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Abstract. The present study aimed to investigate potential 
recurrence‑risk biomarkers based on significant pathways 
for Luminal A breast cancer through gene expression profile 
analysis. Initially, the gene expression profiles of Luminal A 
breast cancer patients were downloaded from The Cancer 
Genome Atlas database. The differentially expressed genes 
(DEGs) were identified using a Limma package and the hier-
archical clustering analysis was conducted for the DEGs. In 
addition, the functional pathways were screened using Kyoto 
Encyclopedia of Genes and Genomes pathway enrichment 
analyses and rank ratio calculation. The multigene prognostic 
assay was exploited based on the statistically significant 
pathways and its prognostic function was tested using train 
set and verified using the gene expression data and survival 
data of Luminal A breast cancer patients downloaded from 
the Gene Expression Omnibus. A total of 300 DEGs were 
identified between good and poor outcome groups, including 
176 upregulated genes and 124 downregulated genes. The 
DEGs may be used to effectively distinguish Luminal  A 
samples with different prognoses verified by hierarchical 
clustering analysis. There were 9  pathways screened as 
significant pathways and a total of 18  DEGs involved in 
these 9 pathways were identified as prognostic biomarkers. 
According to the survival analysis and receiver operating 
characteristic curve, the obtained 18‑gene prognostic assay 
exhibited good prognostic function with high sensitivity and 
specificity to both the train and test samples. In conclusion the 
18‑gene prognostic assay including the key genes, transcrip-
tion factor 7‑like 2, anterior parietal cortex and lymphocyte 

enhancer factor‑1 may provide a new method for predicting 
outcomes and may be conducive to the promotion of precision 
medicine for Luminal A breast cancer.

Introduction

Breast cancer is the most commonly diagnosed cancer in 
women and approximately accounts for 29% of all new 
cancers in women, and it is the leading cause of cancer‑related 
death in women worldwide (1). Breast cancer is considered as 
a heterogeneous disease but not a single disease at molecular 
and clinical levels  (2,3). The well‑known characteristics 
of breast cancer‑associated factors include pathologic and 
clinical characteristics of the primary tumor, tumor histology, 
axillary lymph node (ALN) status, estrogen receptor (ER) 
content, progesterone receptor (PR) content, content, tumor 
HER2 status, detectable metastatic disease, patient age, patient 
comorbid conditions, and menopausal status (3,4). Based on 
the determination of ER, PR, HER2, and Ki‑67, breast cancer 
is often to be accepted as four subtypes, namely Luminal A, 
Luminal B, Erb‑B2 overexpression and Basal‑like (also known 
as Triple negative breast cancer) according to St Gallen (3). 
Luminal A (ER positive, PR positive, HER2/neu negative) is 
the most common subtype, accounting for more than 50% of 
all breast cancer patients (5,6).

Multigene predictors have been introduced by various 
technologies, including immunohistochemistry (IHC), 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR), fluorescence in situ hybridization (FISH) and 
genomic microarrays (7). Nowadays, some microarray‑based 
multigene predictors have been developed as predictors of 
response to hormonal therapy (8,9), predictors of response to 
multiagent cytotoxic chemotherapy (10‑13) and independent 
prognostic biomarkers (14‑16).

Studies have shown that the recurrence score based on a 
21‑gene assay is a recurrence predictor for breast cancer patients 
receiving adjuvant endocrine therapy (17‑19). Recurrence score 
is an independent predict factor for the response to adjuvant 
chemotherapy (20,21). Patients with high scores could benefit 
from adjuvant treatments, whereas those with low scores could 
not regardless of the pathologic and clinical characteristics. In 
ATAC trial (22), the risk of recurrence score obtained using a 
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50‑gene assay was seen to have an obvious relationship with 
the 10 years distant recurrence risk in postmenopausal breast 
cancer women treated with tamoxifen or aromatase inhibitors. 
In addition, a first commercialized microarray‑based multigene 
assay containing 70 genes, primarily associated with prolifera-
tion, metastasis, invasion, stromal integrity, and angiogenesis, 
is approved by the FDA's new in diagnostic multivariate index 
assay classification (7).

Though multigene predictors have been widely inves-
tigated and used for the breast cancer, there are still rare 
studies focusing on the prognosis of subtypes. According 
to retrospective analyses and authoritative guidelines, these 
subtypes are associated with different relapse‑free survival 
and overall survival and the patients with different subtypes 
should be administrated with different systemic treatment 
strategies (3). In this study, we aimed to utilize microarray 
profiling to investigate potential biomarkers that are differen-
tially expressed in women with Luminal A‑like breast cancer 
based on significant pathways analysis through gene expres-
sion profiles analysis. To validate the ability of the candidate 
multigene assay for the prediction of clinical outcomes, the 
gene expression data and survival data of Luminal A breast 
cancer patients were downloaded from Gene Expression 
Omnibus for analysis.

