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ABSTRACT
Mite-fungal interactions play a key role in structuring core ecosystem processes such as

nutrient dynamics. Despite their ecological relevance, these cross-kingdom interactions

remain poorly understood particularly in extreme environments. Herein, we

investigated feeding preferences of a novel genetic lineage of aquatic oribatids obtained

from an oligotrophic freshwater system in the Cuatro Ciénegas Basin (CCB) within the

Chihuahuan Desert, Mexico. During in vitro diet preference bioassays, transient

aquaticmicrofungi (Aspergillus niger,Talaromyces sp., and Pleosporales sp.) recovered from

the same mesocosm samples were offered individually and simultaneously to mites.

Gut content was analyzed using classic plating and culture-independent direct PCR

(focusing on the fungal barcoding region) methods. Our results indicated that oribatids

fed on all tested fungal isolates, yet the profusely developing A. niger was preferentially

consumed with all fungal components being digested. This feeding habit is particularly

interesting since A. niger has been reported as an unsuitable dietary element for

population growth, being consistently avoided by mites in previous laboratory

experiments. It is possible that our mites from the CCB have adapted to exploit available

resources within this oligotrophic site. This work confirms the trophic relationship

betweenmicrofungi andmites, two rarely investigatedmajor components of themicrobial

community, shedding light on the niche dynamics under low-nutrient conditions.

Subjects Biodiversity, Ecology, Entomology, Mycology, Freshwater Biology

Keywords Mites-fungal interactions, Oligotrophic system, Oribatei, Aspergillus, Mite dietary
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INTRODUCTION
As a keystone concept in ecology, vast literature has accumulated around the concept of

the ecological niche (reviewed by Soberón, 2007). However, knowledge on the biotic
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component of this concept remains largely unexplored in microorganisms (some studies

are available in aquatic Hyphomycetes, Arsuffi & Suberkropp, 1984; Chauvet et al., 2016;

Duarte et al., 2017), as most of this work has been concentrated on vertebrates and

angiosperms. Extending this framework to microbes is relevant as these organisms

represent the vast majority of the taxonomic, genetic and metabolic diversity and biomass

on the planet.

As key components of the microscopic world, microfungi and mites represent

large and diverse elements in natural communities, fulfilling numerous ecological roles

(Kjøller & Struwe, 1982; Dighton, 1997; Maraun & Scheu, 2000). Microfungi are

involved in the decomposition of organic matter and nutrient cycling (Scheu, 1993),

degrading highly recalcitrant organic compounds such as lignin (Dijkstra, Boon &

Van Mourik, 1998). Mites, for their part, are a dominant group of soil invertebrates

(Strenzke, 1952; Schatz, 2002) that play an active role in litter decomposition

(Wallwork, 1970), vertical translocation of organic matter for deeper soil

(Wallwork, 1967), humus formation (Kubiena, 1953) and dispersion of decomposer

taxa (Healey, 1970; Harding & Stuttard, 1974).

Trophic interactions between mites and fungi are diverse and complex, affecting

core ecosystem processes such as nutrient dynamics (Ingham et al., 1985; Hofstetter &

Moser, 2014). Fungal grazing by mites has been associated with increased decomposition

rates, nutrient cycling, and plant growth (Klironomos & Kendrick, 1995; Bonkowski et al.,

2000; Gange, 2000; Cortet et al., 2002). Furthermore, changes in microbial respiration

(Bengtsson & Rundgren, 1983; Kaneko et al., 1998), fungal biomass production,

interactions, and distribution have also been attributed to mite grazing (Hanlon &

Anderson, 1979; Visser, Whittaker & Parkinson, 1981; Lussenhop, 1992; Bardgett, Whittaker

& Frankland, 1993a, 1993b; Tiunov & Scheu, 2005).

At the individual level, mite-fungal trophic associations benefit fungi by enabling

selective spore dispersal (Jacot, 1930; Griffiths, Hodson & Christensen, 1959; Stefaniak &

Seniczak, 1976, 1981;Williams, Whipps & Cooke, 1998a, 1998b;Meier, Scherrer & Honegger,

2002) and mites obtain valuable nutrients such as sterols and vitamins from fungal

components (Van Asselt, 1999). Nevertheless, these interactions (corresponding to the

niche space of each species) remain poorly understood in oligotrophic aquatic habitats.

