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This paper introduces a new system for dynamic visual recognition that combines

bio-inspired hardware with a brain-like spiking neural network. The system is designed to

take data from a dynamic vision sensor (DVS) that simulates the functioning of the human

retina by producing an address event output (spike trains) based on the movement

of objects. The system then convolutes the spike trains and feeds them into a brain-

like spiking neural network, called NeuCube, which is organized in a three-dimensional

manner, representing the organization of the primary visual cortex. Spatio-temporal

patterns of the data are learned during a deep unsupervised learning stage, using spike-

timing-dependent plasticity. In a second stage, supervised learning is performed to train

the network for classification tasks. The convolution algorithm and the mapping into

the network mimic the function of retinal ganglion cells and the retinotopic organization

of the visual cortex. The NeuCube architecture can be used to visualize the deep

connectivity inside the network before, during, and after training and thereby allows

for a better understanding of the learning processes. The method was tested on the

benchmark MNIST-DVS dataset and achieved a classification accuracy of 92.90%. The

paper discusses advantages and limitations of the new method and concludes that it is

worth exploring further on different datasets, aiming for advances in dynamic computer

vision and multimodal systems that integrate visual, aural, tactile, and other kinds of

information in a biologically plausible way.

Keywords: Spiking neural networks (SNN), NeuCube, dynamic vision sensor (DVS), MNIST-DVS, retinotopy, deep

learning in SNN

INTRODUCTION

During the past years, the quest for accurate image recognition systems has been one of the driving
forces behind major advances in the field of artificial neural networks such as the development
of convolutional neural networks (Lecun et al., 1998). Today, algorithms for image recognition
are well advanced and can be found in many applications such as search engines, security systems,
industrial robots, medical devices, and virtual reality. Besides themany areas of application, another
reason for the fast progress in image recognition might be the vast knowledge about the human
visual system. The eye is arguably the best studied human sensory organ and the visual cortex has
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been the main object of interest in a large number of
neuroscientific studies. Findings from vision science have
inspired the development of new hardware as well as novel
algorithms and computational tools. High-definition and high-
speed cameras have long surpassed the capacities of the human
eye in terms of spatial and temporal resolution. On the software
side though, it still proves to be a difficult task to extend the scope
of present achievements in static image recognition to dynamic
visual recognition of moving objects or a moving scene.

The benefit of accurate and fast dynamic visual recognition
is apparent: each of the above-mentioned applications of image
recognition constitutes a potential application area for dynamic
visual recognition systems. Any kind of robot that must navigate
within a three-dimensional environment or perform tasks on
moving objects would benefit from an accurate and fast dynamic
visual system. The popular topic of self-driving cars is only
one example. Other potential implementations include security
systems, automated traffic prediction and tolls, monitoring of
manufacturing processes, navigational tools in air and ship traffic,
or diagnostic assistants for inspections or surgery. Since the
human visual system’s adaptability and efficiency are still highly
superior to computer systems when it comes to tasks of dynamic
vision, it is natural to let biology serve as an inspiration for the
development of new computational models.

Previous works have used a combination of bio-inspired
visual sensors and spiking neural networks for the recognition
of human postures (Perez-Carrasco et al., 2010), the extraction of
car trajectories on a freeway (Bichler et al., 2012), or the control
of robotic movements (Jimenez-Fernandez et al., 2009; Perez-
Peña et al., 2013). We consider these very promising approaches,
though the mentioned works lack benchmarking results that
make them comparable.

This paper introduces a new system for dynamic visual
recognition that combines a silicon retina device with a brain-
like spiking neural network (SNN). As we introduce the different
parts of our proposed system, we include findings from vision
science that inspired us or that might provide promising
approaches for future improvements. We present the setup
and the results of a benchmarking experiment carried out on
the MNIST-DVS dataset and show that our system achieves
a classification accuracy of 92.90% on this dataset. The SNN
architecture NeuCube is very flexible in terms of its connectivity
and learning algorithms and allows for the visualization of
the learning processes inside the SNN. After discussing the
advantages and limitations of the system, we conclude by
suggesting further exploration of the system’s performance with
modified algorithms and different datasets.

THE PROPOSED SYSTEM ARCHITECTURE

The Dynamic Vision Sensor
The Dynamic Vision Sensor (DVS) was developed at the Institute
for Neuroinformatics in Zürich as a fast and storage efficient
silicon retina system (Delbruck, 2008). Unlike conventional
frame-based video cameras that capture multiple frames per
second and store a large number of pixels for each of these
frames, the DVS only captures changes in the brightness of single

pixels caused by movement of the scene or an object (Lichtsteiner
et al., 2008). This is called an Address Event Representation
(AER) since the output of the sensor consists of a time series
of events together with their location (address), representing
the temporal contrast of a specific pixel at a specific time. By
responding to temporal contrast on the pixel-level rather than
taking a continuous series of snapshots of the whole scene, the
DVS mimics the functioning of the human retina much better
than conventional video cameras (Purves, 2012).

