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Abstract: This study successfully established a strip warpage simulation model of the flip-chip
process and investigated the effects of structural design and process (molding, post-mold curing,
pretreatment, and ball mounting) on strip warpage. The errors between simulated and experimental
values were found to be less than 8%. Taguchi analysis was employed to identify the key factors
affecting strip warpage, which were discovered to be die thickness and substrate thickness, followed
by mold compound thickness and molding temperature. Although a greater die thickness and mold
compound thickness reduce the strip warpage, they also substantially increase the overall strip
thickness. To overcome this problem, design criteria are proposed, with the neutral axis of the strip
structure located on the bump. The results obtained using the criteria revealed that the strip warpage
and overall strip thickness are effectively reduced. In summary, the proposed model can be used to
evaluate the effect of structural design and process parameters on strip warpage and can provide
strip design guidelines for reducing the amount of strip warpage and meeting the requirements for
light, thin, and short chips on the production line. In addition, the proposed guidelines can accelerate
the product development cycle and improve product quality with reduced development costs.

Keywords: flip-chip process; strip warpage; bump

1. Introduction

Integrated circuit (IC) packaging technology is continually innovating, with chips
becoming lighter, thinner, and shorter. Due to the reduced size and an unmatched coefficient
of thermal expansion (CTE) between the materials of the package, warpage occurring after
completion of the thermal process can cause numerous problems. Large deformation results
in the weak attachment of bumps or copper rods to the circuit board, which could even
damage the structure and signal. Therefore, many studies have addressed warpage-related
issues, and finite element (FE) simulation methods have been employed to analyze warpage
behavior.

In the related literature on warpage theory because IC packages are composed of
composite materials, the warpage behavior generated by thermal processes has been
concluded to be complicated. Timoshenko [1] proposed a theory to explain the warpage
caused by temperature changes in two bonded materials. Chen [2] discussed the effect
of two bonding materials on warpage at different temperatures, theoretically analyzed
a bimaterial structure, and sketched a multilateral structure. Garrett [3], of the technical
department of Akrometrix, used Timoshenko’s biomaterial warpage theory [1] to derive the
variables of warpage after an IC molding process: material properties (Young’s modulus
and CTE), mold compound, substrate thickness, and temperature of the molding process.
Wu et al. [4,5] discussed how the material properties of epoxy composites affected the
performance of electronic devices and discovered the desirable dielectric and thermal
properties for their design; they also studied the microwave absorption for nanorod and
spinel structures [6,7]. Although some studies have analyzed package warpage theoretically,
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they simplified the structure into only the mold compound and substrate. A package also
contains complex structures such as a die, wire bonding, copper rods, and bump solder
balls. Thus, this simplification cannot fully reflect the actual situation.