Oribatids, a major component of taxonomic mite diversity (Walter & Proctor, 1999),

have a wide-ranging diet (Schuster, 1956; Luxton, 1972) based on fungal elements

(Siepel & Maaskamp, 1994). These arthropods feed selectively when high-quality food

is available leading to the term “choosy generalists” (Schneider & Maraun, 2005).

Furthermore, food choice experiments have shown that these arthropods prefer

ubiquitous, dark pigmented fungi as dietary elements (Maraun et al., 1998; Koukol

et al., 2009). However, feeding on arbuscular mycorrhizal (Lussenhop, 1992; Larsen &

Jakobsen, 1996; Hopkin, 1997; Klironomos & Moutoglis, 1999; Cole et al., 2004) and

ectomycorrhizal fungi has also been documented (Schneider, Renker & Maraun, 2005).

Feeding preferences in fungivore oribatid mites have been linked with their ability

to digest fungal components (Bowman, 1984; Hubert, Zilova & Pekar, 2001), tolerate

fungal secondary metabolite production (Daneshvar & Rodriguez, 1979), and the
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accessibility of alternative food sources (Parkinson et al., 1991a, 1991b). Four general

fungal-based diet assemblages have been proposed for mites (Chen, Schneider & Schneider,

1995; Kaneko, Mclean & Parkinson, 1995; Sadaka-Laulan et al., 1998). These include

fungi that are preferred and suitable for mite population growth (+/+) such as Alternaria

alternata, and Cladosporium cladosporioides; preferred, but unsuitable (+/-) as is the
case with Aspergillus amstelodami var. amstelodami; avoided, but suitable (-/+),
e.g., Aspergillus versicolor, Mycocladus corymbifer, and A. amstelodami var. montevidensis;

and avoided and unsuitable fungi (-/-) such as A. niger (Hubert et al., 2004). In addition

to these classifications, feeding guilds have been defined to understand the ecological

roles of oribatids (Schuster, 1956; Luxton, 1972, Wallwork, 1983; Kaneko, 1988). Guilds

refer to taxa involved in: (1) comminution of organic matter, (2) alteration of microbial

activity or dispersal of decomposer microorganisms (Behan & Hill, 1978; Swift, Heal &

Anderson, 1979; Wallwork, 1983), and (3) ground-dwelling herbivores with no role in

organic matter decomposition.

Since trophic relationships between oribatid mites and microfungi are complex and

poorly characterized, particularly in aquatic and nutrient-poor systems, the aim of

this work was to evaluate feeding preferences of oribatid mites from an oligotrophic

freshwater oasis in the Cuatro Ciénegas Basin (CCB) in the Chihuahuan Desert.

During in vitro bioassays, we offered three microfungal taxa, including an abundant

fungal species (A. niger) that has been previously reported as avoided and unsuitable for

mite development in other systems. Our findings highlight the implications of

mite-fungus interactions on organic matter decomposition and nutrient cycling under

nutrient-depleted conditions.

MATERIALS AND METHODS
Study site
The CCB (26�50′N, 102�8′W) poses a biodiversity paradox, as this extremely oligotrophic

oasis harbors remarkably high levels of biodiversity (Souza et al., 2006, 2012), being

regarded a model for Cambrian food webs at a stoichiometric knife-edge (Elser et al.,

2006). Numerous freshwater systems containing rich microbial diversity (including

transient aquatic microfungi) are distributed within this area (Souza et al., 2006, 2012;

Desnues et al., 2008; Velez et al., 2016). The climate in the CCB is generally hot and arid

with extreme temperatures such as 45 �C in July and temperatures below 0 �C being

commonly reported in January (Conagua, 2015). Specifically, the Churince freshwater

system (26�50′N; 102�8′W) comprises a perennial spring and two desiccation lagoons that

are connected by short shallow streams (López-Lozano et al., 2012). This endangered

system exhibits extreme and fluctuating temperature and water chemistry conditions,

characterized by high concentrations of sulfates and scarce nutriments regarded as

oligotrophic (Minckley & Cole, 1968; Tobler & Carson, 2010).