Together with its focus on movements within a scene there
is another reason to choose the DVS over a conventional video
camera for a dynamic vision system based on a spiking neural
network: the address event output of the DVS comes in the form
of a series of spike trains, each spike train corresponding to
one pixel of the sensor. Every single spike in the train of one
specific pixel represents a change in brightness in that pixel at
a specific time. However, there are two difficulties with taking the
raw DVS output as spike trains and directly feeding them into a
spiking neural network: firstly, the sensor can achieve a very high
temporal resolution of 1µs and a spike train for a single pixel will
initially consist of many time steps, e.g., 2,000,000 time steps for a
2 s video, and a relatively small number of spikes. Feeding such a
spike train into a spiking neural network would result in very low
overall spiking activity and probably unsatisfying performance.
Secondly, although the sensor’s spatial resolution of 128× 128=
16,384 pixels is low compared to conventional video cameras, it is
desirable to reduce computational cost by integrating the signals
of multiple pixels into single input neurons for the SNN rather
than creating 16,384 input neurons.

For this purpose, we propose an algorithm for the
compression of time and the convolution and pooling of
the DVS pixels into a total of 128 spike trains consisting of
roughly 100 time steps for each second of video data that can
then be fed into 128 input neurons of an SNN.

Proposed Encoding Algorithm of DVS Data
as Input Data for the SNN System
The algorithm we propose is inspired by the structure and
organization of retinal ganglion cells. These cells receive
information from photoreceptors on the retina and transmit
them to the brain (Purves, 2012). There are different types of
retinal ganglion cells, but we focus on two global properties
shared by the majority of all ganglion cells: first, the distribution
of retinal ganglion cells across the retina, which is used to
determine which photoreceptors converge into one retinal
ganglion cell and, thus, how many DVS pixels converge into one
input neuron for our SNN. Second, the mechanism by which
retinal ganglion cells fire and, thus, the algorithm that generates
the input spike trains for the SNN.

Pooling of DVS Output Into 128 Input Neurons of the

SNN System
Despite large differences across individuals, there are roughly
100 million photoreceptor cells on the retina and around 1
million retinal ganglion cells providing information transmission
to the brain (Curcio et al., 1990). Thus, on average, one ganglion
cell integrates information from roughly 100 photoreceptor
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cells. However, the number of photoreceptors converging into
one ganglion cell depends highly on the retinal location of
the photoreceptors. Ganglion cells connecting to the fovea
centralis, the small central spot of the retina specialized in
sharp and detailed vision, receive information from only a
single photoreceptor cell, implying that information from these
photoreceptors is transmitted directly to the brain without
any pooling (Purves, 2012). The receptive fields of ganglion
cells increase with distance from the fovea and ganglion cells
connecting to peripheral parts of the retina integrate the signals
of many photoreceptors at once (Croner and Kaplan, 1995).

The way our encoding algorithm pools information from
multiple DVS pixels into single spike trains adapts this property
of detailed information transmission from central parts of the
retina and averaging over larger numbers of photoreceptors in
the periphery. Overall, the algorithm generates 128 spike trains
that will serve as input for the SNN. Each spike train represents
one retinal ganglion cell with its own receptive field on the
128× 128-pixel output of the DVS (Figure 1).

In our algorithm, the central 8 × 8 pixels of the DVS output
represent the fovea (Figure 1A), and for each of these central
64 pixels, there is a single ganglion cell only considering the
output of that single pixel. Furthermore, there are four groups
of 16 ganglion cells each, with receptive fields that increase
from the center to the periphery. The first group consists of the
central 16 × 16 pixels, divided into 16 squares that integrate
an area of four by four pixels each (Figure 1B). The next
group consists of the central 32 × 32 pixels, again divided
into 16 squares, this time with an area of 8 × 8 pixels each
(Figure 1C). The same happens for the central 64 × 64 pixels
(Figure 1D) and the total of 128 × 128 pixels (Figure 1E),
resulting in 16 squares per group, of size 16 × 16 and 32 × 32,
respectively. In this pooling mechanism, an average of 170.5
pixels converge into one ganglion cell. The size of the receptive
fields can easily be adapted to higher or non-square video
resolutions.

Having set the distribution of the ganglion cells across the DVS
output, the next step is to determine how the information of the
DVS pixels is encoded into spike trains for the ganglion cells.

Firing Mechanism
The Dynamic Vision Sensor provides a very high temporal
resolution of up to 1 µs. Preserving is detailed temporal
information is desirable from a computational point of view,
but as described below we reduce this resolution to 10ms to
maintain biological plausibility. While some spike encoding
algorithms like Poisson models focus merely on the spike
count within a given time interval and disregard the exact
spike timing, it has been shown that the spike timing of
mammalian retinal ganglion cells conveys several times more
information than the spike count (Berry et al., 1997; van Rullen
and Thorpe, 2001; Uzzell and Chichilnisky, 2004). Furthermore,
retinal ganglion cells fire very briefly as a response to specific
stimuli rather than emitting a high frequency of background
firing. Spikes emitted by retinal ganglion cells of rabbits and
salamanders, presented with random flicker, covered less than
5% of the total stimulus time (Berry et al., 1997). The maximum

firing rate of retinal ganglion cells varies between different
animal species and depends on the type of visual stimuli.
Transient peak rates of up to 250Hz have been observed
in retinal ganglion cells of mice (Krieger et al., 2017), but
for the sustained firing of human retinal ganglion cells, an
upper bound of 100Hz can be reasonably assumed (Nelson,
1995).