Some scholars have recently employed FE simulation to analyze package warpage.
Dudek et al. [8] used FE simulation to analyze the effects of the mechanical and thermal
properties of the material body on warpage. In addition, Hu et al. [9] employed FE simula-
tion to investigate plastic ball grid array packaging technology and developed a bimaterial
warping model, where the substrate and mold compound in the package were used to
discuss the effect of the molding process on warpage. Moreover, Huang et al. [10] used FE
simulation to explore the effect of geometric die and substrate thicknesses on warpage. For
packaging technology, they employed a single-sample window ball grid array, and they
obtained simulated values consistent with the trend described by Timoshenko’s bimaterial
theory [1] for the effect of the reflow process on warpage. Chae and Ouyang [11] discussed
the effect of molding temperature on strip warpage for flip-chip strip packaging technology.
They discovered that a high molding temperature will cause large strip warpage. In addi-
tion, they proposed the use of mechanics of composite materials theory for calculating the
CTE of a substrate and mold compound at 25, 150, and 260 ◦C. Huber et al. [12] employed
an FE simulation to determine the effect of mold compound on warpage after a long period
of thermal aging. Bin et al. [13] applied FE simulation to fine pitch ball grid array packaging
technology; they also discussed the effect of the geometric thickness of the mold compound
and die on warpage when a strip was subjected to the molding process. The results revealed
a negative correlation between the strip warpage and geometric thickness of the mold
compound and die. Zheng et al. [14] proposed a reference temperature calibration of the
flip-chip warping simulation model, obtaining consistency and small errors between the
simulated and experimental warpage values. Chen et al. [15] employed FE simulation to
investigate embedded silicon fan-out wafer-level package technology. The technique does
not require EMC materials, and its structure is relatively simple. Therefore, the proposed
simulation model achieved relatively good agreement with experimental and theoreti-
cal value, and the error between the experimental and the simulation results was only
approximately 9%. However, this method is not feasible for a more complex simulation
model with an EMC structure. Tsai et al. [16] proposed a new Suhir-solution-based theory
for predicting the thermal deformation of flip-chip packages with the capillary underfill
process and discussed the effect of the temperature of the reflow process on warpage. The
deviation between the model and experimental results was approximately 25%. They also
proposed a strain gauge measurement associated with a beam model theory to determine
the thermally induced warpages of packages. The thermal strain results were consistent
with those of validated FEM. Therefore, the strain gauge method proved feasible in de-
termining the thermal warpages of packages [17]. Yao et al. [18] proposed an analytical
model to evaluate the pore and superficial permeability of an underfill porous medium in a
flip-chip packaging; they also presented an approach to predict the flow front and the filling
time [19]. Chiang et al. [20] proposed an overview of artificial intelligence assisted design
on simulation technology for reliability life prediction of advanced packaging. Developers
only need to input geometric data of the package structures, and then the reliability life
cycle can be obtained by this AI-trained model. Lin et al. [21] presented a finite element
method to predict the final warpage of an ultra-thin flip chip scale package based on chem-
ical shrinkage and cure-dependent viscoelasticity of molded underfill. Errors between the
experimental and simulation results were approximately 10%. Cheng et al. [22] investigated
the warpage behavior of a flip chip package-on-package (FCPoP) assembly during the
fabrication process. They took some effects into account, such as the viscoelastic behavior
and cure shrinkage of the epoxy molding compound. The results showed that simulation
data fell within the ranges of the measured data.

The flip-chip is a commonly used packaging technique. Figure 1 shows the flip-chip
process flow investigated in this study, and Figure 2 shows a schematic of a single flip-chip
unit. As shown in Figure 1, the bonding process involves 12 steps:
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1. Wafer Grinding: the wafer is first processed by grinding before any fabrication proce-
dure is conducted.

2. Wafer Saw: the wafer is diced into small dies of target size.
3. Flip-chip Bond: the cut die obtained from Step 2 is placed on the substrate with the

help of bumps and soldering flux, but these are not completely fused together.
4. Reflow: through the reflow process, the bumps and soldering flux on the substrate

are fused so that the die can be fixed on the substrate.
5. Flux Cleaning: plasma cleaning can remove contaminants formed during the produc-

tion process, thereby effectively enhancing the strength of the bond between the die
and substrate.

6. Pre-MD Baking: this refers to the baking before molding, where water moisture
subsequently formed in the die, substrate, and bumps must be completely removed to
ensure that the mold compound fits tightly to protect the die, substrate, and bumps.

7. Pre-MD Plasma Cleaning: the plasma surface is cleaned to remove impurities on the
surface so that gaps between the internal components can be filled during molding.

8. Molding: a mold compound is injected into the package to seal all the components,
protecting the die and bumps inside the device.

9. Post-molding cure (PMC): the sealed device is cured again to enhance its structural
stability.

10. Pre-treatment: pre-heat treatment before implantation of solder balls.
11. Ball Mounting and Reflow: solder balls are implanted underneath the base substrate

for future signal connection with the external circuit.
12. Package Saw: the strip is diced into single wafers for packaging and shipping.

Because of the CTE mismatch between the packaging material, strip warpage often
occurs during processes that require heating. Among the procedures, Steps 3–4, 6, and 8–11
are all performed at high temperatures. However, based on manufacturing experience, the
strip is almost completely flat during Steps 3–7. No strip warpage occurs, even during
the molding process in Step 8, when the strip is sealed by the mold compound and other
materials at 175 ◦C. At this point, the strip remains almost flat. As discussed in several
papers [3,9,11,14], strip warpage mainly occurs when the device is cooled to room tem-
perature at 25 ◦C after the molding process. Severe strip warpage occurring during the
post-molding period reduces product yield. The literature [8–14,20–22] indicates that FE
simulation is frequently used to solve packaging warpage problems. Material parameters
are crucial for determining whether consistency between simulated and experimental
values is achieved. In particular, the mold compound is a high molecular polymer with a
Young’s modulus and CTE that exhibit large temperature-based variations. In addition,
few scholars have simultaneously simulated the effects of different geometric structures
and process temperatures on warpage.

