
INTRODUCTION

Neurons in the auditory pathway are characterized by the abil-
ity to detect small differences in the timing of incoming signals. 
For example, auditory brainstem neurons process interaural time 
differences as brief as 100 μs and use this information to deter-
mine sound locations [1]. To fulfil their role in sound information 
processing auditory neurons need to fire brief, well-timed action 
potentials (APs) at high rates, and their AP time course and shape 
is significantly regulated by K+ currents. Most neurons in auditory 

nuclei express high- (IKH) and low-voltage activating K+ currents 
(IKL), although cell type-dependent variabilities in the size, density, 
and kinetics of these K+ currents are present [2-4]. Pharmacologi-
cal and gene knock-out studies have demonstrated that IKH and IKL 
in brainstem auditory neurons are predominantly conducted by 
members of the Kv3 and Kv1 families of K+ channels, respectively 
[2-6]. IKH facilitates the repolarization of APs and shortening of AP 
duration, while IKL is partially active near the resting potential of 
auditory neurons and decreases the membrane time constant at 
rest and during synaptic stimulation. Thus, IKL plays a significant 
role in shortening EPSPs and APs, thereby minimizing temporal 
variability in AP firing and preventing aberrant AP generation. 

K+ currents in auditory neurons might undergo developmental 
changes. A patch-clamp study on rat calyx of Held reported that 
both TEA-sensitive IKH and margatoxin-sensitive IKL exhibited 
about 3-fold increase in amplitude and 2~3-fold acceleration in 
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the activation kinetics from postnatal day 7 (P7) to P14 [7]. Simi-
larly, in gerbil medial superior olive (MSO) principal neurons a 
390% increase in IKL was reported from P14 to P21 [8]. Over the 
same period, relative proportion of dendrotoxin-K (DTX-K)-
sensitive current in the MSO neuron IKL also increased from 76% 
to 91%. However, no such developmental change was found in 
medial nucleus of the trapezoid body (MNTB) neurons. In rat 
cochlear nucleus neurons mRNA and protein levels of Kv1.1, Kv1.2, 
and Kv3.1 increased during first 3 postnatal weeks and reached a 
stable state afterward while Kv4.2 expression gradually decreased 
from postnatal to the young adult ages [9]. These findings indi-
cated that developmental refinement of K+ currents in auditory 
synapses could occur in cell type- and channel subtype-specific 
manner.

ANFs are bipolar neurons with unmyelinated dendritic end-
ing at the hair cell ribbon synapse and myelinated peripheral and 
central processes and soma. They conduct signals from sensory 
hair cells to neurons in the cochlear nucleus of the brainstem [10], 
achieving a high temporal precision of synaptic transmission 
by mechanisms similar to those of neurons in auditory nuclei. 
Well-timed AP firing of ANFs with minimal latency and jitter is 
regulated by several factors including the occurrence of large and 
brief excitatory postsynaptic currents (EPSCs), and AP generator 
regions located near the IHC- ANF synapses [11-15]. In addition, 
investigations of the cell bodies of ANFs (also known as the spiral 
ganglion neurons; SGNs) revealed expression of multiple K+ chan-
nel types, including Kv3 and Kv1 [16-20]. Recordings from isolated 
SGN somata indicated that active electrical properties such as rest-
ing membrane potential, AP threshold and AP firing pattern are 
finely tuned by different combinations of K+ currents along with 
other ionic currents. It remains to be clarified whether the classes 
of K+ channels found in SGN somata are present in the unmyelin-
ated ANF endings contacting IHCs and if they exert similar effects 
on AP generation of ANFs [13].

It has been demonstrated that ANF dendrites exhibit various ion 
channels including hyperpolarization-activated, cyclic nucleotide-
gated (HCN), voltage-gated Na+, IKH and IKL [21]. Here, we further 
investigated the electrical properties, subunit composition, and 
physiological role of K+ currents in ANF dendrites. We confirmed 
the presence of a 4-AP-sensitive IKL in ANF dendritic terminals, 
demonstrated its physiological role in dendritic excitatory post-
synaptic potentials (EPSPs) using patch clamp recordings, and 
identified the classes and locations of K+ channels conducting IKL 
using subtype selective K+ channel blockers and immunolabeling 
with specific antibodies to particular K+ channel subunits.

MATERIALS AND METHODS

All animal procedures were performed in accordance with ani-
mal protocols approved by the Johns Hopkins University Animal 
Care and Use Committee and Mokpo National University Insti-
tutional Animal Care and Use Committees. All experiments were 
performed using excised cochlear turns dissected from Sprague 
Dawley rats euthanized by an overdose of isoflurane or sevoflu-
rane inhalation, followed by decapitation. Then, cochleae were 
quickly dissected free in standard external solution.