Sampling
We submerged 15 wood baits of Pinus sp. (16� 10� 2 cm) along the Churince freshwater

system (Figs. 1A and 1B) during the transition from wet to dry season, from September
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2014 to March 2015 (field permit FAUT-0230, emitted by Secretarı́a de Medio Ambiente y

Recursos Naturales, Subsecretarı́a de Gestión para la Protección Ambiental, Dirección

de Vida Silvestre). An elevation map of the CCB (Fig. 1A) was generated using layers

from the Instituto Nacional de Estadı́stica y Geografı́a (INEGI, 2013) with the packages sp.

(Pebesma & Bivand, 2005) and maptools (Bivand & Lewin-Koh, 2015). After six months,

the wood panels were recovered (Figs. 1C and 1D), placed into individual Zip-lock�

plastic bags, transported to the laboratory, and processed within 24 h of arrival to the

laboratory. The test blocks were processed according to the methodology described by

Figure 1 Study site and sampling procedures. (A) Detail on the geographic location of the Churince

freshwater system within the CCB. (B) Set-up of the bating technique using Pinus sp. wood baits.

(C and D) Recovery of the wood panels after six months of submersion. Photographer: P. Velez.

Full-size DOI: 10.7717/peerj.5200/fig-1
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Jones (1971), which in summary consists of incubating test blocks in plastic boxes

(with sterile moist paper towels forming a moist chamber). Moist chambers were kept at

room temperature (22–26 �C) under natural daylight and examined periodically for the

presence of mites and fungal structures over a period of six months using a

stereo-microscope (Discovery V8 Stereo; Carl Zeiss, Göttingen, Germany).

Microfungal isolation and identification
Fungi from wood baits were isolated using Potato Dextrose Agar (PDA; Fluka Analytical;

Sigma-Aldrich, St. Louis, MO, USA) supplemented with 0.5 g/mL of penicillin-G and

0.3 g/mL of streptomycin sulfate to prevent bacterial development. The taxonomic

assignment of axenic isolates was based on morphological and molecular characterization.

The morphology of microfungal reproductive structures was examined (Samson et al.,

2014; Yilmaz et al., 2016) using a transmitted light microscope “Carl Zeiss Axiostar Plus”

equipped with the microscope software “Zeiss ZEN”. The universal DNA barcode

marker for fungi (nuclear ribosomal internal transcribed spacer region, ITS rDNA;

Schoch et al., 2012) was analyzed for each isolate. To do this, microfungi were transferred

to Potato Dextrose liquid medium until adequate growth occurred. Mycelium was

collected and DNA was extracted using the protocol described by Doyle & Doyle (1987).

The ITS rDNA region was amplified and sequenced using ITS1 and ITS4 primers as

previously described by White et al. (1990). Sanger sequencing reactions were performed

in both directions by the High Throughput Genomics Center Facility, University of

Washington and by the Macrogen Inc., South Korea. Isolates and total DNA were

deposited in the culture collection of the Laboratorio de Evolución Molecular y

Experimental, Instituto de Ecologı́a, headed by Dr. Valeria Souza, and the Laboratorio de

Ecologı́a Molecular de Micromicetos en Ecosistemas Amenazados, Instituto de Biologı́a,

headed by Dr. Patricia Velez; both at the Universidad Nacional Autónoma de México

(UNAM). Cultures and total DNA are available for research upon request.

Quality assessment and assembly of the sequences was performed using the

finishing tool Consed version 29.0 (Ewing & Green, 1998; Ewing & Green, 1998;

Gordon, Desmarais & Green, 2001). For the taxonomic assignment of microfungal isolates,

sequence homology was evaluated through the comparison to the UNITE database

version 7.2 using the BLAST algorithm (with an e-value > 0.001; Abarenkov et al., 2010;

Koljalg et al., 2013). Sequence similarity for defining OTUs was set as proposed by

Millberg, Boberg & Stenlid (2015), with a cut-off value of 98–100% for presumed species,

94–97% for genus level and 80–93% for order level. For conflicting hits, the lowest

common rank level was used (Peršoh et al., 2010; Table S1).

Mite culture, identification, and food preference bioassays
Oribatid mites were maintained on moist wood panels that were profusely colonized

by the tested fungi until processing. For taxonomic identification and illustration, the

specimens were mounted in lactic acid on temporary cavity slides. Images were

obtained using an AxioCam MRC5 camera mounted on a Carl Zeiss AxioZoom V16
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microscope. Mites were identified based on the taxonomic characteristics described for the

genus Trhypochthoniellus (Balogh, 1972; Weigmann, 1999; Fujikawa, 2000; Kuriki, 2005).