The present study input the temperature variation curve of the material properties
into the simulation model and simulated the effects of different steps in the continuous
process on warpage. The effects of the process temperature and geometric thickness of
the mold compound, substrate, and die on warpage were also determined. Therefore, this
study simulated a more realistic situation than previous studies. The proposed model and
warpage analysis method can be used by designers to predict warpage under a continuous
process and identify the optimal parameter design conditions for reducing strip warpage.
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2. Research Method

The research method was divided into three steps: strip model, Taguchi method, and
structural design.

2.1. Strip Simulation Model
2.1.1. Model Establishment

This study used the COMSOL Multiphysics software to establish a strip model. Table 1
lists the specifications of the strip structure. The shape of the strip included a long side
(x-direction) and a short side (y-direction). When the molding process was cooled to room
temperature (25 ◦C), the amount of warpage on the short side of the strip was relatively
small; only the direction of the long axis exhibited severe warpage (Figure 3). Table 2
lists the experimental values of the strip warpage (with compound 1). As shown in the
table, no warpage occurred on either the long or short side during the molding process
(Step 8) at 175 ◦C. However, as the strip was cooled to 25 ◦C, the CTE mismatch between
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the packaging materials caused a severe warpage of 7 mm but no measurable warpage on
the short side. Until the end of Step 11 (ball mount), only minor warpage was observed
on the short side. Therefore, strip warpage mainly occurred on the long side. To identify
the main cause of warpage and reduce the simulation time required, this study simplified
the 3D strip model to a 2D strip model. Subsequently, because a strip is a symmetrical
structure, a quarter of the 2D strip model was used in this study. Figure 4 illustrates the
quarter 3D strip model and 2D strip models. Figure 2 shows a structural diagram of a
single unit in the strip, where each strip contained a total of 119 single-unit chips, and the
structures included a mold compound, die, bump, and substrate. As shown in Table 3, we
also validated the feasibility of a 2D simulation model. The results obtained from the 2D
simulation model were found to be consistent with the experimental values, suggesting
that it is possible to simplify the 3D model to a 2D model.

Table 1. Specifications of the strip structure.

PKG Information

PKG size (mm2) 7 × 7
Mold compound thickness (µm) 450

Die size (mm2) 6.3 × 6.34
Die thickness (µm) 150

Bump type SAC405
Bump pitch (µm) 190
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Table 2. Experimental values of strip warpage.

Process Flow
Strip Warpage (mm)

Long Side
(x-Direction)

Short Side
(y-Direction)

8. Molding 175 ◦C 0 0
25 ◦C 7 0

9. PMC 5 N/A
10. Pre-treatment 7 N/A

11. Ball mount 7.5 N/A

Table 3. Experimental values vs. simulation values of strip warpage.

Process Flow
Strip Warpage (mm)

Experimental Value Simulation Value

8. Molding 175 ◦C 0 0
25 ◦C 7 7.36

9. PMC 5 5.14
10. Pre-treatment 7 6.73

11. Ball mount 7.5 6.90
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2.1.2. Establishing Material Parameters

Material parameters are crucial to ensure that the simulation results of a model match
the actual situation. As illustrated in Figure 2, four materials were present in the structure:
bump, die, substrate, and mold compound. To match the materials on the production line,
the bump was simulated as SAC405 (95.5Sn:4.0Ag:0.5Cu) and the die as being silicon. As
shown in Tables 4 and 5, the most important issue was based on [8–10,12]. The mold com-
pound is a polymer material, whereas the substrate is composed of different materials, so it
has varying mechanical and thermal properties due to differences in ambient temperature.
The mold compounds employed in this study were the mold compounds 1 and 2, which
are used on the production line. A dynamic mechanical analyzer (DMA) was employed
to measure the Young’s modulus of the mold compounds and substrate. The range of
temperatures used was 25–260 ◦C, and the Young’s modulus curves (E(T) curves) of the
substrate and mold compounds are presented in Figures 5a and 6a, respectively. The
Young’s modulus curve is steep and has a negative slope at ambient temperatures of both
mold compounds 1 and 2, close to its glass transition temperature (Tg; ca. 165 ◦C and
130 ◦C for mold compounds 1 and 2, respectively). A thermal mechanical analyzer (TMA)
was employed to measure the CTE of the substrate and mold compounds 1 and 2 over
the temperature range of 25–260 ◦C (Figures 5b and 6b, respectively). The CTE curves of
mold compounds 1 and 2 are steep and have a positive slope at ambient temperatures close
to Tg. The CTE measurement results obtained for the substrate agree with the IPC-4101
specification [23]. Unlike related studies [8–14], this study input the temperature variation
curves E(T) and α(T) of mold compounds and the substrate into the simulation model,
which ensured that the material parameters of the simulation model were close to the
actual situation.