Electrophysiological recordings 

Whole cell patch clamp recordings from the cell body or den-
dritic terminal of cochlear afferent nerve fiber was performed as 
described previously [21, 22]. Excised apical cochlear turns from 
1 day (for spiral ganglion neuron recordings) or 7~14 day-old rats 
(for ANF dendritic recordings) were placed in a chamber under 
an upright microscope (Axioskop2 FS plus, Zeiss) and superfused 
with external solution at 1~3 ml/minute. IHCs and contacting 
ANF dendrites were visualized on a monitor via a 40× water im-
mersion objective, 4× magnification, Normaski optics and a NC 
70 Newvicon camera (Dage). The standard external solution was 
(in mM): 5.8 KCl, 155 NaCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 
5.6 Glucose, 10 HEPES; 300 mOsm, pH 7.4 (NaOH). The pipette 
solution was (in mM): 135 KCl, 3.5 MgCl2, 0.1 CaCl2, 5 EGTA, 5 
HEPES, 0~2.5 Na2ATP; or 135 KCl, 3.5 MgCl2, 0.1 CaCl2, 5 EGTA, 
5 HEPES, 4 Na2ATP, 0.2 Na GTP; 290 mOsm, pH 7.2 (KOH). 
Liquid junction potentials (4 mV) were corrected off-line. Drugs 
were dissolved in external solution to their final concentrations 
from frozen stocks daily. Drug solutions were applied using a 
gravity-driven flow pipette (100 μm tip diameter) placed near 
the recording site, connected to a VC-6 channel valve controller 
(Warner Instrument). ZD7288, 6-cyano-7-nitroquinoxaline-2,3-
dione (CNQX), 4-AP were purchased from Tocris Bioscience, 
α-DTX from Alomone Labs and tetrodotoxin (TTX) from either 
Alomone Labs or Sigma. All other chemicals were purchased from 
Sigma. 

Recording pipettes were pulled with a multi-step horizontal 
puller (P97, Sutter), using 1 mm borosilicate glass (1B100F-4, 
WPI), fire-polished (MF200, WPI, final tip resistance 10~15 MΩ), 
and coated with Sylgard® (Dow Corning). Recordings were per-
formed at 22~25℃ using a Multiclamp 700A or 700B amplifier 
(Molecular Devices), pClamp version 9.2 software, and a Digidata 
1322A board, digitized at 50 kHz and filtered at 10 kHz. In voltage-
clamp mode, series resistance (Rs) was estimated from capacitative 
currents in response to 10 mV voltage steps (-84 to -94 mV) [21]. 
Data were discarded if Rs >50 MΩ. In current-clamp mode, errors 
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due to Rs were compensated using the bridge balance and pipette 
capacitance neutralization. To avoid results from damaged cells we 
excluded data from cells exhibiting membrane potential -40 mV 
or less negative in current clamp mode or holding current larger 
than -200 pA at holding potential -84 mV in voltage clamp mode. 
Average resting potential of the cells included in current study 
was -67.2±4.0 mV in our standard external solution. Data were 
analyzed off-line using pClamp version 9.2 or 10.5 (Molecular De-
vices), MiniAnalysis (Synaptosoft) and Origin 7.5 (OriginLab). For 
statistical comparisons Sigmaplot12 (SYSTAT Software Inc.) was 
used. Statistical significance of irreversible drug effects (α-DTX) 
was tested using a paired-t-test. Effects of reversible drugs (4-AP 
and TEA) were tested using one-way repeated measures analysis 
of variance (RM ANOVA) followed by Student-Newman-Keuls 
test. p<0.05 is considered to be statistically significant. Values are 
presented as mean±standard deviations (S. D.).

Immunohistochemistry 

The methods for cochlear tissue preparation and imaging was 
adapted from the procedure described previously [23, 24]. Co-
chleae were quickly collected from postnatal (P9, P15-21) Sprague 
Dawley rats and immediately perfused through either the oval or 
round windows with ice cold paraformaldehyde (4%) or formal-
dehyde (4%) prepared in phosphate buffered saline (PBS; pH 7.4). 
Cochleae were then kept in the fixative for 1 h at 4℃ and then 
rinsed with PBS for 3 times. Apical turns of the cochleae were 
carefully separated, immersed in blocking buffer (PBS contain-
ing 5% donkey or goat serum and 0.25% Triton-X-100) for 1 h at 
room temperature, then incubated in primary antibody diluted 
with blocking buffer overnight at 4℃. The next day, tissues were 
washed 3 times with blocking buffer (20 min each) then incubated 
with fluorescence tagged secondary antibodies diluted in blocking 
buffer for 1 h at room temperature. The tissues were then washed 
once in blocking buffer (20 min), and twice in PBS (10 min), then 
mounted on glass slides using Fluorsave® mounting medium (Cal-