Additionally, a phylogenetic reconstruction based on COI sequence data was

performed. The gnatosome (bucal sections) and leg portions were dissected and collected

into 0.2 mL PCR microtubes containing buffer (Phire Animal Tissue Direct PCR Kit;

ThermoFisher Scientific; Waltham, MA, USA). The reactions were carried out according

to the manufacturer’s protocol at a 55 �C annealing temperature. Oribatid specific primers

were used (Arch1 and HCO2198; Heethoff et al., 2007) at a 0.5 mM final concentration.

Negative controls were included, where the sterilized needle was dipped into the PCR

buffer prior to mite dissection. Sanger sequencing reactions were performed in both

directions by the Laboratorio de Secuenciación Genómica de la Biodiversidad y de la

Salud, Instituto de Biologı́a UNAM, México. The assembly of forward and reverse

sequences was done using Geneious v.9.1 (Biomatters, Auckland, New Zeland). Sequences

were manually edited and trimmed using BioEdit software (v7.0.5; Hall, 2005). Using a

BLAST-n analysis, closely related NCBI sequences were selected to compute a

phylogenetic reconstruction including analogous oribatid species and external taxonomic

categories as previously reported by Klimov et al. (2018). Phylogenetic placement of the

CCB mites was determined according to a Maximum-Likelihood (ML, 1,000 bootstrap)

analysis run in RAxML v.8.2.10 (Stamatakis, Hoover & Rougemont, 2008) using GTRCAT

model; Cryptocellus sp. AD1430 was defined as an outgroup. All ML inferences were

performed in the CIPRES Science Gateway portal (Miller, Pfeiffer & Schwartz, 2010).

Mite diet preference experiments were implemented as described by Hubert et al.

(2004). Oribatids were transferred from wood baits into culture chambers consisting of a

2 mm thick layer of plaster of Paris mixed with charcoal (ratio 9:1) in small Petri dishes

(5 cm in diameter). Five individuals were placed in each culture chamber and starved

for five days. Then, to corroborate active feeding, a fungal plug (1 cm2) of each one of

the three isolated fungal taxa was offered to the mites individually. During a second

experiment, food preference was tested by presenting fungi simultaneously to starved

mites in the following combinations: Pleosporales sp. (a), Talaromyces sp. (b), and

Aspergillus niger (c) individually; paired combinations a-b, a-c, and b-c; and

simultaneously a, b, and c. Culture chambers were incubated under antiseptic conditions

at 25 �C, 12 h light-12 h dark cycles, and 85% RH, and moistened regularly (3 day

intervals) with 5 mL of sterile distilled water.

All experiments were run using negative controls (no fungus). Due to the limited

availability of biological material on our wood panels, a replicate was implemented

only for the first experiments (corroboration of the active consumption of a, b, and c).

Individuals of each treatment were observed for several weeks (Table 1). During this

period, the number of mites under, near, and far from the fungal plug was recorded.

Also, the number of visits made by the mites among discs was counted. Based on this

information, oribatids on discs were classified as “actively feeding,” while those which

were walking around these discs were classified as “looking for food” (Hubert, Sustr &

Smrz, 1999).
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Table 1 Summary of food preference results.

Treatment 2 days 1 week 2 weeks

Experiment Replicate Experiment Replicate Experiment Replicate

a All mites meandered

around the fungal

plug searching

for food

3 mites meandered

around the fungal

plug searching for

food, 2 mites

remained away

from the feeding

area

1 mite was actively

feeding on the

fungal plug, and

4 mites were

searching for

food around

the fungal plug

All mites

meandered

around the

fungal plug

searching for food

3 mites were

found dead,

2 mites meandered

around the

fungal plug

2 mites were

found dead,

3 mites meandered

around the

fungal plug

b All mites meandered

around the fungal

plug searching

for food

All mites meandered

around the fungal

plug searching for

food

All mites were

actively feeding

on the top of

the fungal plug

4 mites were

actively feeding

on the top of

the fungal plug,

1 mite was

found dead

All mites visited

the fungal plug,

detection of

3 nymphs

All mites (4)