Table 4. Material parameters of bump, silicon, and substrate.

Bump-SAC405 Die (Silicon100) Substrate

Young’s modulus (GPa) 53 131 Figure 5a
Poisson’s ratio 0.40805 0.27 0.2

Density (kg/m3) 7445.45 2330 1938
CTE (ppm/◦C) 20 2.8 Figure 5b
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Table 5. Material parameters of mold compounds.

Mold Compound 1 Mold Compound 2

Young’s modulus (GPa) Figure 6a Figure 6a
Poisson’s ratio 0.3 0.3

Density (kg/m3) 2010 1990
CTE (ppm/◦C) Figure 6b Figure 6b
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As illustrated in Figure 2, the bump was located between the die and the substrate
and was used for signal connection. According to the mechanics of materials [24], when the
stress of a material exceeds the yield stress, the material is no longer a linear elastic material,
and it undergoes plastic deformation. The stress–strain diagram of an SAC405 bump
was presented in [25]. The stress–strain diagram obtained in the present study (Figure 7)
indicates a yield stress of 26 MPa and was input into the simulation model. According
to [26], a creep effect can occur in a metal when the ambient temperature exceeds one-third
of its melting point, and one-third of the melting point of an SAC405 bump is 72.28 ◦C. The
flip-chip considered in this study had a process temperature of ≥175 ◦C. This study was
different from other related studies [8–14] as the plastic effect of a bump [25] and the creep
effect [26] were considered in this model. Both effects were input into the simulation model
to match a realistic situation.
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2.1.3. Boundary Condition Settings

The process flow of the flip-chip on the production line consisted of twelve steps, as
illustrated in Figure 1. The issue was warpage generation due to the unmatched CTEs
of the package materials. Warpage mostly occurred after thermal processes. The six
steps involving thermal processes were reflow, pre-MD (molding) baking, molding, PMC,
pretreatment, and ball mounting. However, according to experience from production line
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workers, strips are almost flat after Steps 3–7, as illustrated in Figure 8a. Even when the
mold compound is combined with the other materials into the strip package at 175 ◦C
during molding, warpage had not yet occurred, and the strip was almost flat. However,
severe warpage occurred when the strip was cooled to a room temperature of 25 ◦C, as
shown in Figure 8b. In related studies [8–14], the simulation model was set for a stress-free
state at a molding temperature of 175 ◦C. As illustrated in Figure 8, the stage and strip at
both ends of the strip model were defined as contact points at position A, and the stage was
a simple support. For any end point A located between y = 0 and w (where w is the width
of the strip), the following 2D boundary condition can be imposed: point A is allowed
to move freely along the x-direction with an arbitrary displacement (displacement along
the x-direction is ux = constant) but fixed along the z-direction (displacement along the
z-direction is uz = 0).
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According to [8,9,11,13,14], warpage mainly occurs during molding. Therefore, the
simulation model starts from the molding process (Step 8). Continuous simulation calcula-
tions of different processes were conducted to simulate Steps 8–11 of the thermal process.
Table 6 details the process temperature ranges and times for these steps. First, the molding
process was simulated (Step 8) by cooling the system from 175 ◦C to a room temperature
of 25 ◦C. Subsequently, the temperature was increased to and then maintained at 175 ◦C
for 240 min during the PMC process (Step 9) to completely cure the mold compound and
eliminate internal stress. Finally, in Steps 10 and 11, the reflow process for pretreatment of
the solder ball and implantation of the ball into the substrate was simulated.

Table 6. Process temperature ranges and times for flip-chip.