biochem, 345789). Tissue images were obtained using Laser Scan-
ning Confocal Microscope (Leica TCS SP5/AOBS/Tandem at the 
Korea Basic Science Institute, Gwangju Center or Zeiss LSM 710 
at Mokpo National University). Confocal z-stacks were collected 
at 0.3~0.99 μm interval. Image analyses and reconstructions were 
carried out using image viewing software provided by the micro-
scope manufacturers (Zeiss Zen or Leica LAS AF lite), Imaris (ver-
sion 7.3.0, Bitplane, Switzerland)) and ImageJ (NIH). No labeling 
was observed when the primary antibodies were omitted.

The primary antibodies used in this study are listed in Table 1. 
Donkey anti-chicken secondary antibody conjugated with Alexa 
Fluor 647 was purchased from Millipore (AP194SA6, 1:1,000). All 
other secondary antibodies (Alexa Fluor 488, 555, and 633 gener-
ated in either goat or donkey) were purchased from Molecular 
Probes/Invitrogen and used at 1:1,000. 

Quantification of colocalization 

To quantify the co-localization for Kv1.1, Kv1.2 and NKA, the 
confocal 3D data sets were imported and reconstructed with 
Imaris software for visualization and volume rendering. Co-
localization analysis was performed with ImarisColoc module of 
the Imaris software, which provides statistical parameters that in-
clude the number of co-localized voxels, the Manders’ coefficient. 
The Manders’ coefficient values of co-localized voxels from two 
acquired channels were measured via built-in automated back-
ground threshold determination of ImarisColoc module.

 
Manders’ coefficients are calculated as: 
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A: signal intensity of NKA labeling, B: signal intensity of Kv1.1 or 
Kv1.2 labeling

The Manders’ coefficient values range from 0 to 1; the value 1 in-
dicating the total signal from one channel completely overlapping 
with the signal from the other.

RESULTS

High- and low-voltage activating K+ currents of ANF  

dendrites

Our previous work demonstrated that nearly all rat ANF den-
drites expressed IKH and IKL [21]. In this study we used whole-
cell patch clamp recordings to further analyze these dendritic K+ 
currents during pharmacological blockade of dendritic Na+, Ca2+, 
HCN and AMPA receptor-mediated synaptic currents with 1~2 
µM TTX, 200 µM CdCl2, 50 µM ZD7288 and 10 µM CNQX, re-
spectively. The remaining outward currents were evoked by voltage 
steps (10 mV, 200 ms, holding potential -84 mV) from -104 mV to 
+36 mV, and tested for their sensitivity to the K+ channel blockers 
tetraethylammonium (TEA) and 4-aminopyridine (4-AP) (Fig. 1). 
In many neurons in auditory pathway, TEA preferentially inhib-
ited IKH while 4-AP exhibited more selectivity to IKL [2, 3, 25, 26]. 
TEA slightly reduced the outward currents at test potentials below 
-34 mV and significantly altered the current-voltage relationship 
(Fig. 1A, B) at test potentials between -24 and +36 mV, resulting 
in a steeper growth of the TEA-sensitive currents (Fig. 1B, G; n=4, 
p<0.05). These data indicated that ANF dendrites possessed a 
TEA-sensitive IKH activating around -24 mV in addition to a small 
TEA-sensitive IKL component.

The inhibitory effects of 4-AP (Fig. 1C) were greatest during the 
first 20 ms of voltage steps (dotted vertical lines) and currents were 
significantly decreased from control at test potentials between -44 
mV and +36 mV (Fig. 1D, n=8, p<0.05). In contrast, the contribu-
tion of 4-AP-resistant currents increased noticeably during voltage 
steps positive to -34 mV, consistent with the previously described 
activation of IKH [2, 27]. The 4-AP-resistant currents were signifi-
cantly inhibited by a combination of 4-AP and TEA at test poten-
tials between -24 mV and +36 mV (Fig. 1E, F). Taken together, IKH 
were more effectively blocked by TEA while IKL appeared more 
sensitive to 4-AP despite some degree of overlap in their voltage 
range.

