less, pathogenic through alterations 
in the phenotype or gene expression profile of the infected 
endophyte [46]. Previous research has also suggested that 
these alterations may be heritable, as mycoviruses have been 
shown to suppress the RNA silencing defense mechanisms 
of the host, possibly through epigenetic changes [47].

Plants rely on symbiotic relationships with microbes to 
improve the nutritional condition and manage biotic and/
or abiotic stress. Both mutualism and antagonism between 
plants and endophytes have been extensively studied. Based 
on environmental conditions, this relationship may continu-
ously shift [48]. Mycoviruses can influence the plant-endo-
phyte relationship by either increasing or reducing host viru-
lence (hyper- and hypovirulence, respectively) or host fitness 
under altered environmental conditions [32]. On the other 
hand, as most endophytes do not cause visible symptoms in 
plants, the mycovirus that exists within a certain endophyte 
may have a negligible influence on either the endophyte host 
or the plant which the endophyte is associated with. Never-
theless, several studies have shown that changes in certain 

fungal traits, e.g., growth of mycelia, sporulation rates, or 
heat tolerance, following viral infection can lead to either 
a devastating infestation of the plant or a significantly less 
harmful fungal infection [34, 49, 50].

Biological and ecological effects 
of mycoviruses in endophytic fungi 
and forest pathogens

Mycoviral infections of fungi exert diverse biological and 
ecological effects [36]. As previously mentioned, some 
mycoviruses reduce the virulence of the host fungus 
(hypovirulence), which can make the fungus less harmful 
to plants, whereas other mycoviruses have been shown to 
enhance the virulence of the host fungus (hypervirulence). 
In this way, depending on the mode of action, mycoviruses 
could be exploited as potential bioagents to control fungal 
diseases. This is plausible because mycoviral infections in 
several fungi have been shown to cause hypovirulence. A 
well-known example is the use of Cryphonectria hypovi-
rus 1 (CHV1) mycovirus, which reduces the pathogenic-
ity of the fungus Cryphonectria parasitica, to curb chest-
nut blight in America [51]. Some additional examples of 
mycoviruses which cause hypovirulence in the host fungus 
are Cryphonectria hypovirus 2 (CHV2) in Cryphonectria 
parasitica [52], Sclerotinia sclerotiorum hypovirus 1 in Scle-
rotinia sclerotiorum [53], and W370dsRNA in Rosellinia 
necatrix [54]. Moreover, significant progress has been 
made in identifying and characterizing the mycoviruses 
and domains that cause hypovirulence in the host [25, 51, 
52]. For example, the vr1 structural domain of Fusarium 
graminearum virus China 9 (FgV-ch9) was found to cause 

Fig. 2  Relative abundance of leaf-inhabiting fungal endophytes of 
European beech trees among the five main trophic guilds or associa-
tions. a compares the two methods (Illumina vs cultivation) for each 
trophic guild and unassigned data. b displays the trophic guilds and 

unassigned taxa for Illumina data, c for cultivation data. b and c U 
unassigned, P pathotrophs, PSa patho-saprotrophs, PSy patho-sym-
biotrophs, Sa saprotrophs, Sy symbiotrophs, adapted from Siddique 
et al. [41]
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symptoms in Fusarium graminearum [55]. In contrast, sev-
eral mycoviruses cause hypervirulence following infection 
[56]. Furthermore, laboratory experiments demonstrated 
that mycoviral infection of the fungus B. bassiana causes a 
mild hypervirulent effect [57], while another research group 
found that the presence of viral dsRNA in Nectria radici-
cola increased virulence [58], along with sporulation and 
laccase activity. In other cases, a mycovirus can enhance 
certain properties of the host without conferring hyperviru-
lence; for example, the growth rate of Monilinia fructicola 
increased by 10% following infection with three mycoviruses 
(relative to non-infected cultures) [59]. Moreover, the mold 
fungus Sclerotinia sclerotiorum and white root rot fungus 
Rosellinia necatrix were shown to host many types of myco-
viruses that conferred either hypo- or hypervirulence [53, 
54, 60–63]. Following mycoviral infection in Alternaria 
alternata, the fungus produced host-specific toxins and 
caused black spot in Japanese pear [64], while the infection 
of Aspergillus fumigatus by Aspergillus fumigatus tetramy-
covirus-1 (AfuTmV-1) decreased the survival rate of Gal-
leria mellonella larvae [65]. Furthermore, initial evidence 
suggests that infection by Pseudogymnoascus destructans 
partitivirus-pa may enhance pigmentation and conidiation in 
the host fungus, which is responsible for widespread fatal-
ity among Northern American bats by causing white-nose 
syndrome [66].