Process Flow Temperature Range (◦C) Process Time (s)

8. Molding 175→ 25 30
9. PMC 25→ 175→ 25 20,040

10. Pre-treatment 25→ 238→ 25 935
11. Ball mount 25→ 238→ 25 935

2.2. Taguchi Method

Various variables, such as geometric structure and process temperature, can affect
the warpage during the process. Few scholars have simultaneously studied the effects of
different geometric structures and process temperatures on strip warpage. Therefore, this
study explored the effects of process temperature and geometric thickness of the mold
compound, substrate, and die on strip warpage. The process temperature was changed
mostly in Steps 8 and 9. Hence, this study used Taguchi’s orthogonal arrays to establish
an L16 variable combination. Table 7 lists the control factors and their settings. This
study explored five factors: three related to structural thickness (thickness of the mold
compound, die, and substrate) and two related to process temperature (molding and
PMC temperatures).
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Table 7. Control factors and their settings.

Name of Control Factors Level 1 Level 2 Level 3 Level 4

Mold compound thickness(µm) 150 450 750 1100
Die thickness (µm) 75 150 250 400

Substrate thickness (µm) 100 180 300 500
Molding temp. (◦C) 150 165 175 185

PMC temp. (◦C) 175 185

2.3. Structural Design

IC packages are composed of numerous different materials and geometrical shapes.
This study used the neutral axis theory of composite materials [24] as the structural design
criteria. Severe strip warpage occurs when the strip is cooled to room temperature (25 ◦C).
Therefore, this study investigated the relationship between the zn-coordinate of the neutral
axis and warpage at 25 ◦C. Equation (1) was used to calculate the neutral axis z-coordinate
formula of the composite material, where AMold compound, ADie, ABump, and ASubstrate are the ar-
eas of the mold compound, die, bump, and substrate, respectively. Table 8 lists the Young’s
modulus of each material at 25 ◦C. The Young’s moduli were normalized by dividing each
by the minimum. n represents the transformation factor, and nMold compound, nDie, nBump,
and nSubstrate represent the proportional Young’s moduli of the materials. Furthermore,
zMold compound, zDie, zBump, and zSubstrate are the centroid z-coordinates of the mold compound,
die, bump, and substrate, respectively. Substituting the values in Table 8 into Equation (1),
the z-coordinate zn of the neutral axis of the 2D strip in Figure 3 was obtained as 280.61 µm.

zn =
A1 × n1 × z1 + A2 × n2 × z2 + A3 × n3 × z3 + A4 × n4 × z4

A1 × n1 + A2 × n2 + A3 × n3 + A4 × n4
(1)

were

A1 = AMold compound, n1 = nMold compound, z1 = zMold compound.
A2 = ADie, n2 = nDie, z2 = zDie;
A3 = ABump, n3 = nBump, z3 = zBump;
A4 = ASubstrate, n4 = nSubstrate, z4 = zSubstrate.

Table 8. Transformation factor n for each material.

Material Young’s Modulus (GPa) n = Material (E)/Substrate (E)

Substrate 10.75 1
Bump 53 4.93

Die 131 12.18
Mold compound 1 18.66 1.73

3. Results
3.1. Experimental Results

Figure 9 indicates eight points (D1–D8) as the measuring positions along the strip. D4
and D8 were in the middle of the long side of the strip, while D2 and D6 were in the middle
of the short side of the strip. A ruler was used to measure the warpage at the start of the
molding process at 175 ◦C and the end of the process at 25 ◦C. Table 9 lists the experimental
values of strip warpage at the reference points during the molding process. The results
show that D4 and D8 are the positions at which the maximum warpage occurred. A similar
process was applied to obtain the maximum warpage of the strip during the post-mold
curing, pre-treatment, and ball mount processes. These results are listed in Table 10.
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Table 9. Experimental values of strip warpage at reference points.

Process Flow

Strip Warpage (mm)

Long Side
(x-Direction)

Short Side
(y-Direction) Corner

D4 D8 D2 D6 D1 D3 D5 D7

8. Molding 175 ◦C 0 0 0 0 0 0 0 0
25 ◦C 7 7 0 0 0 0 0 0

Table 10. Comparison of strip warpage simulation and experimental values using mold compound 1.