IKL shortens synaptic potential duration at the IHC-ANF 

synapse

Current-voltage plots revealed that dendritic IKL was activated 

within the voltage range in which EPSPs operate at the IHC-
ANF synapse (-65 to -30 mV) [21]. Since activation of IKL has 
been shown to affect EPSPs in CNS auditory neurons [28-30], we 
tested the effects of blocking IKL with 4-AP on EPSPs (Fig. 2A~C). 
In the presence of 4-AP (4 mM), EPSP time constants of decay 
(τdecay) were significantly increased by 22±7% (from 5.5±1.9 ms to 
6.7±2.2 ms, n=5 in 15 mM K+, n=1 in 5.8 mM K+ extracellularly, 
2248 EPSPs analyzed, p<0.01) compared to control, and this ef-
fect was reversed to 112±13% of control (5.33±1.18 ms, n=3; Fig. 
2A) upon washout. The changes in τdecay caused by 4-AP were 
similar over the wide range of EPSP amplitudes. EPSP rise times 
(10%~90%; 1.20±0.37 vs. 1.29±0.52 ms, p=0.801), EPSP amplitudes 
(13.3±6.3 mV vs. 12.8±6.1 mV, p=0.411), and ANF dendritic mem-
brane potentials were all unaffected by 4-AP (55.1±13.1 mV to 
55.3±13.5mV, p=0.551). Synaptic EPSCs were unaffected by 4-AP 
(10~90% rise times; 0.36±0.08 vs. 0.32±0.10 ms, p=0.558; τdecay, 
1.05±0.09 vs. 1.11±0.30 ms, p=0.801, n=3, 380 EPSCs analyzed), 
excluding unspecific effects of the drug presynaptically or on glu-
tamate receptors. Thus, we concluded that activation of IKL in ANF 
dendrites shortened EPSP durations over the physiological range 
of EPSP amplitudes.

αα-DTX-sensitive K+ channels mediate a part of dendritic IKL

We proceeded to further analyze IKL because it was significantly 
activated in the voltage range of dendritic EPSPs. In SGNs and 
auditory neurons of the cochlear nucleus, 4-AP-sensitive currents 
also exhibited a sensitivity to α-DTX [2, 20], which irreversibly 
blocks K+ channels containing Kv1.1, 1.2, or 1.6 subunits [31]. To 
test dendritic IKL in ANFs for sensitivity to α-DTX, we compared 
the outward currents before and during α-DTX application (Fig. 
3A~E). Unlike results in SGNs α-DTX inhibited only a small part 
of dendritic IKL. We measured the amplitudes of outward cur-
rents evoked by repeated voltage steps (0.1 Hz, 200 ms) from -84 
to -34 mV (a voltage step activating significant IKL but minimal 
IKH) before and during α-DTX application (Fig. 3C, D). We often 
observed a significant rundown of outward currents during these 
experiments. Therefore, in these recordings, current amplitudes in 
the presence of α-DTX were statistically compared to extrapolated 
control values calculated from a linear fit of currents recorded 
during a control period (Fig. 3D, blue line). α-DTX (100~200 nM) 
reduced the outward currents by 23±9% (Fig. 3E, from 84±41 to 
64±29 pA, n=6, p<0.05). The α-DTX sensitivity of dendritic IKL dif-
fered markedly from results in cultured mouse SGN somata [20], 
where α-DTX caused a near complete block of IKL. Therefore, we 
compared the α-DTX sensitivity of IKL from acutely excised SGN 
somata (Fig. F~J). No rundown of the outward current amplitudes 
was observed (Fig. 3I) and α-DTX inhibited 90±2% of the outward 
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current (Fig. 3J, from 95±18 to 9±2 pA, n=3, p<0.001). These re-
sults suggested that, based on α-DTX sensitivity, the low-voltage 
activated K+ channel population in the dendrites differed from 
that in the somata of ANFs. The differences in α-DTX-sensitivity 
between dendrites and the cell bodies are not likely due to age dif-
ference. Patch-clamp recordings of SGNs isolated from animals 
of more advanced age consistently reported that IKL of SGN cell 
bodies were predominantly inhibited by dendrotoxins [18, 20, 
32]. Considering that ANF dendrites are the primary site of lateral 
olivocochlear (LOC) innervation, the possibility that certain LOC 
neurotransmitters might modulate ANF activities by modifying 
dendritic ion channels has long been postulated. Expression of 
a variety of dendritic K+ channels would increase the chance of 
forming diverse LOC neurotransmitter-ion channel partnerships, 
which could produce case-by-case fine-tuning of synaptic poten-
tials when they are first generated.

Most ANF dendrites express Kv1.1 and Kv1.2 subunits

We next studied the molecular identities and cellular locations of 
dendritic K+ channels conducting IKL using immunofluorescence 
labeling with K+ channel subtype-specific antibodies. 