Materials and methods

Gene expression data. The gene expression profiles of breast 
cancer patients were downloaded from The Cancer Genome 
Atlas (TCGA, https://cancergenome.nih.gov/) database with the 
deadline of December 27, 2016, including 20,501 genes obtained 
from 1,160 samples (1,041 tumor tissue samples, 112 normal 
tissue samples and 7 peripheral blood samples). According to 
the clinical information of ER, PR and HER2 information (23), 
370 Luminal A breast cancer samples were screened.

Data processing and differentially expressed genes (DEGs) 
identifying. The expression profile data of Luminal A patients 
were normalized. Z‑score correction method was utilized to 
rule out the difference at gene expression level (24). A total of 
249 Luminal A samples from alive patients were assigned as 
good outcome group; whereas a total of 47 Luminal A samples 
from dead patients were assigned as poor outcome group. 
P<0.01 and |log2 Fold‑Change (FC)| >1 were regarded as the 
cut‑off criteria to screen out DEGs between the good and poor 
outcome groups using LIMMA package (25).

Hierarchical clustering analysis. Hierarchical clustering 
analysis was conducted for the DEGs using heatmap2 package 
in R language (26) and the result was visualized using the 
form of heatmap.

Identifying statistically significant pathways. The pathway 
information were download from Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (http://www.kegg.jp/kegg/pathway.
html) database on March 1, 2017. The KEGG pathway enrich-
ment analyses were performed based on pathway feature vector 
calculation (27) and nearest shrunken centroids (28). Briefly, 
the KEGG pathway was scored using the expression values of 
the DEGs in all samples. The sample was projected by taking 

the upregulated score and downregulated score as coordinates. 
The accuracy of the good group and the poor group was evalu-
ated by calculating the geometric center of the same sample 
and specifying the radius (27). The pathways with accuracy 
more than 80% in these two groups were screened. The statis-
tically significant pathways were recognized by calculating 
the Ratio of rank and converting to P‑value according to the 
random 10,000 times perturbation of the background library 
(train set samples) (28).

Identifying prognostic biomarkers and training. Survival 
analysis for Luminal A breast cancer samples in TCGA were 
performed using DEGs involved in the obtained significant 
pathways (29). The support vector machine (SVM) classifica-
tion model was constructed using these DEGs. Meanwhile, 
the model was trained using the Luminal A samples and the 
receiver operating characteristic (ROC) curve was drawn.

Verification of multigene prognostic assay. The reliability and 
repeatability of the multigene assay were verified using the 
gene expression profiles of GSE2034 (https://www.ncbi.nlm.
nih.gov/geo/geo2r/?acc=GSE2034) and the survival data of 
Luminal A breast cancer patients was downloaded from Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) 
database. Besides, the SVM model was also utilized to test the 
multigene assay, and the accuracy of the model was analyzed 
using the ROC curve.

Results

DEGs for Luminal A breast cancer with good and poor 
outcome groups. Using LIMMA package, a total of 
300 DEGs were identified between 249 samples from good 
outcome group and 47 samples from poor outcome group, 
including 176 upregulated genes and 124 downregulated 
genes (Fig. 1). It can be observed from the figure that the data 
are homogenized to eliminate the deviation and the deviation 
scores of most genes were concentrated in ‑1 to 1. The genes 
distributed in the two branches were the most significant 
DEGs.

Figure 1. The volcanic map of 300 DEGs. The abscissa represents log2 FC 
and the ordinate represents the negative logarithm of P‑value. DEG, differen-
tially expressed genes; FC, fold-change.
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Clustering of DEGs. The 300 DEGs identified between good 
and poor outcome groups were selected for hierarchical clus-
tering analysis. As presented in Fig. 2, 68 of 74 dead samples 
were clustered together and only 6 samples were clustered 
to the alive group with a precision of 92%. Meanwhile, 
248 of 249 alive samples were clustered together and only 
1 sample was clustered to the dead group with a precision 
of 99.6%. This result indicated that the DEGs could be used 
to effectively distinguish Luminal A samples with different 
prognoses.

Statistically significant pathways. Total 9 pathways with 
accuracy more than 80% in the two groups were screened. 
The significance analysis for these 9 pathways was conducted 
using Nearest Shrunken Centroids and the results are shown in 
Table I. It was observed that all of the 9 pathways significantly 
distinguished cancer samples with good outcome from cancer 
samples with poor outcome (P<0.05).