As described in section The Dynamic Vision Sensor, the DVS
output consists of a series of events, including their timing in
microseconds and their location in pixel coordinates. In fact,
each event also includes a polarity of +1 or −1, depending
on whether the event indicates a pixel becoming brighter or
darker. Our encoding algorithm ignores the event polarity, but
it might be worthwhile for future experiments to consider a
translation of positive and negative events into positive and
negative spikes.

Our spike encoding algorithm is illustrated in Figure 2. In
the first step, the algorithm takes the time series of the DVS
and groups it into windows of 10,000 µs or 10ms. The new
time series consists of 10ms steps, and for every ganglion cell, it
must be decided at which of these steps the cell will fire. Since
each time step represents 10ms of video data, the maximum
firing rate of the ganglion cells cannot exceed 100Hz. The
encoding for the central 64 pixels that represent the fovea is
straightforward: if there is at least one event for a pixel at time
step ti, the ganglion cell that corresponds to that pixel will fire
at ti. There are no parameters to tune for these central 64 pixels
and the spike trains of the ganglion cells that correspond to
these pixels are completely determined by the DVS output. For
the 64 ganglion cells that integrate the events of multiple DVS
pixels, the situation is slightly different. For each of these cells,
the algorithm counts how many events occurred in each time
window within the receptive field of that ganglion cell. If the
number of events from pixels within the receptive field of cell
Cj at time step ti exceeds a certain threshold, Cj will fire at
ti.

Theoretically, this threshold can be set for each ganglion
cell individually, but since the 16 cells of each group have
receptive fields of the same size, our algorithm assigns the
same threshold to all 16 cells of a group, resulting in a
total of 4 thresholds that can be tuned. Clearly, the value
of the thresholds will determine the average spike rate of
the final spike trains, with higher thresholds leading to fewer
spikes, and it is possible to imitate biological evidence about
spike rates under certain stimuli. We discuss the tuning of
the thresholds in more detail in section Model Design and
Implementation.

Inspired by the structure and organization of retinal ganglion
cells, our algorithm pools 128× 128 DVS pixels into 128 ganglion
cells that will serve as input neurons for the SNN. The algorithm
compresses the microsecond resolution of the DVS output into
time steps of 10ms, but it preserves the timing of the DVS
events instead of generating a Poisson process with random
spike timing. The next section describes the structure of a brain-
like SNN architecture called NeuCube, and our imitation of
the retinotopic mapping of retinal ganglion cells into the visual
cortex.
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FIGURE 1 | Pooling of 128 × 128 DVS pixels into 128 ganglion cells. 64 foveal ganglion cells that correspond to the central 64 DVS pixels (A) and four groups of 16

ganglion cells each with increasing size of receptive fields toward the periphery (B–E). The image seen by the DVS camera is marked with a blue frame and the

receptive fields are marked with orange frames.

FIGURE 2 | Encoding of spike trains from DVS output. The DVS time series is grouped into windows of 10ms. For each time step, the DVS events within the

receptive fields of all 128 ganglion cells are counted. If the number of DVS events within the receptive field of one ganglion cell exceeds a certain threshold, the cell

fires at that time step.

The Brain-Like SNN Neucube and the
Proposed Retinotopic Mapping
The NeuCube SNN architecture incorporates several different
principles of SNN and combines them into a single model for
mapping, learning, and understanding of spatio-temporal data

(Kasabov, 2014). Signals are processed along successive stages as

shown in Figure 3. Before going into detail about the learning

algorithms used by NeuCube, we want to focus on the three-
dimensional structure of NeuCube and the bio-inspired way we

mapped the 128 input neurons into this structure. Our system
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FIGURE 3 | A schematic diagram of a general NeuCube architecture, consisting of: input encoding module; NeuCube module; output function module. Our system

only makes use of the NeuCube module and the output function module.

uses a NeuCube initialized with 732 neurons, using the MNI
coordinates of neurons from the primary visual cortex (V1,
Brodman area 17), taken from the Atlas of the Human Brain
(downloaded together with the xjView toolbox: http://www.
alivelearn.net/xjview). The number of neurons is only bounded
by computational limitations; it is possible to add further neurons
from the secondary or tertiary visual cortex or to represent the
whole brain. Initial connections between the neurons are based
on the “small-world” paradigm, where random connections are
formed within a pre-defined maximum distance of each neuron,
80% of the time as excitatory and 20% of the time as inhibitory
connections. The mapping of the 128 input neurons into the 732
neurons of NeuCube mimics two important characteristics of
the human visual cortex: cortical magnification and retinotopic
mapping (Figure 4).

Cortical magnification describes the overrepresentation of
foveal signals inside the primary visual cortex. Although the fovea
has a diameter of only 1.2mm (Purves, 2012), its signals are

processed by almost 50% of all neurons in V1 (Krantz, 2012;

Born et al., 2015). Therefore, we chose exactly 64 of our 128 input
neurons to correspond to the central 64 DVS pixels with a one-to-
one relationship. This way, 50% of input neurons automatically
correspond to the central pixels of the DVS, just like 50% of the
primary visual cortex correspond to the central photoreceptors
on the retina.