Our pharmacological data indicated that an α-DTX-sensitive K+ 

channel subtype contributed to IKL in ANF dendrites, and func-
tional expression of the α-DTX-sensitive subtypes Kv1.1 and Kv1.2 
has been demonstrated in SGN somata [16, 19]. Therefore, we 
tested for Kv1.1- and Kv1.2-immunoreactivity of the dendritic ter-
minals of ANFs. Although Kv1.6 is also sensitive to α-DTX we did 
not further pursuit Kv1.6 here. Transcriptomic studies on dissoci-
ated mouse SGNs reported that Kv1.6 expression was restricted 
to a small population of SGNs, especially to the ones innervating 
OHCs whereas transcripts for Kv1.1 and Kv1.2 were found in most, 
if not all, SGNs [33-35]. To reveal the cellular location of Kv1.1- or 
Kv1.2-immunolabed structures, we co-labeled tissues with known 
cellular markers. Parvalbumin and calretinin are Ca2+- buffer-
ing proteins found in hair cell and ANFs. Na+, K+-ATPase (NKA) 
and neurofilament heavy (NFH) are found in the unmyelinated 
dendritic segment and the peripheral process of type 1 ANFs, 
respectively [36-38]. As expected from the α-DTX-sensitivity, low 
magnification images revealed Kv1.1-immunoreactivity in the IHC 
region and spiral ganglia region (Fig. 4A~F). High magnification 
confocal images of IHC regions revealed that Kv1.1-immunore-
activity was present in most afferent dendrites (Fig. 5). In cochleae 
from young rats (P9) Kv1.1-immunoreactivity was co-localized 
with many parvalbumin-positive dendritic terminals (Fig. 5A~D, 
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Fig. 4. Kv1.1 and Kv1.2-immunoreactivity in dendritic terminals and cell bodies of ANFs. (A~C) Low magnification confocal micrographs of whole-
mount cochlear apical turn, double-labeled with anti-Kv1.1 (A, red) and anti-calretinin (B, green). Kv1.1 immunoreactivity is found near IHCs (yellow 
arrow) and in the spiral ganglion. Scale bar: 100 μm. (D~F) High-magnification confocal images of spiral ganglion. Double-labeling with a monoclonal 
anti- Kv1.1 (D, green) and anti-NKA (E, red) shows that Kv1.1 immunoreactivity is detected in the cell membranes and the cytosols of the majority of 
NKA-positive spiral ganglion cells. Scale bar: 10 μm. (G~I) Low magnification confocal micrographs of whole-mount cochlear apical turn, double-
labeled with anti-Kv1.2 (G, red) and anti-calretinin (H, green). Kv1.2 immunoreactivity is found near IHCs (yellow arrow) and in the spiral ganglion. 
Scale bar: 150 μm. (J~L) High-magnification confocal images of spiral ganglion. Double-labeling with a monoclonal anti- Kv1.2 (J, red) and anti-NKA (K, 
green) shows that Kv1.2 immunoreactivity is detected in the cell membranes of the majority of NKA-positive spiral ganglion cells. Scale bar: 10 μm.
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yellow arrows). In cochleae from older hearing animals (P15~21) 
overall Kv1.1-immunoreactivity in afferent dendrites appeared 
stronger than in neonatal cochleae (Fig. 5E~J). Most NKA-immu-
nolabeled and/or calretinin-immunolabeled dendritic terminals 
exhibited relatively intense Kv1.1-immunoreactivity (Fig. 5E~J, yel-
low or white arrows), while a small subset showed almost no Kv1.1-
labeling (Fig. 5E~J, yellow arrowhead). An examination of z-stack 
projection images indicated that Kv1.1-immunoreactivity was 
present throughout the entire unmyelinated dendritic segments of 
most ANFs (Fig. 5K~M). Kv1.1 and NKA-immunoreactivities were 
highly correlated (Pearson’s coefficient 0.7045) and 77% of NKA-
immunoreactive voxels were Kv1.1-immnoreactive. Manders’ 
coefficients calculated from this z-stack were 0.7991 (M1) and 
0.5373 (M2), indicating high degree of co-localization of NKA- 
and Kv1.1-signals. Reconstructed images of Kv1.1 and NKA co-
localized voxels (Fig. 3N) further emphasized a high degree of co-
localization of Kv1.1- and NKA-immunoreactivity over the entire 
lengths of the dendritic segments, suggesting that Kv1.1 is located 
in most, but possibly not all afferent terminals.