Identifying prognostic biomarkers based on the significant 
pathways. The DEGs involved in these 9 significant pathways 
were collected and a total of 18 DEGs were identified as 
prognostic biomarkers (Table II). Three genes [transcription 
factor 7‑like 2 (TCF7L2), anterior parietal cortex (APC), and 
lymphocyte enhancer factor‑1 (LEF1)], were involved in four 
pathways, one gene [cyclin E1 (CCNE1)] in three pathways, 
four [S‑phase kinase‑associated protein 2 (SKP2), human 
frizzled‑7 (FZD7), polo‑like kinase 1 (PLK1), and B cell 
lymphoma 2 (BCL2)] in two pathways and ten [proteasome 

activator subunit 4 (PSME4), prenyldiphosphate synthase, 
subunit 1 (PDSS1), promoters for human DNA‑PK cs 
(PRKDC), TTK protein kinase (TTK), minichromosome 
maintenance deficient 4 (MCM4), progesterone receptor 
(PGR), proteasome subunit alpha 7 (PSMA7), MDM2 
proto‑oncogene (MDM2), laminin subunit beta 2 (LAMB2), 
and proteasome 26S subunit, non‑ATPase 7 (PSMD7)] in 
one pathway. Meanwhile, the annotation results for the 
18 genes based on the TCGA database are shown in Fig. 3A. 
Simultaneously, the heat map was shown for the changes of 
the 18 DEGs in TCGA breast cancer samples (Fig. 3B). It can 
be seen that the expression of these 18 DEGs in TCGA breast 
cancer samples are almost upregulated.

Survival analysis for the 18 DEGs in train set. The survival 
analysis was conducted for the Luminal  A breast patient 
samples with abnormal expression of these 18  genes and 
samples with normal expression of these 18 genes in TCGA 
database. As a result, the samples with abnormal expression of 
these 18 genes showed a significantly lower survival rate than 
samples with normal expression of these 18 genes (Fig. 4A, 
P=0.0319).

Additionally, the average AUC (area under curve) was 
0.871 for the ROC of these 18 genes calculated from the 
random train set in TCGA database. The sensitivity was 0.913 
and the specificity was 0.88 (Fig. 4B).

The verification of multigene prognostic assay in test set. 
The multigene assay was verified using the Luminal  A 

Figure 2. The heat map of 300 DEGs in the dead and alive samples. The abscissa represents the expression value of 300 DEGs in all samples and the ordinate 
represents the two sets of samples. Blue represents high expression, and yellow represents low expression. Meanwhile, the dead and alive samples were marked 
with red and green labels, respectively. DEG, differentially expressed genes.
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breast patient samples with abnormal expression of these 18 
genes and samples with normal expression of these 18 genes 
obtained from GSE2034 database. As a result, the samples 
with abnormal expression of these 18 genes showed a signifi-
cantly lower survival rate than samples with normal expression 
of these 18 genes (Fig. 5A, P=0.0279). According to the ROC 
for the test set, the average AUC was 0.793 with sensitivity of 
0.832 and specificity of 0.779 (Fig. 5B).

Discussion

With the promotion and put forward of precision medical, 
studies focusing on special subtypes of breast cancer are 
particularly meaningful. Regardless of the development of 
the multigene prognostic assay for breast cancer, our study 
still has a critical necessary for the prognostic study of breast 
cancer by focusing on the Luminal A subtype. According 
to our results, a total of 300 DEGs were identified between 
good prognosis group and poor prognosis group, including 176 
upregulated genes and 124 downregulated genes. Based on 
the hierarchical clustering analysis, these DEGs could clearly 
distinguish the samples of the two groups. Meanwhile, the 
18 genes predictors were involved in 9 significant pathways, 
including cancer‑related pathways (colorectal cancer, endome-
trial cancer, basal cell carcinoma and small cell lung cancer), 
oocyte meiosis, Wnt signaling pathway, Terpenoid backbone 
biosynthesis, cell cycle and proteasome were selected. 
According to the survival analysis and ROC curve, the 
obtained 18‑gene prognostic assay exhibited a good prognostic 
function with high sensitivity and specificity for the train set 
samples and verification set samples.