The second characteristic of the primary visual cortex that
we adopted in our mapping is the preservation of spatial
relationships between photoreceptors on the retina and their
neural representation in the primary visual cortex, the so-called
retinotopy (Rosa, 2002). Signals from the top left of our visual
field are mapped to the bottom right of V1 and vice versa.
What humans see is flipped upside down and mirrored, but
objects that appear next to each other in the visual field will
still be represented next to each other in V1. Both the foveal
as well as the peripheral ganglion cells follow this principle,
although foveal signals are mapped into the posterior part and
peripheral signals into the anterior part of V1 (Purves, 2012).
Figure 5 shows how the principle of retinotopy is applied to
the mapping of the 128 input neurons to the 732 neurons of
NeuCube.

FIGURE 4 | Retinotopic organization of the primary visual cortex. Up to 50%

of the primary visual cortex processes foveal signals (cortical magnification).

Signals from the top left of the visual field are mapped to the bottom right of

the visual cortex (retinotopy). Source: Jaygandhi786 (2015).

Unsupervised and Supervised Learning of
Dynamic Visual Patterns in the Neucube
Architecture
Learning in the NeuCube is performed in two stages: in
the first step, unsupervised learning is performed to modify
the initial connection weights. In our system we use pair-
based multiplicative spike-timing-dependent plasticity (STDP,
van Rossum et al., 2000), but in principle, the NeuCube
architecture allows for a flexible implementation of different
learning algorithms. The SNN will learn to activate the same
groups of spiking neurons when similar input stimuli are
presented and to change existing connections that preserve
the spatio-temporal patterns of the input data (Kasabov and
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FIGURE 5 | Retinotopic mapping of 128 input neurons to NeuCube, initialized with 732 neurons, using the MNI coordinates of neurons from the primary visual cortex,

taken from the Atlas of the Human Brain.

Capecci, 2015). Previous works have shown that STDP is well
suited to train neurons to respond to discriminative visual
features (Masquelier and Thorpe, 2007). The neurons become
selective to successive coincidences of particular patterns and
learn to detect them robustly even in the presence of noise
(Masquelier et al., 2009). Our approach using the NeuCube
differs from these works mainly in the structure of the network,
which is not based on layers, but rather a three-dimensional
network shaped like the primary visual cortex. However, our
results are similar to those works in that certain neurons and
connections can be identified that seem to play a major role
in discriminating between the different classes. NeuCube allows
for a visualization of the learning process and we discuss how
the visualization can be used for a better understanding of the
data and the neural processes after presenting our experimental
results.

In the second step, supervised learning is applied to the
spiking neurons in the output classification module, where the
same spike trains used for the unsupervised training are now
propagated again through the trained SNN and output neurons
are generated and trained to classify the spiking activity of
the SNN into pre-defined classes (Kasabov and Capecci, 2015).
Again, the NeuCube architecture allows for the application
of different algorithms for the evolving classifier. The output
function we used is called the dynamic evolving SNN algorithm
(deSNN, Kasabov et al., 2013), which makes use of rank-order
learning (Thorpe and Gautrais, 1999). This kind of evolving
classifier is computationally inexpensive and puts emphasis on
the order in which input spikes arrive, making it suitable for on-
line learning and early prediction of temporal events (Kasabov,
2014). Similar to previous works on image recognition based
on reward-modulated STDP (Mozafari et al., 2017), the deSNN
algorithm uses a “highest” layer of neurons to discriminate
between classes. While Mozafari et al. (2017) used an existing
layer of output neurons, the deSNN algorithm creates and trains
one new output neuron per sample by connecting it to all 732

neurons in the network and propagating the signal through the
network once more. The connection weights that are learned in
this process are then classified using a K-nearest neighbor (KNN)
algorithm and the labels that are known for all the samples. Here
our method differs from the aforementioned (Mozafari et al.,
2017) in that we do not apply “anti-STDP” for misclassified
samples before applying KNN. This means that the results of the
deSNN’s decisions are not fed back into the network since we
create a new output neuron for each sample.

For a more detailed description of the NeuCube architecture
see Kasabov (2014).

Summary of the Proposed Methodology
The methodology we propose for dynamic visual recognition
consists of the following steps:

(1) Event-based video recording with DVS.
(2) Pooling and encoding of DVS output into spike trains for the

input neurons of the SNN.
(3) Training NeuCube on the spike data using unsupervised

learning, e.g., STDP.
(4) Training of an output classifier in a supervised mode.
(5) Validating the classification results.
(6) Repeating steps (2–5) for different parameter values to

optimize the classification performance. Recording the model
with the best performance.

(7) Visualizing the trained SNN and analyzing its connectivity and
spiking activity for a better understanding of the data and the
involved brain processes.

We present the application of this method on a benchmarking
experiment with the MNIST-DVS dataset for spike-
based dynamic visual recognition and go into further
detail about the tuning of parameters and analysis of
the SNN.
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BENCHMARKING ON THE MNIST-DVS
DATASET

Description of the MNIST-DVS Dataset
The MNIST dataset of handwritten digits (Lecun et al., 1998)
has been one of the most popular benchmarking datasets for
image recognition for over 20 years. With the advent of spiking
neural networks, MNIST has naturally been used as a benchmark
for spike-based visual recognition systems (Brader et al., 2007;
Querlioz et al., 2013; Diehl and Cook, 2015; Zhao et al., 2015;
Kheradpisheh et al., 2017). However, these works only account
for the recognition of the static MNIST pictures and do not
aim toward dynamic visual recognition of moving objects. An
important part of the functioning of spiking neural networks is
the dimension of time within the spike trains and on datasets that
also have such a temporal dimension, spiking neural networks
might be superior to classical artificial neural networks.