Process Flow
Strip Warpage (mm)

Experimental Value Simulation Value Error (%)

8. Molding 7 7.36 5.14
9. PMC 5 5.14 2.8

10. Pre-treatment 7 6.73 3.85
11. Ball mount 7.5 6.90 8.00

3.2. Simulation Results
3.2.1. Experimental and Simulation Results

Most related studies only considered a single process step (molding and reflow) [8–14];
in contrast, this study successfully simulated the continuous flip-chip process from molding
to ball mounting (Steps 8–11). Table 10 presents a comparison of the simulation results
and experimental values, and Figure 10 illustrates the simulation results of strip warpage
after each process for mold compound 1. The warpage trends are consistent, revealing a
concave shape facing downwards. The simulated and experimental values were similar,
with differences all lower than 8%. Therefore, the model established in this study is feasible
for simulating the flip-chip process.
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3.2.2. Comparison of Mold Compounds

To investigate the effect of mold compounds for strip warpage on the production line,
the strip warpage of different mold compounds (mold compounds 1 and 2) was compared
under the same geometry and process conditions. Table 11 presents a comparison of strip
warpage for mold compounds 1 and 2, and the results demonstrate that the strip containing
mold compound 2 warped less than mold compound 1, regardless of the specific process
step. The two main factors affecting warpage under the same geometric structure and
process conditions are as follows:

1. The CTE difference between the mold compound and substrate had a greater impact,
the larger the difference, the larger the strip warpage.

2. The Young’s modulus of the mold compound exerted an effect, the larger the young’s
modulus, the greater the structural rigidity of the strip and the lower the warpage.

Table 11. Comparison of strip warpage simulation values for mold compounds 1 and 2.

Process Flow
Strip Warpage (mm)

Mold Compound 1 Mold Compound 2

8. Molding 7.36 5.02
9. PMC 5.14 3.48

10. Pre-treatment 6.73 4.65
11. Ball mount 6.90 4.71

As shown in Figures 5b and 6b, the CTE difference between mold compound 2 and the
substrate was smaller than that between mold compound 1 and the substrate. In addition,
Figure 6a indicates that the Young’s modulus of mold compound 2 was slightly larger than
that of mold compound 1. The use of mold compound 2 resulted in less strip warpage for
each process than the use of mold compound 1.

4. Discussion
4.1. Taguchi Analysis

Since the degree of warpage that occurs during ball mounting (Step 11) directly affects
the single-chip yield in the singulation step (Step 12) of the flip-chip process, this study
focused on the strip warpage that occurred during the ball mounting process. Figure 11
displays the Taguchi analysis’ main effect diagram of the ball mounting warpage. Ac-
cording to Figure 11, the main factors affecting strip warpage are the die and substrate
thickness, followed by mold compound thickness and molding temperature. The least
influential factor is PMC temperature. This study investigated the effects of these five
factors sequentially. First, the effect of die thickness was evaluated. The Young’s modulus
of the die was relatively high (131 GPa), which indicates that the die was the most rigid
material in the strip. Therefore, when the die thickness was increased, the structural rigid-
ity of the strip notably increased, reducing the amount of warpage. Second, the effect of
substrate thickness factor was determined. When the substrate thickness was increased
to 300–500 µm, the amount of warpage rose sharply to >7 mm; thus, substrate thickness
was positively correlated with warpage (Figure 11). Third, the effect of mold compound
thickness was investigated. A higher mold compound thickness resulted in greater strip
rigidity. However, the warpage was considerably reduced only when the thickness was
increased to 1100 µm; thicknesses of 150, 450, and 750 µm were unable to cause large
warpage reduction. Fourth, the effect of molding temperature factor was evaluated. The
smaller difference between the molding process temperature and room temperature of
25 ◦C resulted in the lower warpage. Nonetheless, the molding process temperature must
be higher than the Tg of the mold compound. Finally, the effect of PMC temperature
factor was determined. The results clearly demonstrate that a change in the PMC process
temperature has no strong effect on warpage.
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For the current flip-chip structure design, the following four process condition designs
can reduce the amount of strip warpage:

1. greater die thickness (>150 µm).
2. greater mold compound thickness (>1100 µm).
3. smaller substrate thickness (<100 µm); and
4. lower molding temperature, although it should not be lower than the Tg of the

mold compound.

4.2. Structural Design Criteria

According to the Taguchi analysis presented in Section 4.1, a greater die thickness,
greater mold compound thickness, smaller substrate thickness, and lower molding temper-
ature are ideal for reducing warpage. However, the trend in manufacturing is for thinner,
lighter, and shorter chips, and increasing the die and mold compound thicknesses to reduce
warpage is not optimal. Therefore, this study constructed a structural strip design based on
composite material neutral axis theory [24,27] and investigated the relationship between zn
and warpage. Table 12 lists the ball mounting warpage simulation results, where the origi-
nal parameters reflect the original conditions on the production line, and zn is the neutral
axis z-coordinate of each structural condition. The positions of the structural neutral axis
zn-coordinates were divided into three categories: (1) neutral axis on the mold compound
(No. 13), (2) neutral axis on the die (Nos. 2, 3, 4, 5–12, and 14–16), and (3) neutral axis on
the bump (No. 1).