visited the

fungal plug

c All mites visited

the fungal plug

searching for food

4 mites visited the

fungal plug, and

1 was actively

feeding

1 mite was feeding

on the top of the

fungal plug,

4 highly active

mites meandered

around the

fungal plug

2 mites were

actively feeding

on the top of

the fungal plug,

3 highly active

mites meandered

around the

fungal plug

All mites were

actively feeding

on the top of

the fungal plug,

detection of

1 larvae and

3 nymphs

All mites were

actively feeding

on the top of

the fungal plug,

detection of

3 larvae and

3 nymphs

a-b All the mites visited both fungal plugs,

and remained searching for food in

close proximity to the feeding area

2 mites visited a,

and 3 mites

visited b

1 mite visited a,

and 3 mites

visited b

a-c All mites visited c 1 mite visited a,

and 4 mites visited c

1 mite meandered

around a, 4 mites

were actively

feeding on the

top of c, detection

of 1 larvae and

2 nymphs

b-c 2 mites visited b, and 3 mites visited c 2 mites visited b,

3 mites visited c

All mites were

actively feeding

on the top of c,

detection of

3 larvae and

2 nymphs

a-b-c 1 mite visited a, 1 mite visited b, and

3 mites visited c

2 mites meandering

around b, and

3 mites actively

feeding on c

1 mite visited b,

4 mites were

actively feeding

on the top of c,

detection of

4 nymphs

and 2 larvae

Control Mites with little activity Mites with

little activity

Mites with little

activity

Mites with

little activity

3 mites were

found dead,

and all died

by the end of

the fourth week

All mites were

found dead

Note:
Treatments include controls (no microfungi) and several dietary options where microfungal taxa were presented individually and simultaneously to starved mites
(n = 5). Pleosporales sp. (a), Talaromyces sp. (b), and A. niger (c).
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Gut-content analyses
Oribatids were examined for the content of their digestive tract through culture-

dependent (plating) and culture-independent (direct PCR focusing on the ITS fungal

barcoding region) methods. After four weeks of the food preference bioassays, two mites

under each treatment were collected and superficially disinfected in 1.5 mL microtubes

containing 1 mL solution of 75% methanol, and then transferred to 1.5 mL microtubes

with 1 mL of sterile 0.03% Tween-80 solution. All tubes were gently vortexed for 30 s.

Subsequently, under sterile conditions, the idiosome of each mite was dissected out with

tungsten wire needles, squashed on concave slides, re-suspended in 300 mL of sterile water,

and plated (100 mL) on Petri dishes containing PDA in triplicate per individual.

To confirm the aseptic conditions during the experiment, negative controls were plated

using 100 mL of sterile water.

Additionally, for the molecular analysis, the gut of superficially disinfected animals

under each treatment was dissected out and collected into 0.2 mL PCR microtubes

containing PCR buffer (Phire Animal Tissue Direct PCR Kit; ThermoFisher Scientific;

Waltham, MA, USA). PCR reactions were performed according to the manufacturer’s

protocol, using fungal-specific primers for the nuclear ribosomal ITS region (ITS1 and

ITS4, 0.5uM final concentration). Two negative controls (buffer, and buffer where the

sterilized dissecting needle was soaked) were also included. Sequencing reactions were

carried out in both directions by the Laboratorio de Secuenciación Genómica de la

Biodiversidad y de la Salud, Instituto de Biologı́a UNAM, México. The quality assessment

and sequences assembly were performed using the finishing tool Consed version 29.0

(Ewing & Green, 1998; Ewing et al., 1998; Gordon, Desmarais & Green, 2001). The

taxonomic assignment for fungal gut-content sequences was based on the evaluation

of sequence homology through the NCBI-BLAST algorithm (Table S1). The sequence

similarity for taxonomic assignment was considered as proposed by Millberg, Boberg &

Stenlid (2015).

RESULTS
Oribatid mites were detected on test blocks where profuse fungal development was observed

(Fig. 2). From these blocks, we isolated fungal taxa identified as Pleosporales sp., Talaromyces

sp., and Aspergillus niger (Fig. 3; Table S1). Based on morphological and molecular

characteristics, CCB mites were placed into the genus Trhypochthoniellus (Willmann, 1928),

following basic trhypochthoniid characters as presented by Norton & Behan-Pelletier (2009)

for Trhypochthoniidae. Morphologically, our oribatids differed from known

Trhypochthoniellus taxa by: (1) the absence of both botridial complex and sensilli, (2) the

number of genital setae, (3) rostrum shape, (4) general body size and (5) distance between

notogastral setae c1–c1 compared with d1–d1, among some other characteristics (Fig. 4).