The NE15-MNIST database (Neuromorphic Engineering
2015 on MNIST, Serrano-Gotarredona and Linares-Barranco,
2015; Liu et al., 2016) that we used for our study is based
on the original MNIST dataset. NE15-MNIST consists of four
subsets that all aim to provide a benchmark for spike-based
visual recognition. While the Poissonian and the FoCal subsets
are synthetically generated from static MNIST images, the other
two subsets are based on 128 × 128 pixel DVS recordings of
the MNIST images. The MNIST-FLASH-DVS subset contains
DVS recordings of MNIST digits that are flashed on a screen.
Because we were interested in dynamic visual recognition of
moving objects, we decided to work on the MNIST-DVS subset
that consists of DVS recordings of MNIST digits that move back
and forth across a screen and thereby produce temporal contrast
and DVS events on the digits’ edges.

The MNIST-DVS dataset is available online (Yousefzadeh
et al., 2015). It consists of 30,000 recordings of 10,000 original
MNIST digits recorded at three different scales each (scale-4,
scale-8, and scale-16). Each recording has a time length of about
2.5 s, during which the digit moves twice from a position at the
bottom left of the middle of the screen to the top right and back.
The files are provided in the jAER format (Delbruck, 2008) and
the dataset includes Matlab scripts for a conversion to Matlab
arrays and three kinds of data preprocessing: removal of a 75Hz
timestamp harmonic produced by the LCD screen, stabilization
of the digits on the center of the screen and removal of the event
polarity information.

Previous classification results on the MNIST-DVS dataset are
shown in Table 1. Henderson et al. (2015) derive a new event-
based learning scheme and apply it to a layered feedforward
spiking neural network, which is trained self-supervised for

classification of the MNIST-DVS digits. Zhao et al. (2015) use a
composite system, consisting of a convolutional spiking neural

network for feature extraction and a network of tempotron

neurons for spike-based classification. While these two systems
are fully event-driven, Stromatias et al. (2017) use a combination
of a spiking neural network and a conventional artificial neural
network. A convolutional SNN is used to capture the temporal
dynamics of the DVS data and create a new, frame-based dataset,
which is fed into a fully-connected artificial neural network. The

supervised learning itself then takes place in this non-spiking
network, using a stochastic gradient descent algorithm. In our
concluding remarks we suggest how this approach could be
combined with our model to maintain the high classification
accuracies while providing greater biological plausibility.

Model Design and Implementation
The only preprocessing we applied to the data was the removal of
the 75Hz timestamp harmonic. Stabilizing the video data would
have been contrary to our intention to develop a system for
dynamic visual recognition, and in fact, preliminary experiments
suggested that the system would perform better on the original
unstabilized videos. To run our spike encoding algorithm on the
data, we used the script provided with the dataset to convert the
jAER files into Matlab arrays.

The pooling of the DVS spikes into 128 input spike trains
(ganglion cells) for the SNN, as described within section The
Proposed System Architecture, remained the same throughout
all experiments. Inside the spike encoding algorithm, only those
four thresholds were changed that determine how many pixels
within the receptive field of a ganglion cell must fire within one
time step to make the ganglion cell itself emit a spike. As a
first step, we wanted to find out how the system would perform
differently when these thresholds and, thus, the average spike
rate of the input data for the SNN, were changed. As described
in section Firing Mechanism, the ganglion cells’ receptive fields
decrease from the periphery toward the center. Starting from
the periphery, ganglion cells in group 1 integrate the signal of
32 × 32 = 1.024 DVS pixels, cells in group 2 from 16 × 16 =

256 pixels, cells in group 3 from 8 × 8 = 64 pixels, and cells in
group 4 from 4 × 4 = 16 pixels. Assigning the same percentage
threshold to all four groups would result in very low or no activity
in the peripheral ganglion cells, e.g., with a threshold of 10% it
would take only two DVS events within the receptive field of a
ganglion cell in group 4 to trigger a spike, but 103 DVS events
within the receptive field of a ganglion cell in group 1. Especially
with the MNIST-DVS dataset, where DVS events only occur at
the edges of the moving digits and not in larger blobs, this would
make the peripheral ganglion cells redundant. On the other hand,
increasing the thresholds too much from group to group toward
the center would put more emphasis on the peripheral parts of
the video than intended.

We carefully watched the MNIST-DVS videos and compared
the distribution of DVS events with the average spike rates for the
groups of ganglion cells that were produced by different spiking
thresholds. We found that increasing the percentage thresholds
by a factor of two from group to group toward the center would
preserve the distribution of DVS events relatively well and not
put too much emphasis on any single group. Figure 6 shows
the average spike rates for 1,000 scale-8 videos (100 per digit),
produced by thresholds of 0.5% for group 1, 1% for group 2,
2% for group 3 and 4% for group 4. Since time is discrete in
our model, we measure the average spike rates in %, dividing the
number of time steps in which a cell fired by the total number of
time steps. Most spikes occur in groups 2 and 3, consistent with
the general distribution of DVS events in the scale-8 videos. The
total spike average of the samples shown in Figure 6 is 27.57%.
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TABLE 1 | Previous classification results on the MNIST-DVS dataset.