First, the neutral axes on the mold compound (No. 13) and die (Nos. 2, 3, 4, 5–12, and
14–16) are discussed. Three characteristics were identified after comparing with the main
effect analysis diagram in Figure 11:

1. less warpage occurred when the substrate thickness was <180 µm (e.g., Nos. 16, 12, 6,
11, and 15) and the warpage was <5.15 mm.

2. greater warpage occurred when the substrate thickness was ≥300 µm (e.g., Nos. 14, 7,
9, and 10) and the warpage was >7.92 mm; and

3. Nos. 5 and 8 were special because the substrate thickness was only 180 µm (in No. 5),
and the die thickness was only 75 µm, which caused insufficient structural rigidity,
resulting in a warpage of 7.63 mm.
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Table 12. Warpage simulation results obtained with production-line and L16 parameters.

No.

Mold
Compound
Thickness

(µm)

Die
Thickness

(µm)

Substrate
Thickness

(µm)

Molding
Temp.
(◦C)

PMC Temp.
(◦C)

Ball Mount
Warpage

(mm)
zn (µm)

Original 450 150 180 175 175 6.36 280.61

1 150 75 100 150 175 4.69 156.18
2 150 150 180 165 175 6.21 258.21
3 150 250 300 175 185 7.71 410.69
4 150 400 500 185 185 7.47 661.20
5 450 75 180 175 185 7.63 264.51
6 450 150 100 185 185 4.47 205.25
7 450 250 500 150 175 8.31 602.85
8 450 400 300 165 175 4.75 479.12
9 750 75 300 185 175 9.36 434.78
10 750 150 500 175 175 9.79 620.90
11 750 250 100 165 185 4.81 276.04
12 750 400 180 150 185 2.94 394.61
13 1100 75 500 165 185 8.98 703.36
14 1100 150 300 150 185 7.92 524.47
15 1100 250 180 185 175 5.15 421.30
16 1100 400 100 175 175 1.91 373.81

In contrast, although the substrate and die thicknesses of No. 8 were 300 and 400 µm,
respectively, the structural rigidity was sufficient, and thus the warpage was only 4.75 mm.
For No. 1 (bump on the neutral axis), even if the mold compound and die thicknesses
were only 150 and 75 µm, respectively, with the substrate thickness being only 100 µm,
a relatively small warpage of 4.69 mm occurred. Therefore, the group with neutral axis
coordinates below the die and above the bump resulted in relatively small warpage.

In summary, the die and substrate thicknesses have a strong effect on warpage in the
structural design. This study discovered that in the flip-chip process design, in addition to
meeting the production requirement that the mold compound should nearly completely
cover the die, two conditions must be fulfilled to minimize the amount of strip warpage:
(1) neutral axis on the bump and (2) neutral axis on the die with a die thickness of >150 µm
and substrate thickness of <180 µm. If one of these conditions is met, the strip will have a
smaller warpage of <5.15 mm. The authors suggest that designers set the neutral axis of
the strip structure on the bump, which is more suitable for the current production trend of
thin, light, and short design.

5. Conclusions

This study successfully established a strip warpage simulation model of the flip-
chip process and investigated the effects of structure design and process (molding, PMC,
pretreatment, and ball mounting) on strip warpage. The errors between model and exper-
imental values were less than 8%, indicating that the simulation method can be applied
to the flip-chip process steps and can be extended to strip warpage analysis of different
mold compounds in the future. In addition, Taguchi analysis was employed to identify
the key factors affecting strip warpage, which were discovered to be die thickness and
substrate thickness, followed by mold compound thickness and molding temperature.
Although greater die and mold compound thicknesses result in less warpage, they cause
a substantially greater overall strip thickness, which does not comply with the current
trend towards thin, light, and short chips. To overcome this problem, this study proposed
the design concept of setting the neutral axis of the strip structure on the bump, which
reduces the amount of strip warpage and the overall strip thickness. In summary, the model
proposed in this study can be used to evaluate the effect of structural design and process
parameters on strip warpage and can provide strip design guidelines for minimizing strip
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warpage to requirements of the production line. Moreover, the guidelines can accelerate the
product development cycle and improve product quality with reduced development costs.
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