Virus-fungus interactions can be beneficial, neutral, or 
harmful for the host [67]. Mycovirus often affect fungal 
morphology, spore production, growth, virulence, heat toler-
ance, and toxin production. Perhaps the best known example 
of virus-fungus interactions is Cryphonectria hypovirus 1 
(CHV1)-mediated hypovirulence in Cryphonectria para-
sitica, the fungus which produces lethal cankers on chest-
nut trees [59, 68]. Moreover, increased virulence and toxin 
production, as well as irregular growth, were observed in 
Alternaria alternata following mycoviral infection. There 
is currently no definitive proof about whether fungus-virus 
interactions help plant hosts survive in extreme environ-
ments, with most previous studies focusing on whether 
endophytes—both infected and non-infected—can confer 
heat tolerance to plant hosts [33, 69]. For example, the fun-
gus Curvularia protuberia, when infected by a mycovirus, 
helped panic grass (Dichanthelium lanuginosum) tolerate 
excessive heat, and researchers intend to investigate whether 
this strategy can be extended to tomato plants [70]. Viruses 
have been shown to alter the transcriptome, small RNAome, 
proteome, metabolome, lipidome, and epigenome of the 
host. Transfection protocols allow researchers to study both 
the host range of a virus and examine host-virus interactions. 
In this protocol a virus nucleic acid is induced in the same 
host (genetically same background) and host symptom and 
defense responses are monitored [52, 71]. This interaction 
could be commercially relevant, as fungi infected by certain 

mycoviruses may produce secondary metabolites that have 
potent antimicrobial properties [42]. Hence, a bioreactor sys-
tem could be developed to extract significant quantities of 
these antimicrobial compounds from cultured fungal cells.

Influence on toxin production

Mycoviruses have been found to affect fungal production of 
mycotoxins, with this effect notable at high temperatures. 
For example, mycovirus-infected grass fungus Tolypocla-
dium cylindrosporum produced less fumonisin B (FB) 
than the virus-free strain [72], whereas mycovirus-infected 
Aspergillus clavatus isolates produced less patulin than con-
trol fungi [73]. Moreover, mycoviral infection in Fusarium 
graminearum has been associated with decreased deoxyni-
valenol production [74]. In wine yeasts, the synthesis of an 
allelopathic toxin that inhibits the growth of other fungi 
increases noticeably upon viral infection [75]. Nevertheless, 
the mechanisms through which viral infection modifies toxin 
production remain unclear, and warrant further research.

Metagenomic studies of fungal endophytes 
and their mycoviruses

Many different approaches have been used to study the bio-
diversity of mycoviruses, including enrichment of virus-like 
particles, extraction of dsRNA, and the HTS of small RNA 
and total RNA [43, 76, 77]. HTS methods facilitate the rapid 
discovery of novel viruses by simultaneously generating mil-
lions of sequences/reads from hundreds of environmental 
samples. Furthermore, HTS has the capability to provide 
high-resolution genomic and community structure data that 
is crucial for testing new hypotheses [78]. Currently, the 
most commonly used HTS platforms are Roche 454, Ion-
Torrent, Illumina, PacBio, SOliD and NANOPORE. All of 
these platforms have distinct drawbacks and benefits based 
on the type of research they are used for; however, a detailed 
look into when each specific system should be applied is 
beyond the scope of this review. It should be stated that 
older technologies are currently being replaced by superior 
solutions; for example, most researchers agree that Roche 
454 sequencing will soon be antiquated as the Illumina and 
PacBio systems provide lower error rates at lower prices.

The cultivation-independent analysis of myco- and micro-
biome communities is commonly referred to as meta’omics, 
which comprises metagenomic, transcriptomic, proteomic 
and metabolomic, aspects [11]. Due to the universality of 
HTS techniques, metagenomic studies have become com-
monplace in virome research. Current meta’omics studies 
in the field of virology not only focus on the simultane-
ous detection, identification, and characterization of novel 
viruses [79], but are also being performed to gain insight 
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into fungal antiviral defense mechanisms, which may have 
applications for the biological control of pathogenic fungi.