Network type Learning algorithm Total number of

samples used

Train-test-ratio Classification on

test set (%)

Henderson et al., 2015 Feedforward SNN A new scheme for

spike-based learning

10.000 (scale not

mentioned)

90–10 87.41

Zhao et al., 2015 Composite system, including

convolution, motion detector, feature

spike conversion, and SNN classifier

Tempotron learning 10.000 (scale-4) 90–10 88.14

Stromatias et al., 2017 Composite system, including

convolutional SNN, non-spiking fully

connected classifier, and spiking

output layer

Stochastic Gradient

Descent (inside the

non-spiking classifier)

10.000 (scale-16) 80–20 97.95

We altered the thresholds to get clearly distinguishable total
spike averages.Table 2 shows four different choices of thresholds,
resulting in average spike rates of roughly 7, 14, 26, and 32%
(exact numbers vary between different video scales). The last
row represents the maximal achievable average spike rate with
a threshold of 0% for each group. In that case, every ganglion cell
fires if there is at least one DVS event in its receptive field at a
given time step.

The mapping of the input spikes into the SNN NeuCube
was done according to the proposed retinotopic mapping
and it remained the same throughout all experiments. In all
experiments NeuCube was initialized with 732 leaky integrate
and fire neurons (LIF), representing the primary visual cortex.
For future experiments with higher video resolutions and more
input neurons, NeuCube can easily be extended to include
neurons that represent the secondary and the tertiary visual
cortex. Initial connections are formed following “small-world”
connectivity with random connections within a predefined
maximum distance from each neuron. This maximum distance
was set to 2.5 in all experiments.

As described previously, unsupervised learning using STDP
is performed first to learn spatio-temporal patterns by forming
new connections between neurons, before the output classifier
is trained in a supervised manner using the dynamic evolving
SNN (deSNN) algorithm (Kasabov et al., 2013). The NeuCube
architecture is a stochastic model and, therefore, sensitive to
parameter settings. To find the best values for the major
parameters that influence the system’s performance, we applied
a grid search method that tests the system on different
combinations of parameters within a predefined range and used
those parameter values that resulted in the best classification
accuracy. For the firing threshold, the refractory time and the
potential leak rate of the LIF neurons we used values of 0.5, 6,
and 0.002, respectively. The STDP learning parameter was set to
0.01. The variables Mod and Drift of the deSNN classifier were
set to 0.8 and 0.005. See Kasabov and Capecci (2015) for a more
detailed explanation of these parameters.

Experimental Results
To compare the system’s performance, we performed 10-fold
cross-validation on 1,000 videos (first 100 of each digit), with
900 videos used for training and 100 for testing in each
fold, for different video scales and average spike rates. Table 3

summarizes the results. As a general trend, with few exceptions,
the classification accuracy increased together with the average
spike rate of the input neurons. For all video scales, the
classification accuracy also increased when the system was run
on all 10,000 videos of a given scale. The best classification
results were achieved with all 10,000 videos of one scale,
encoded with the highest possible spike rate (0% as spike
encoding threshold for all four groups). Classification accuracies
were 90.56, 92.03, and 86.09% % for scale-4, scale-8, and
scale-16, respectively. The best accuracy in a single run with
90% of randomly selected data samples for training and the
remaining 10% for testing was 92.90% for 10,000 scale-8 videos
with the highest possible spike rate. This result is comparable
to previous results on the MNIST-DVS dataset, presented in
Table 1.

The lower accuracies on the scale-4 and the scale-16 samples
reflect the fact that in these videos, the MNIST digits fill out
either the whole screen (scale-16) or only a very little region in
the center (scale-4). For the scale-4 digits, the signals transmitted
by ganglion cells from groups 1, 2, and 3 are mostly noise and
do not contain much information about the digits. In the scale-
16 videos, there is almost no activity in the central region of the
screen and, thus, no information is transmitted by the 64 foveal
ganglion cells. Since our method puts heavy emphasis on the
center of the video (50% of the input neurons represent data from
only the central 64 pixels), performance on the scale-16 videos is
lower.

Model Interpretation for a Better
Understanding of the Processes Inside the
Visual Cortex
The main purpose of the above experiments, carried out on
the MNIST-DVS dataset, is to confirm the system’s classification
performance on a benchmark dataset, and the moving digits
do not represent a real-life scene. However, we want to
show how the SNN can be analyzed after being trained, to
see how its connectivity changes in response to the data.
Figure 7 compares the connectivity of the SNN before and after
unsupervised training on 1,000 scale-4 videos with the highest
possible spike rate. Blue and red lines represent positive and
negative connections, respectively. We can notice that some of
the randomly created initial connections disappear during the
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FIGURE 6 | Top: Average spike rates of 1,000 scale-8 videos (100 per digit) resulting from encoding-thresholds of 0.5, 1, 2, and 4% for the four groups of retinal

ganglion cells, respectively (from periphery to center). Average spike rates are measured in %, dividing the average number of time steps in which the cells of a given

group fired by the total number of time steps. The total average spike rate is 27.57%. Bottom: Example of encoded spike trains for one sample (digit 0, scale-8,

sample #1). Neurons 1–16, 17–32, 33–48, and 49–64 represent the four groups of ganglion cells from the periphery to the center; neurons 65–128 represent the

foveal ganglion cells. The spike pattern of the foveal ganglion cells clearly represents the two times that the digit moves across the center of the screen.