Kv1.2-immunoreactivity had a similar labeling pattern compared 
to Kv1.1-immunoreactivity. At low magnification, strong signals 
were found in the IHC region and in the spiral ganglion region (Fig. 
4G~L). In cochleae from young rats (P9) Kv1.2-immunoreactivity 
was found in many parvalbumin-positive dendritic terminals (Fig. 
6A~D, yellow arrows). In cochleae from older rats (P15~21), the 
majority of dendritic terminals had Kv1.2-immunoreactivity (Fig. 
6E~J, yellow arrows). As with Kv1.1-immunoreactivity, a minor 
subset of NKA and/or calretinin-positive dendritic terminals ex-
hibited no Kv1.2-immunoreactivity (Fig. 6E~J, yellow arrowheads). 
Projection images of confocal z-stacks illustrated that Kv1.2-
immunoreactivity was present along the entire unmyelinated 
segments (Fig. 6K~M). Kv1.2 and NKA-immunoreactivities were 
highly correlated (Pearson’s coefficient 0.8004) and 79% of NKA-
immunoreactive voxels were Kv1.2-immunoreactive. Manders’ co-
efficients calculated from the z-stack images were 0.8568 (M1) and 
0.7882 (M2), respectively. Occasionally, fibers projecting toward 
the OHC area exhibited Kv1.2-immunoreactivity (Fig. 6E~J, white 
arrowhead), but these fibers did not exhibit NKA- or calretinin-
immunoreactivity. In the OHC area, NKA is expressed in efferent 
nerve fibers but not in type II ANFs [37]. Therefore, the Kv1.2-
immunolabed fibers projecting toward the OHC area in our study 
were taken to be type II ANFs.

The z-stack projection images revealed uneven Kv1.1- and Kv1.2-
immunoreactivity along the peripheral processes of ANFs (Fig. 7). 
Often, stronger labeling was found at the dendritic terminals and 
the small segments just below the habenular perforata (Fig. 7A~C), 
corresponding to the 2 peaks in the signal intensity plot (Fig. 7D, 

red trace). The Kv1.1-immunoreactivity below the habenular 
perforata corresponded well with Caspr-2-immunoreactivity, a 
marker for nodes of Ranvier, (Fig. 7E~H, dotted box), indicating 
that the lower Kv1.1-hot spots were probably at the first heminodes 
of the ANFs. Kv1.2-immunoreactivity exhibited a similar pattern, 
with the strongest signals near the dendritic terminals (Fig. 7I~L) 
and the first heminodes (Fig. 7M~P, dotted box).

Taken together, the prevalence, locations and signal intensities of 
Kv1.1 and Kv1.2 labeling implies a significant role of these subunits 
in modulating the excitability and AP generation at most IHC-
ANF synapses.

The αα-DTX-insensitive component of dendritic IKL is likely 

due to Kv7.2 and unknown subunits

Although the immunolabeling results were consistent with the 
presence of α-DTX-sensitive K+ channels in the majority of ANF 
dendrites, the electrophysiological evidence also indicated that 
a significant portion of dendritic IKL was mediated by α-DTX-
insensitive K+ channel subtype(s). Therefore, we performed im-
munolabeling studies with antibodies to non-Kv1 channels having 
significant open probabilities at negative membrane potentials. We 
chose to investigate Kv7.2 and K2p2.1 because their expression had 
been previously reported in SGN somata and fiber-like structures 
near the base of the IHC [39]. In addition, Kv7.2 currents were 
reported to modify the resting membrane potentials and the excit-
abilities of isolated SGNs [40]. Indeed, Kv7.2-immunoreactivity 
can be found in SGN somata and some fiber-like structures near 
the bases of IHCs (Fig. 8A~F). However, co-labeling data with 
NKA demonstrated that not all of the Kv7.2-immunolabed fiber-
like structures were ANF dendrites. Some Kv7.2-immunoreactivity 
was observed in the NKA-positive dendritic terminals (Fig. 8A~C, 
yellow arrows), while the presence of Kv7.2-immunoreactivity in 
NKA-negative structures (Fig. 8A~C, white arrows) was also clear. 
Most NKA-immunolabeled dendritic terminals showed no Kv7.2-
immunoreactivity (Fig. 8A~C, white arrowheads). Taken together, 
these results indicated that Kv7.2 channels, although likely influ-
encing K+ current in most spiral ganglion somata, could contribute 
to IKL in only a subset of ANF dendrites. 