TCF7L2 was identified as a key gene in the multigene 
prognostic assay and it was involved in four significant 
pathways, namely Wnt signaling pathway, colorectal cancer, 
endometrial cancer and basal cell carcinoma, based on the 
pathway analysis. TCF7L2, located on chromosome 10q25.2, 
plays a critical role in cancer cell growth, apoptosis, invasion 

and metastasis by regulating Wnt signalling  (30,31). The 
regulation roles of TCF7L2 gene and related Wnt signaling 
pathway in breast cancer and its special subtypes have been 
widely confirmed  (32‑34). Several studies have exploited 
the association between the gene polymorphisms of 
TCF7L2 and the risk of breast cancer. Naidu et al (34) and 
Burwinkel et al (35) reported that TCF7L2 variants induced 
an increased breast cancer risk, and might be a potential 
candidate for the susceptibility of breast cancer. Additionally, 
the TCF7L2 protein is involved in the homeostasis of blood 
glucose and the gene polymorphisms of TCF7L2 are iden-
tified to increase the risk of type 2 diabetes (36). Diabetes 

Table I. Nine significant pathways according to Kyoto 
Encyclopedia of Genes and Genomes analysis nearest 
shrunken centroids.

	 Initial	 Average
Pathway	 precision	 value	 P‑value

Colorectal cancer	 0.7814 	 0.5775 	 1.27E‑12
Oocyte meiosis	 0.8050 	 0.6291 	 9.24E‑09
Wnt signaling pathway	 0.7033 	 0.5088 	 3.38E‑06
Terpenoid backbone	 0.6268 	 0.4298 	 5.80E‑04
biosynthesis
Endometrial cancer	 0.5582 	 0.4769 	 7.90E‑04
Cell cycle	 0.5843 	 0.4648 	 2.81E‑03
Proteasome	 0.5422 	 0.4178 	 1.13E‑02
Basal cell carcinoma	 0.5715 	 0.4104 	 1.50E‑02
Small cell lung cancer	 0.5567 	 0.3995 	 1.72E‑02

The average value column represents the average score of 
100 iterations.

Table II. DEGs identified as prognostic biomarkers based on 
the significant pathways.

Biomarkers	 Pathway	 Counts

TCF7L2	 Wnt signaling pathway,	 4
	 colorectal cancer, endometrial
	 cancer, basal cell carcinoma
APC	 Wnt signaling pathway, colorectal	 4
	 cancer, endometrial cancer, basal
	 cell carcinoma
LEF1	 Wnt signaling pathway, colorectal	 4
	 cancer, endometrial cancer, B cell
	 carcinoma
CCNE1	 Cell cycle, oocyte meiosis, small	 3
	 cell lung cancer
SKP2	 Cell cycle, small cell lung cancer	 2
FZD7	 Wnt signaling pathway, basal	 2
	 cell carcinoma
PLK1	 Cell cycle, oocyte meiosis	 2
BCL2	 Colorectal cancer, small cell	 2
	 lung cancer
PSME4	 Proteasome	 1
PDSS1	 Terpenoid backbone biosynthesis	 1
PRKDC	 Cell cycle	 1
TTK	 Cell cycle	 1
MCM4	 Cell cycle	 1
PGR	 Oocyte meiosis	 1
PSMA7	 Proteasome	 1
MDM2	 Cell cycle	 1
LAMB2	 Small cell lung cancer	 1
PSMD7	 Proteasome	 1

Counts stand for the number of significant pathways. TCF7L2, 
transcription factor 7‑like 2; APC, anterior parietal cortex; LEF1, 
lymphocyte enhancer factor‑1; CCNE1, cyclin E1; SKP2, S‑phase 
kinase‑associated protein 2; FZD7, human frizzled‑7; PLK1, polo‑like 
kinase 1; BCL2, B cell lymphoma 2; PSME4, proteasome activator 
subunit 4; PDSS1, prenyldiphosphate synthase, subunit 1; PRKDC, 
promoters for human DNA‑PK cs; TTK, TTK protein kinase; 
MCM4, minichromosome maintenance deficient 4; PGR, proges-
terone receptor; PSMA7, proteasome subunit α7; MDM2, MDM2 
proto‑oncogene; LAMB2, laminin subunit β2; PSMD7, proteasome 
26S subunit, non‑ATPase 7.
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Figure 3. The annotation results and the heat map of 18 biomarkers in Luminal A breast cancer samples from the TCGA database. (A) The annotation results of 
18 biomarkers in the TCGA database. Red represents upregulation and blue represents downregulation. The proportion of each gene mutation is also marked. 
(B) The heat map for the changes of the 18 genes in TCGA breast cancer samples. Red represents upregulation and blue represents downregulation. TCGA, The 
Cancer Genome Atlas; TCF7L2, transcription factor 7‑like 2; APC, anterior parietal cortex; LEF1, lymphocyte enhancer factor‑1; CCNE1, cyclin E1; SKP2, 
S‑phase kinase‑associated protein 2; FZD7, human frizzled‑7; PLK1, polo‑like kinase 1; BCL2, B cell lymphoma 2; PSME4, proteasome activator subunit 4; 
PDSS1, prenyldiphosphate synthase, subunit 1; PRKDC, promoters for human DNA‑PK cs; TTK, TTK protein kinase; MCM4, minichromosome maintenance 
deficient 4; PGR, progesterone receptor; PSMA7, proteasome subunit α7; MDM2, MDM2 proto‑oncogene; LAMB2, laminin subunit β2; PSMD7, proteasome 
26S subunit, non‑ATPase 7.