training process. Instead, many new negative connections are
created, mostly between neurons in the region that represents the
posterior part of the primary visual cortex, where signals from
the foveal ganglion cells arrive. Some of the new connections
connect neurons over a long distance, especially in the very
posterior part of the SNN, where a gap between neurons
prevents the initial formation of “small-world” connections. As
can be seen in Figure 5, the neurons on both sides of this
gap represent adjacent DVS pixels, and by bridging this gap,
the new connections allow for communication between these
neurons. A comparison with the connectivity after training
the SNN on 1,000 scale-16 videos shows that slightly fewer

connections are formed between neurons processing foveal
information since the scale-16 videos contain less DVS events
in the foveal region. This effect is due to the acquisition
hardware used and could be compensated for by the simulation
of saccadic eye movements inside the encoding algorithm. In
a biological retina, these rapid eye movements ensure that the
fovea centralis focuses on salient features instead of constantly
covering a less important area of the visual field. We discuss
this possible improvement of the encoding algorithm in the next
section.

There is also a visible difference between connections created
for different digits. Figure 8 shows the status of the network after
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TABLE 2 | Different choices of spike thresholds within the spike encoding

algorithm and corresponding average spike rates.

Spike threshold in % Approximate average

spike rate (%)

Group 1 Group 2 Group 3 Group 4

5 10 20 40 5

2.5 5 10 20 13

0.5 1 2 4 26

0 0 0 0 32

unsupervised training using only digits 1, 5, and 8, respectively.
Interestingly, the connections created for digits 5 and 8 look
similar, just like the digits themselves have a similar shape. The
connections created after training on digit 1, on the other hand,
look distinctly different. We can, therefore, conclude that the
visual characteristics of the digits are preserved in our system,
just like they are in the human visual cortex.

DISCUSSION OF THE SYSTEM’S
ADVANTAGES AND LIMITATIONS

The proposed system achieves a classification performance on the
benchmark MNIST-DVS dataset that can keep up with previous
works on this dataset and is superior to those works that used a
spiking neural network classifier. Every part of the system, the
DVS sensor, the algorithm for encoding the DVS output into
spike trains, and the SNN NeuCube adopt features from the
human visual system. This allows for future experiments where
the same stimuli are presented to humans and the proposed
system and brain processes visualized by neuroimaging methods
can be compared to the network processes of the SNN, which can
be easily visualized within the NeuCube architecture.

Another advantage of the proposed system is the high
flexibility of the SNN’s three-dimensional structure. The
NeuCube architecture is not restricted to consist of neurons that
represent only the visual cortex. For example, one could map
aural stimuli to input neurons representing the auditory cortex,
to obtain a model that processes aural and visual information
at the same time in a brain-like way. The integration of other
kinds of data, such as tactile or olfactory information, within a
multimodal model is conceivable as well.

We found that the system’s classification performance
increases together with the average spike rates of the 128 input
neurons. To account for the findings of Berry et al. (1997) in
retinal ganglion cells of rabbits and salamanders, we started our
experiments with low spike rates of approximately 5%, but the
classification accuracies were very low in these cases. However,
the reported firing rates of rabbit and salamander ganglion cells
were measured during the presentation of random flicker, which
might yield very different firing behavior than stimuli like the
moving digits. Single cell recordings of retinal ganglion cells
could provide more evidence about the firing rates under specific
stimuli. The parameters of the spike encoding algorithm that
determine the average spike rates can then easily be tuned to

TABLE 3 | Results of 10-fold cross validation for different video scales and

average spike rates.

Video scale Number of

samples

Average spike

rate (%)

Classification

accuracy (%)

Scale-4 1,000 7.85 63.80

“ 1,000 13.94 77.10

“ 1,000 25.77 75.50

“ 1,000 31.77 83.40

“ 10,000 31.98 90.56

Scale-8 1,000 5.29 66.40

“ 1,000 13.49 83.00

“ 1,000 27.57 84.20

“ 1,000 32.96 86.20

“ 10,000 32.93 92.03

Scale-16 1,000 3.81 60.50

“ 1,000 12.64 82.90

“ 1,000 26.94 78.60

“ 1,000 31.72 77.50

“ 10,000 31.79 86.09

mimic the behavior of real retinal ganglion cells and it would
be interesting to see if classification accuracy increases when the
average spike rates conform to the biological evidence.