This species is currently under the description process by M. Ojeda. Moreover, as reported

for T. longisetus, CCB mites are parthenogenetic and no males were observed in the samples

during experimental procedures. The ML phylogeny (Fig. 5) confirmed these observations

clustering our mites within the same group, distant from most known taxa and with

the closest affinity to Crotonioidea, represented by Trhypochthonius cladonicola.
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Feeding preference experiments revealed that mites have varying dietary inclinations

when the tested fungal taxa were offered simultaneously. Although, Pleosporales sp. and

Talaromyces sp. were consumed by some individuals, the ubiquitous A. niger was

consistently preferred in all treatments. After the first 48 h, mites in the three treatments

were observed meandering around the fungal plug, yet in the treatment containing

A. niger all the mites approached the fungus directly. For the following weeks, all mites

in the treatment with A. niger were observed feeding actively over and under the

fungal plug and the presences of larvae and nymphs was recorded. As for the other

treatments, mites remained searching for food in close proximity to fungal plugs feeding

Figure 2 Co-occurring oribatid mites and fungi on Pinus sp. wood panels. Profusely developing

fungal filamentous structures or hyphae (arrows). Bar = 500 mm. Photographer: M. Ojeda.

Full-size DOI: 10.7717/peerj.5200/fig-2

Figure 3 Fungal isolates tested during in vitro food preference bioassays. (A) Pleosporales sp. (B) Aspergillus

niger. (C) Talaromyces sp. Photographer: C. Loyola. Full-size DOI: 10.7717/peerj.5200/fig-3
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occasionally. However, these were not detected over and/or under the fungal plug.

Mites in the control plates died after four weeks (Table 1).

Gut content plating yielded no fungal development on any of our experimental and

control Petri dishes. However, through the molecular gut-content analysis, we were able

to recover genetic signatures corresponding to the fed A. niger and Talaromyces sp.

Moreover, our findings indicated that when all the microfungi were offered

simultaneously in food preference bioassays, the ITS sequence signal for Talaromyces sp.

was detected. In paired combinations, A. niger was recovered over Pleosporales sp.

and Talaromyces sp. (Table S1).

DISCUSSION
Our results suggest that CCB mites could represent a novel genetic lineage within

Trhypochthoniellus, close to Crotonioidea, represented by T. cladonicola, yet further

detailed taxonomic analyses are required to validate this hypothesis. The topology of

our ML tree is equivalent to Klimov et al. (2018), and the value supporting the

branch containing CCB mites within Trhypochthoniellus was high (90%). Remarkably,

our mites grouped within a single phylogenetic cluster, diverging from known taxa,

agreeing with diversity patterns (presence of unique lineages) reported for other

organisms such as fish (Minckley, 1984), shrimp (Alvarez, Pedraza-Lara & Villalobos,

2014), and snails (Hershler, 1984) in the Churince system. In addition to this, the feeding

Figure 4 Trhypochthoniellus sp. habitus. (A) Ventral view. (B) Dorsal view, showing some general

characteristics such as the absence of both botridial complex and sensilli. Bar = 100 mm. Photographer:

M Ojeda. Full-size DOI: 10.7717/peerj.5200/fig-4
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habits of this novel CCB aquatic mite reinforce the idea of divergence though the

occupation of a new niche space by feeding on a fungal species reported as unsuitable and

unpalatable for other mites. Currently, the genus Trhypochthoniellus contains nine species;

the type species (Trhypochthoniellus longisetus Berlese, 1904) with three cosmopolitan

subspecies, seven species occurring in the Eastern Palaearctic and Oriental regions, and

the recently described T. chilensis from mosses near a swamp in the Magallanean region

of Chile (Ermilov & Weigmann, 2015).