Figure 4. Survival analysis for the 18 biomarkers in train set obtained from TCGA database. (A) Survival curve for two sets of samples from TCGA database 
using the 18 biomarkers. The red curve represents the samples with differently expressed biomarkers, and the blue curve represents the samples with normally 
expressed biomarkers. (B) ROC curve for 18 biomarkers in train set. The abscissa represents sensitivity and the ordinate represents specificity. ROC, receiver 
operating characteristic; TGCA, The Cancer Genome Atlas; TPR, true positive rate; FPR, false positive rate; AUC, area under the curve.

Figure 5. Survival analysis for the 18 biomarkers in test set obtained from Gene Expression Omnibus database. (A) Survival curve for the samples from the gene 
expression profiles of GSE2034 using the 18 biomarkers. The red curve represents samples in high risk group with differently expressed biomarkers, and the blue 
curve represents samples in low risk group with normally expressed biomarkers. (B) ROC curve for 18 biomarkers in test set. The abscissa represents sensitivity 
and the ordinate represents specificity. ROC, receiver operating characteristic; TPR, true positive rate; FPR, false positive rate; AUC, area under the curve.



GAO et al:  A MULTIGENE PROGNOSTIC ASSAY FOR LUMINAL A BREAST CANCER5032

have been reported to be associated with the increased risk of 
breast cancer and the similar results were seen in Luminal A 
and B subtypes (37). Consistent with these previous studies, 
TCF7L2 gene was screened as a key DEG between patients 
with good outcomes and poor outcomes in Luminal A breast 
cancer.

In addition to TCF7L2, APC and LEF1 are also involved 
in the above mentioned four significant pathways. The asso-
ciation between APC and the prognosis of breast cancer has 
also been reported. In a study conducted by Müller et al, 
the methylated APC DNA indicated the worst prognosis in 
breast cancer samples from the train set and the independent 
test set (P<0.001) and it was considered as an potentially 
independent prognostic factor for breast cancer with poor 
outcomes (38). The prognostic importance of APC was also 
been confirmed by a study which discovered that the dele-
tion of APC was associated with a poor overall survival of 
breast cancer patients  (39). According to the hierarchical 
analysis, the alterations of APC were significantly higher in 
ER‑/PR‑ breast cancer compared with ER+/PR+ breast cancer 
samples (39). In general, patients with ER‑/PR‑ have a worse 
outcome than patients with ER+/PR+. Thus, it is reasonable 
to speculate that the abnormal expression of APC might be 
associated poor outcome in Luminal A (ER+/PR+) breast 
cancer. LEF1 has been widely reported to promote cancer 
cell metastasis, mediate chemotactic invasion, and is associ-
ated with cancer progression (40). The LEF1 overexpression 
has been identified as a prognostic factor for poor outcome 
and increased risk of liver metastasis in primary colorectal 
cancer (41). Delaunay et al reported that the depletion of LEF1 
strongly decreased the chemotactic potential of breast cancer 
cells and the expression level of LEF1 was associated with the 
risk of developing metastasis in breast cancer patients (42). As 
expected, the expression of LEF1 was significantly different 
between good and poor outcome groups and it was screened 
as a key DEG according to our analysis.

The 18‑gene prognostic assay including the three key 
genes, TCF7L2, APC and LEF1, was also demonstrated with 
an accurate ability to distinguish good outcomes and poor 
outcomes in Luminal A breast cancer. To meet the back-
ground of the precision treatment of our study would enrich 
the research field of specific multi‑gene prognosis for breast 
cancer subtypes. Further study with large samples should be 
conducted to verify the prognostic value of this 18‑gene prog-
nostic assay and prospective study is also needed.

By conducting survival analysis, the 18‑multigene assay 
showed effective distinguish effect on patients with different 
prognosis status in the low risk and high risk groups. However, 
the prognosis in these two groups was extraordinarily poor. 
The 18‑gene prognostic assay should be verified in more 
Luminal A breast cancer samples with more typical prognosis 
status in further experiment.
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