Since so much is known about the human visual system and
we aimed to develop a biologically plausible, yet computationally
feasible implementation, there are many details not included
in our model. There already exist very advanced mathematical
models for the function of retinal ganglion cells (Wei and Ren,
2013) and our spike encoding algorithm has by far not touched
every detail of them. The receptive field of each ganglion cell,
for example, is split into a center region and a surrounding
region with opposite behavior toward light (Nelson, 1995). In
so-called on-center cells, the center region is stimulated, whereas
the surrounding region is inhibited when exposed to light. So-
called off-center cells exhibit converse behavior. Including the
function of on- and off-center ganglion cells inside the spike
encoding algorithm would highly increase the model’s biological
plausibility, but also its computational complexity. Another
computational restriction of our model is that the random
initial creation of excitatory and inhibitory connections causes a
violation of Dale’s Principle, which states that all axonal branches
of a neuron perform the same chemical reaction.

One shortcoming of the DVS when compared to the human
retina is its inability to process colors. The DVS only encodes
temporal changes in brightness that signal motion (Delbruck,
2008), similar to the rod photoreceptors on the retina and the
functionality of the magnocellular fibers in the optical nerve
(Purves, 2012). However, the cone photoreceptors on the retina
as well as the comparatively large amount of parvocellular fibers
in the optic nerve are not modeled by the DVS despite their
importance for detecting and transmitting information about
color and details of the perceived objects (Purves, 2012). This
means that all object recognition approaches using DVS input are
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FIGURE 7 | Connectivity of the SNN before (left) and after training on 1,000 scale-4 samples (middle) and 1,000 scale-16 samples (right). During training, new

connections are created while others vanish, representing relations between spiking neurons that evolve as a response to the spatio-temporal patterns of the data.

FIGURE 8 | Connectivity of the SNN after unsupervised training on 1,000 scale-8 samples each for the three digits 1 (left), 5 (center), and 8 (right). There is a visible

difference between the connections, corresponding to the visual characteristics of the digits.

somewhat limited because the DVS only captures signals that the
human visual system would use to detect motion and distances
to objects, but not those signals necessary for recognizing objects
and details.

The proposed system puts strong emphasis on the central
part of the videos in both the encoding of DVS events to spike
trains and the representation inside the SNN. This is justified
by analogous features of the fovea centralis in the center of
the human retina, responsible for focused vision. However,
there is no evidence that there exist retinal ganglion cells with
large receptive fields in the human retina that cover the fovea
centralis in a redundant manner as in our system. Further, our
system does not account for the very fast and simultaneous
movement of human eyes, called saccades. Saccades help to scan
a broader part of the visual field with the fovea and integrate
this information into a detailed map (Purves, 2012). Human
eye movement is also controlled by the visual grasp reflex that
directs the eyes toward salient events in the periphery of the
visual field (Monsell and Driver, 2000). These mechanisms for
eye movement could be implemented in the spike encoding
algorithm by changing the coordinates for the pooling of
DVS pixels for each time step, and thereby virtually moving
the center of the visual field. However, this would require
additional features to save the movement and integrate it into
the SNN.

CONCLUSION

This paper presents a new methodology for dynamic visual
recognition, inspired by different features of the human visual
system. The proposed system is designed to take data from a
DVS silicon retina and encodes them into spike trains using
an algorithm that mimics the organization and function of
retinal ganglion cells. The spike trains are then fed into the
brain-like SNN NeuCube, following the retinotopic mapping of
photoreceptors from the retina into their neural representations
in the primary visual cortex. Two stages of learning, unsupervised
and supervised, are performed by NeuCube to extract spatio-
temporal patterns from the data and perform a classification task.
Results on the benchmark MNIST-DVS dataset have shown that
the system can keep up with the classification performance of
other methods for dynamic visual recognition. Furthermore, it
is possible to dynamically visualize and analyze the activity inside
the SNN for a better understanding of the data and the process of
their deep learning in the model.

Due to the promising benchmark results and the benefit of the
visualization tools for an in-depth understanding of the data and
the network processes, we endorse further research on the system.
In particular, we suggest the exploration of new learning methods
inside NeuCube and of different algorithms for the encoding of
DVS data into spike trains.
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To date, the highest classification accuracy on the MNIST-
DVS dataset has been achieved by Stromatias et al. (2017), who
used a spiking convolutional neural network to create a new
frame-based dataset, which captures the dynamics of the DVS
output and serves as input for a fully-connected classifier that
uses stochastic gradient descent. The non-spiking classifier is
then mapped to a spiking output layer of LIF neurons. As they
mention in their paper, the non-spiking classifier and the spiking
output layer can be used with any spiking neural network that
has already extracted features from the data in an unsupervised
manner. We propose to explore how the connectivity or spiking
activity of the NeuCube after the unsupervised learning stage
could be used to create a similar frame-based dataset, and how the
classifier used by Stromatias et al. (2017) would perform on such a
dataset. This way, the biological plausibility of ourmodel could be
combined with current state-of-the-art classification algorithms.

We also encourage the development of further benchmark
datasets for spike-based visual recognition, e.g., spiking versions
of the KTH and theWeizmann datasets of human actions (Laptev
and Caputo, 2005; Gorelick et al., 2007). Since the NeuCube
architecture is not bound to only consist of neurons representing
the visual cortex, future directions can include the integration of
our system for visual recognition inside a broader, multimodal
methodology, e.g., for the biologically plausible processing of
visual and aural data at the same time within the same system.
The used DVS format for visual data encoding into spike trains is

not a restriction for the proposed SNN method for retinotopic

mapping. Learning and other encoding methods for different
types of visual data are envisaged to be explored in the future.
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