Advanced mycovirus studies are now focused on provid-
ing data on the host transcriptome and RNA signaling [31, 
68, 80]. HTS has been successfully used to detect known 
and unknown viruses from fungal samples [81] as well as 
detect mycovirus genome segments through small RNA 
deep sequencing [25, 82]. In addition, host transcriptome 
and small RNA profiling data have provided insight into the 
molecular mechanisms underpinning the observed changes 
in phenotype [83, 84]. Genetic engineering research has 
started to concentrate on mycovirus-mediated hypo- or 
hypervirulence [84, 85] due to the clear link between anti-
viral RNA silencing and mycoviral infection [86]. The fun-
gal antiviral defense is related to small RNA processing. 
By looking at sRNA accumulation and mRNA signaling, 
scientists have outlined genetic changes in fungi following 
mycoviral infection [84], although some research has not 
found any changes in the levels of mRNA related to gene-
silencing proteins following infection [84].

Meta-transcriptomic approaches can also be useful for 
virus identification [76, 78, 79]. Notably, Gilbert et al. [78] 
screened transcriptomic data for fungi from the subphylum 
Pezizomycotina, and found 59 viruses from 44 different 
fungi based on RNA-seq analyses. As such, environmen-
tal sequencing data may prove to be a valuable resource 
for mycovirus researchers. New mycoviruses could be 
discovered by analyzing old transcriptomic data which 
have not been used in virus research before. Furthermore, 
RNA sequence data in public databases could prove to be 
an untapped resource for virus discovery [87]. However, 
researchers should not solely focus on analyzing RNA 
sequence data, as mycoviruses with a DNA genome have 
also been discovered. The first instance, a geminivirus-
related ssDNA mycovirus which infects, and confers hypo-
virulence to, Sclerotinia sclerotiorum, was reported by Yu 
et al. [60]. Moreover, cassava associated circular single 
strand DNA virus was characterized from fungi that target 
cassava plants [88]. In a rather unique finding, a mycovirus 
with a DNA genome which was first isolated from a fungal 
pathogen was found to also infect a mycophagous insect, 
Lycoriella ingenua [89].

Horizontal gene transfer has revealed 
foreign structural domains in mycoviruses

During the process of evolution, viruses acquired genetic 
information from their distant hosts, whether prokaryotes, 
eukaryotes, plant or animals, by a mechanism known as hor-
izontal gene transfer (HGT). For example, the homologous 
‘glycosyltransferase 28’ domain of the Endornavirus genus 
[90] and the ‘S7’ domain of the Phytoreovirus genus are 

widely distributed among plants, bacteria, and fungi [91]. 
Furthermore, a ‘SMC’ (structural maintenance of chromo-
somes) domain was discovered in Sodiomyces alkalinus 
fusarivirus 1 (SaFV1). The SMC domain of SaFV1 are phy-
logenetically related to the SMC domains of Fusariviridae 
viruses, and distantly related to proteins found in bacterial 
and eukaryotic organisms [29]. Comparative sequence anal-
yses of unknown viral domains could provide insight into the 
evolution of mycoviruses, while the role of SMC domains 
on the infection of fungi—which could be studied through 
gene expression analyses—could clarify the function of this 
protein in the virus life cycle. Simpler analyses can be per-
formed by inoculating fungi with mycoviruses which include 
the SMC domain and following survival rates and/or phe-
notypic changes. Researchers can determine the function 
of domains which are postulated to have been acquired via 
HGT by expressing the protein in fungal cultures and testing 
whether it has a negative or positive effect on the culture. 
Overlap extension PCR is a simple and popular technique 
for cloning a viral domain into a plasmid vector without the 
need for restrictive endonucleases [92]. Briefly, the prepared 
plasmid is cloned into E. coli, and after protoplast transfor-
mation the effects of the studied protein can be monitored 
through either growth rate, sporulation, or gene expression 
via qPCR [55, 93]. Phylogenetic analyses can then be used 
to explore the evolutionary origins of structural and potential 
HGT-acquired domains present in mycoviruses. Streamlined 
protocols for horizontal gene transfer, foreign structural 
domain, and phylogenetic relationship analyses currently 
exist for mycoviruses (refer to [90, 91]).

Virus metagenomic research has revealed that RNA 
viruses which infect fungi, plants, and vertebrates evolved 
by multiple instances of horizontal virus transfer. The analy-
sis of RNA-dependent RNA polymerases (RdRp) and small 
RNA present in viruses strongly support that various groups 
of viruses have diverse hosts, including protists, fungi, 
plants, and animals [94].