K2p2.1 is one of the K+ “leak” channels helping to determine the 
resting membrane potential and input resistance of neurons. With-
in the inner ear, K2p2.1-immunoreactivity has been observed in 
vestibular ganglion somata and vestibular afferent nerve terminals 
[41], and the presence of K2p2.1 mRNA in mouse SGNs has been 
established [17]. In our experiments K2p2.1-immunoreactivity was 
found in SGN somata (Fig. 8J~L) but not in ANF dendrites (Fig. 
8G~I). Thus, the K+ channel subtype(s) responsible for the α-DTX-
insensitive component of dendritic IKL in rat ANFs remains to be 
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Fig. 6. Immunolabeling of Kv1.2 subunit in whole-mount cochlear preparations. (A, B) Low-magnification images of cochlear preparations (P9) 
double-labeled with anti-Kv1.2 (red) and anti-parvalbumin (green). Scale bar: 20 μm. (C, D) High-magnification images of cochlear preparations (P9 
rat) double-labeled with anti-Kv1.2 (red) and anti-parvalbumin (green). Scale bar: 5 μm. yellow arrow: Kv1.2 and parvalbumin-positive terminals. (E~J) 
Confocal micrographs of cochlear preparations triple-labeled with anti-Kv1.2 (red), anti-NKA (green) and anti-calretinin (blue). Kv1.2 immunoreactivity 
is present in the majority of NKA and calretinin-positive dendritic terminals contacting onto inner hair cells. Yellow arrow: Kv1.2, NKA and calretinin-
positive terminals. White arrowhead: fiber only positive for Kv1.2. yellow arrowhead: NKA-positive but Kv1.2- negative terminals. Scale bar: 5 μm. (K~M) 
Maximum projection images from a confocal z stack show abundant Kv1.2 immunoreactivity in most NKA-positive dendritic segments as well as the 
regions further along the nerve fibers. (N) Reconstructed image of voxels exhibiting both Kv1.2 and NKA signals. Scale bar: 5 μm. (O) 2D scatter plot of 
Kv1.2 and NKA-immunoreactivities. Scatter plot information on all the voxels was extracted from the same confocal 3D dataset depicted in K~M. Yellow 
vertical and horizontal lines indicate the background signals determined by automated threshold function in Imaris software.
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labeled with anti-Kv1.1 (red), and anti-NKA (green). (D) Intensity profile of Kv1.1 and NKA-immunoreactivity along the length of peripheral process 
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Fig. 8. Immunolabeling of Kv7.2 and K2P2.1 subunits in whole-mount cochlear preparations. (A~C) Confocal images of cochlear turn double-labeled 
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positive spiral ganglion somata (yellow arrow). Scale bar: 20 μm. (G~I) Confocal images of cochlear turn double-labeled with anti-K2P2.1 (G, Green) and 
anti-NKA (H, red). Outlines of IHCs are marked with dotted lines. No K2P2.1-immunoreactivity is detected at the NKA-positive dendritic terminals. 
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identified.

DISCUSSION

ANF dendrites, similar to many auditory brainstem neurons, 
express 4-AP-sensitive IKL and 4-AP-resistant IKH. In several classes 
of auditory brainstem neurons IKL is sensitive to dendrotoxins, and 
therefore it is most likely mediated by channels of the Kv1 family [2, 
3, 25, 42-46]. Here, we found that the IKL of rat SGN somata is, in 
large part, α-DTX-sensitive, while that of ANF dendrites was only 
slightly sensitive to α-DTX. Similarly, the IKL of goldfish auditory 
afferent dendrites was 4-AP-sensitive and α-DTX–insensitive [47]. 
In the mammalian inner ear, 4-AP-sensitive but DTX-insensitive 
IKL has been found in vestibular calyx afferent terminals of the 
crista’s peripheral zone [48]. Our immunolabeling data suggest the 
likely molecular makeup of rat dendritic low-threshold K+ cur-
rents. First, our immunolabeling data indicate that the majority of 
afferent dendrites expresses Kv1.1- and Kv1.2-immunoreactivity, 
suggesting that Kv1.1 and Kv1.2 conduct IKL in most dendrites. The 
intensity of Kv1.1 and Kv1.2-immunoreactivity at the dendritic 
terminals was similarly strong as found at the heminodes although 
others have reported expression of Kv1.1 and Kv1.2 at the hemi-
nodes, nodes of Ranvier, and the SGN soma but not at the dendrit-
ic terminals of ANFs [32, 49]. We presume that the discrepancy at 
the dendritic terminals might be due to differences in the cochlear 
tissue preparations [32] or in the primary antibodies [49].

The K+ channel(s) responsible for the α-DTX-resistant compo-
nent of dendritic IKL remain to be identified. Possible candidates 
for the α-DTX-resistant component include Kv1 family subtypes 
known to be α-DTX insensitive (Kv1.3, 1.4, 1.5, 1.7, 1.8), or hetero-
meric K+ channels containing Kv1.1 and Kv1.2 subunits. Although 
it has been generally thought that heteromeric K+ channels con-
taining at least one toxin-sensitive subunit exhibit toxin-sensitivity 
(single toxin-sensitive subunit model) [50], a recent study reported 
otherwise. In CHO cells expressing Kv1.2 and Kv1.4 subunits the 
heteromeric K+ current was largely α-DTX-insensitive [19]. Our 
immunolabeling data also supported involvement of Kv7.2 chan-
nels in a small subset of dendrites. Similarly, Kim and Rutherford 
[49] reported Kv7.2 and Kv7.3 at the dendritic terminals of ANFs. 
Alternatively, based on their current-voltage profiles, members of 
the Kv11, Kir, and K2p families of K+ channels warrant future study.