Previous investigations in the Churince system revealed that freshwater microfungal

communities are dominated by transient saprotrophic taxa which were inferred to be

involved in the ecosystem’s functioning (Velez et al., 2016). Our mesocosms approach

facilitated the recovery of interacting microbes, which were able to survive and reproduce

under laboratory conditions, revealing their ecological niche. These wood baits

demonstrated that transient aquatic saprotrophic microfungi represent a sustainable

community in the Churince aquatic system, establishing trophic interactions with

parthenogenetic aquatic oribatids. Herein, we demonstrated that these fungal saprobes

fulfill a crucial role as part of food web. By sustaining and feeding aquatic oribatids, they

participate in nutrient cycling. Since catalytic mechanisms have been associated with

oribatid feeding and movement (Behan & Hill, 1978), a full understanding of their dietary

habits is necessary in the CCB in order to elucidate their role in ecosystem energetics

Figure 5 Maximum-Likelihood phylogeny of CCB mites inferred from COI sequences. The CCB

oribatid mite sequences cluster together, forming a distant lineage from known Trhypochthoniellus

oribatid taxa (Klimov et al., 2018 and NCBI retrieved sequences included). Bootstrap support for nodes

with values higher than 50 percent are indicated. Photographer: M. Ojeda.

Full-size DOI: 10.7717/peerj.5200/fig-5
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under oligotrophic conditions. Moreover, considering previous observations on the

relationship between ample resource supply and the occurrence of parthenogenetic

species (Fischer, Meyer & Maraun, 2014), our results suggest that aquatic transient

microfungi provide plentiful nutrimental resources to sustain oribatid the development

and growth of oribatid populations (presence of larvae and nymphs) in the CCB

despite low nutrient conditions.

Approximation to the niche space and dietary preferences in
Trhypochthoniellus sp
In general, oribatids feed on a wide range of materials (Dhooria, 2016), having a dietary

preference for microfungi with melanized cell walls (Mitchell & Parkinson, 1976; Maraun

et al., 1998, 2003; Schneider & Maraun, 2005). In contrast, our results suggest that aquatic

oribatids in the CCB may feed on non-dematiaceous taxa such as A. niger, Pleosporales

sp. and Talaromyces sp. Though DNA may be degraded to some extent during gut passage

(Renker et al., 2005), we were able to confirm these observations through the recovery

of the fungal ITS genetic barcode region from the gut of our mites by direct PCR. Here it is

important to mention that currently an inclusive genetic barcode for the Fungal Kingdom

is still unapproachable. The best approximation has been achieved through the

implementation of the ITS region as the standard fungal barcode. As this region has the

highest probability of successful identification for the broadest range of fungi (Schoch

et al., 2012). However, poor species-level resolution has been reported in certain

taxonomic groups (e.g., Hughes, Tulloss & Petersen, 2018). Therefore, this limitation

should be considered in ITS-based species delimitations.

Cuatro Ciénegas mites demonstrated their ability to feed on the usually avoided and

unsuitable fungus A. niger, an apparently previously empty niche space for mites,

according to previous investigations (Hubert et al., 2004). The consistent ingestion of

A. niger in all the treatments of our study disagrees with previous findings classifying

this species as non-palatable and unsuitable for mite development and population growth

(Hartenstein, 1962; Sinha, 1966; Hubert et al., 2004). However, our results confirm

other study findings where spores of this fungus have been detected in mite guts (Behan &

Hill, 1978; Hubert, Kubátová & Šárová, 2000; Bandyopadhyay, Khatun & Chatterjee, 2009).

In addition, we suggest that mite feeding on Pleosporales sp. may be associated with

the wide distribution and abundance of this taxon in the CCB (Velez et al., 2016),

representing a continuous and accessible food source. Similarly, the appeal of A. niger

for our oribatids might be related to fast growth rates, abundant biomass and conidia

production.

Even though multiple-choice tests may be biased by the spectrum of food items offered

to individuals, the tested microfungi and mites were observed to coexist in our wood

baits’ mesocosms (by definition a simplification of the environment), representing

ecosystem dynamics. Hence, in order to delimit the total niche space of this oribatid,

further experiments are needed evaluating of additional food sources, possible predators,

and the mimicry of CCB distinctive physicochemical variables.
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Identification of core factors associated with fungal palatability in microarthropods

remains elusive (Koukol et al., 2009). Conventionally, feeding preferences have been

related to fungal morphology and physiology. For example, mites avoid fast-growing

microfungi, which may capture individuals in their long hyphae. Thus, species with

short-hyphae are preferentially grazed (Mills & Sinha, 1971). Despite, the fact that A. niger,

Pleosporales sp. and Talaromyces sp. may be considered as fast-growing taxa, our

observations revealed that the mycelia of these microfungi allowed free movement of mite

individuals on the wood panels and during in vitro bioassays, enabling active feeding.