Some plant viruses seem to infect fungi and replicate in 
fungal cells [94–96]. For example, experiments in which 
fungal spheroplasts were transfected with hop stunt (HSVd), 
iresine 1, and avocado sunblotch viriods revealed that the 
tested viruses were able to replicate in at least one of the 
studied fungi (e.g., Cryphonectria parasitica, Valsa mali, 
and Fusarium graminearum) [97]. Furthermore, horizon-
tal transmission of cucumber mosaic virus (CMV) was 
observed in the phytopathogenic fungus Rhizoctonia solani 
[98]. Far less is known about the mycoviruses that infect, 
and replicate in, plant cells [99, 100]. Notably, the fungal 
virus CHV1 was only able to systemically infect Nicotiana 
tabacaum plants when inoculated together with other plant 
viruses or tobacco mosaic virus (TMV), which indicates 
facilitative interactions between fungi and plant viruses 
[101]. Mitoviral sequences have been identified in both fungi 
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and plants, with researchers speculating that ancestral mito-
viruses became endosymbionts and, for this reason, partial 
copies of mitovirus RdRP can be detected in plant nuclear 
and mitochondrial genomes [67, 102]. Furthermore, pro-
tein sequence analyses provide evidence that members of 
the mycovirus family Hypoviridae may be related to plant-
infecting Potyviruses [103].

Biological control strategies for forest 
pathogens

In the near future, we may see many cases in which bio-
logical control—via hypovirulence of pathogenic fungi—is 
used to curb woody plant diseases. Using mycoviruses to 
combat woody plant diseases caused by pathogenic fungi 
is an important research topic because this measure could 
significantly decrease the use of chemical control, which 
has adverse environmental impacts. It should be noted that 
there are already precedents for this type of control strategy, 
as CHV1 was applied to Cryphonectria parasitica in order 
to combat chestnut blight in America. Martín‐García et al. 
[104] outlined four effective strategies for using mycoviruses 
to control pathogenic fungi:

i Identify viruses that cause hypovirulence
ii Check if the virus can infect most fungal strains
iii Determine a cost-effective method for disseminating the 

virus into host populations
iv Test if the virus is persistent in most strains under natu-

ral conditions

Conclusions and future perspectives

This review has presented various viruses of fungal endo-
phytes and forest pathogens and is relevant in the context 
of fungal research because it has been estimated that up to 
80% of fungi are infected by mycoviruses, resulting in posi-
tive, negative, or negligible effects in the host. Moreover, 
the review has covered the biodiversity of mycoviruses, 
the four-way interactive system including viruses, fungi, 
plants, and the environment, how mycoviral infection can 
influence symbiotic relationships, infection-mediated hypo- 
and hypervirulence, antimicrobial properties, the evolution 
of viruses through horizontal gene transfer, and the role of 
mycoviruses disease control strategies.

Impending climate change may support the spread of for-
est pathogens and diseases and play a role in widespread 
forest epidemics. Based on significant changes in the envi-
ronment, alterations in the relationship between endophytic 
fungi and plants may underlie future outbreaks of fungal 
infection and disease. This can be expected to increase the 

chemical control of disease spread, which is worrying as 
chemical compounds are already excessively used in the 
fields and forests of many countries, with a clear negative 
effect on friendly biota [105, 106]. Environment-friendly 
management, also referred to as biological control or biocon-
trol, has been touted as a way to eradicate the use chemical 
fungicides. This review presents various lines of evidence 
for why researchers should further study the mycoviruses 
of endophytic fungi to build the knowledge base of virus-
endophyte interactions. As our understanding of the viruses 
of fungal endophytes and forest pathogens is only at the very 
beginning, it is an ideal time to develop sequenced-based 
tools for the detection and identification of further myco-
viruses. The decreased costs of metagenomics approaches 
and amount of available bioinformatic approaches mean that 
researchers can investigate virus genomes in both temporal 
and spatial scales. Furthermore, the combination of HTS 
and environment- or biome-wide data could enable research-
ers to explore mycoviral domains/structures within different 
endophytes to make evolutionary inferences. Until now, only 
mycoviruses of widespread pathogenic fungi have been char-
acterized, but this review provides evidence that a diverse 
set of mycoviruses remain to be discovered from either for-
est samples or publicly available DNA or RNA sequence 
repositories.
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