There may be a functional advantage to the overlapping expres-
sion of different K+ channel subtypes. Diverse dendritic ion chan-
nel expression might result from diverse olivocochlear (OC) ef-
ferent innervation during cochlear development and maturation. 
Indeed, evidence suggested that OC innervation influences the 
development of IHC-ANF synapse structure and function. Results 

from various transgenic mouse lines indicated that the coordina-
tion of Ca2+ influx with glutamate release did not mature normally 
when efferent synaptic transmission to immature IHCs was dis-
rupted during the early postnatal period [51, 52]. Moreover, surgi-
cal interruption of the OC fiber bundle disrupted both the pillar-
modiolar gradient of the IHC ribbon structure, and the dendritic 
glutamate receptor patch size [53]. In addition, transgenic deletion 
of adenomatous polyposis coli protein from OC neurons [54] 
resulted in similar disruptions of the presynaptic ribbon structure 
and postsynaptic glutamate receptor patches. 

Although the role and molecular identities of high-threshold 
dendritic K+ channels were not investigated in great detail in this 
study, it is noteworthy that IKH could be activated by APs and in 
turn shape AP waveforms. IKH is mainly mediated by Kv3 channels 
in auditory brainstem neurons [55, 56]. Our group as well as others 
also have reported Kv3.1b and Kv3.3 in dendrites and cell bodies of 
ANFs [24, 57]. Also, expression of Kv3.1b had been demonstrated 
at the heminodes of ANFs [32, 49]. Thus, members of the Kv3 fam-
ily are the most likely candidates for the dendritic channels medi-
ating IKH. 

The firing of high frequency APs with minimal temporal varia-
tion is a common, critical property of auditory neurons, and IKL, 
conducted primarily by the Kv1 family of channels, helps the 
temporal precision of this firing. For example, auditory neurons 
from animals lacking Kv1.1 exhibited abnormally low IKL, and per-
formed poorly in auditory tasks requiring high temporal precision 
of signaling [58, 59]. At the cellular level, pharmacological antago-
nism or genetic deletion of Kv1.1 in auditory brainstem neurons 
caused 1) increased AP jitter, 2) decreased fidelity of input/output 
rates during stimulus trains, and 3) reduced phase-locked firing 
in response to sinusoidal sound stimuli [60-62]. In these neurons, 
IKL helped maintain low Rin, and thereby shortened the durations 
of EPSPs and APs. Similarly, our results indicated that IKL of ANF 
dendrites, especially those conducted by Kv1.1 and/or Kv1.2, played 
a significant role in shortening dendritic EPSPs. It is possible that 
the observed shortening of EPSP durations (~22%) could have an 
even greater effect in vivo , since ANF dendrites express another 
voltage-sensitive current whose activity can be triggered by IKL. 
ANF dendrites express Ih that exhibited 3~9% open probability at 
-65 mV [21], and depolarized the membrane to potentials where 
more IKL increases. Conversely, increased IKL hyperpolarized the 
membrane potential, increasing Ih. Thus, Ih and IKL work in concert 
to dramatically decrease Rin without changing resting membrane 
potential. Indeed, such synergistic effects of Ih and IKL in decreasing 
Rin and EPSP duration has been demonstrated in medial superior 
olive neurons [1], and in a computational model of ventral cochle-
ar nucleus neurons [63]. Another factor to consider is that our data 
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were recorded from neonatal rat cochleae at room temperature. 
The size of IKL might undergo a developmental increase during the 
first 3~4 postnatal weeks, as reported in medial superior olive neu-
rons [8], and IKL amplitudes have also been shown to increase with 
increasing temperature [64]. 

In addition to shortening EPSP durations, Kv1 currents directly 
modulate AP generation in ANFs. In isolated SGN somata with 
severed axonal and dendritic processes, blocking IKL with dendro-
toxins significantly decreased AP thresholds and altered firing pat-
tern from rapidly adapting to slowly adapting type [18-20]. Immu-
nolabeling presented here and by others [32, 49, 65], demonstrate 
a presence of Kv1.1 and Kv1.2 hot spots at the first heminodes of 
ANFs, provided further evidence for the involvement of Kv1 in AP 
generation at the AP initiation zone. 

Taken together, our data suggest that Kv1.1- and Kv1.2-containing 
K+ channels improve temporal resolution at the IHC-ANF syn-
apse by directly shortening EPSPs at the synapse and modulating 
AP generation at the first node of ANFs.
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