Additionally, we approximated a Relative Width of Digitus Mobilis (RWD: relationship

between length l and base width of the digitus mobilis w) of 4.5–5 mm in our oribatids

(Fig. 6). This estimate is an indirect indicator of food items used by oribatid species

(Kaneko, 1988), as mites with smaller RWD (around 2–4 mm) hypothetically feed

selectively on minute matter (Wallwork, 1958). Therefore, conidia dimensions might

be considered as a key trait for microarthropod ingestion (Koukol et al., 2009). This result

suggests that spherical/ovoid, small (3–5 mm) conidia produced by fungal species in

the present work are potentially consumable by mites, enabling the ingestion of all

fungal components.

Mite-mediated fungal dispersal
Fungal spore dispersal by animals (vertebrates and invertebrates) has been documented

in some systems (Allen, 1987; Warner, Allen & MacMahon, 1987; Klironomos &

Moutoglis, 1999; Gehring, Wolf & Theimer, 2002), yet information on microfungal

Figure 6 Relative width ofDigitus Mobilis (RWD) approximation in Trhypochthoniellus sp. based on

the shape of the infracapitulum, and its correlation with chelicera. L = length of chelicera; l = length of

digitus mobilis; w = width of digitus mobilis. Full-size DOI: 10.7717/peerj.5200/fig-6
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dispersal agents remains scarce. Our culture-dependent results on the gut content analysis

suggest that, based on their capabilities to digest fungal tissues (cell walls and contents),

these oribatids may be considered more as grazers (Siepel & de Ruiter-Dijkman, 1993)

than spore dispersers (via feces), as we could not recover fungal isolates from our culture-

based approach. This agrees with previous work where thorough digestion of fungal

cell content by mites is reported (Van der Drift, 1965; Ponge & Charpentie, 1981; Hubert,

Zilova & Pekar, 2001), highlighting its alimentary value (Hubert et al., 2004).

Nevertheless, based on their fungal-based diet, the assessed mites may still represent

important dispersers for transient aquatic fungi through some other means

(Blackwell & Malloch, 1991; Renker, Alphei & Buscot, 2003; Rantalainen et al., 2004).

Despite conidia dispersal via mite feces being unlikely, dispersal on the body surfaces of

individuals may be significant (Wallwork, 1983; Bernini, 1986; Paine, Raffa & Harrington,

1997; Hubert, Kubátová & Šárová, 2000; Ocak, Dogan & Ayyildiz, 2008). As has been it

was observed in other systems, this oribatid-aided conidia transport may represent an

advantage for the colonization of new substrata, and faster recovery after disturbances

under harsh, fluctuating environmental conditions inherent to the CCB (Hanlon &

Anderson, 1979; Hanlon, 1981; Visser, Whittaker & Parkinson, 1981).

CONCLUSION
The niche space created as a result of the trophic interactions between mites and

microfungi is often overlooked or ignored despite the regulation of important community

dynamics and ecosystem processes by these organisms (Warnock, Fitter & Usher, 1982;

Finlay, 1985; Harris & Boerner, 1990; Gange & Brown, 1992). Herein, we introduce a novel

genetic lineage of Trhypochthoniellus (Acari: Oribatida: Trhypochthoniidae) from a

freshwater oligotrophic desert oasis in Mexico. The trophic niche space occupied by

this mite is comprised of the ecological association with three abundant transient aquatic

fungi including unpalatable taxa for other mite species, such as A. niger. The information

demonstrated by this study is essential to understanding trophic interactions and

their role shaping the niche space in low-nutrient ecosystems.

We suggest that our CCB oribatid mites are fungal grazers, demonstrating their key

ecological role in energy turnover under oligotrophic conditions. This is particularly

important as larger edaphic animals, such as earthworms, millipedes, and isopods

(which usually play a major role in litter decomposition in temperate regions) are

scarce in the CCB. We emphasize the need for further studies investigating the association

between microarthropods and microfungi as this interaction affects microbial biomass

and community structure, having potential widespread consequences in decomposition

rates and nutrient cycling.
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