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Uterine Corpus Endometrial Carcinoma (UCEC) is the most common gynecological
cancer. Here, we have investigated the significance of immune-related genes in
predicting the prognosis and response of UCEC patients to immunotherapy and
chemotherapy. Based on the Cancer Genome Atlas (TCGA) database, the single-
sample gene-set enrichment analysis (ssGSEA) scores was utilized to obtain enrichment
of 29 immune signatures. Univariate, multivariate Cox regression and least absolute
shrinkage and selection operator (LASSO) regression analyses were performed to
generate an immune-related prognostic signature (IRPS). The biological functions
of IRPS-associated genes were evaluated using GSEA, Tumor Immune Estimation
Resource (TIMER) Database analysis, Mutation analysis, Immunophenoscore (IPS)
analysis, Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug
Sensitivity in Cancer (GDSC) and Immune Cell Abundance Identifier (ImmuCellAI).
Potential small molecule drugs for UCEC were predicted using the connectivity map
(Cmap). The mRNA and protein expression levels of IRPS-associated genes were tested
via quantitative real-time PCR (qPCR) and immunohistology. Two immune-related genes
(CCL13 and KLRC1) were identified to construct the IRPS. Both genes were related to
the prognosis of UCEC patients (P < 0.05). The IRPS could distinguish patients with
different prognosis and was closely associated with the infiltration of several types of
immune cells. Our findings showed that patients with low IRPS benefited more from
immunotherapy and developed stronger response to several chemotherapies, which
was also confirmed by the results of ImmuCellAI. Finally, we identified three small
molecular drugs that might improve the prognosis of patients with high IRPS. IRPS can
be utilized to predict the prognosis of UCEC patients and provide valuable information
about their therapeutic response to immunotherapy and chemotherapy.
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INTRODUCTION

Uterine Corpus Endometrial Carcinoma (UCEC) is the
most common gynecological cancer. In 2018, 382,069 new
cases and 89,929 deaths were reported worldwide (Bray
et al., 2018). Despite the emergence of targeted therapy
and immunological therapy, the incidence and mortality of
UCEC have shown a consistent increase (Lortet-Tieulent
et al., 2018). The overall 5-year survival rate can reach 75–
86% (Gottwald et al., 2010), however, the survival time of
patients with cancer metastasis or recurrence after treatment
may drop below 16 weeks (Chaudhry and Asselin, 2009).
Besides, the therapeutic regimens such as immunotherapy
and chemotherapy are mainly designed according to the
clinical stage of patients and regardless of the patients’
varying responses. Therefore, it is an urgent need of the
scientific community to build a new prognostic model to
identify patients that are at a high risk and suitable for
certain regimens.

Surgery is the most preferred route to treat UCEC,
commonly supported by radiotherapy and chemotherapy
that are designed according to histopathologic parameters
of the patients. Surprisingly, chemotherapy may exert
different or even opposite effects on patients with identical
pathological grade. Furthermore, there is limited evidence
regarding the type of patients who can draw benefit from
chemotherapy. To further complicate this, immunotherapy can
trigger strong response in patients with DNA polymerase
ε (POLE) mutation, microsatellite instability and high-
tumor mutational burden (TMB), however, the difficulty
of assessing these factors makes them unsuitable as
prognostic markers.

Recently, the tumor immune microenvironment and
infiltration of immune cells have been found to be associated
with cancer development, prognosis and therapeutic response
(Galon et al., 2013; Jain et al., 2016; Pages et al., 2018; Yu
et al., 2018). Immune and stromal cells play critical roles
in cancer biology. Immune related genes may regulate
the infiltration of immune cells, a process that has close
correlation with immunotherapeutic response (Binnewies
et al., 2018). Therefore, we hypothesized that immune-
related genes may be utilized to predict the prognosis and
therapeutic response of UCEC patients. In this study, we
identified two immune-related genes, their different expression
levels have significant prognostic value, and developed a
model for predicting the survival and therapeutic response
of UCEC patients.

Abbreviations: UCEC, Uterine Corpus Endometrial Carcinoma; LASSO, least
absolute shrinkage and selection operator; IRPS, immune-related prognostic
signature; GEPIA, Gene Expression Profiling Interactive Analysis; GDSC,
Genomics of Drug Sensitivity in Cancer; TMB, tumor mutational burden; TIME,
tumor immune microenvironment; TCGA, the Cancer Genome Atlas; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery
rate; ROC, receiver operating characteristic; AUC, area under the curve; DCA,
decision curve analysis; GSEA, gene set enrichment analysis; TIICs, tumor-
infiltrating immune cells; KLRC1, Killer Cell Lectin Like Receptor C1.

MATERIALS AND METHODS

Data Sources and Clustering
Downloaded from the Cancer Genome Atlas (TCGA) database
were data about mRNA expression data of 547 UCEC
patients and clinical characteristics, including age, tumor grade,
histological type and clinical stage from TCGA1 on Dec 1, 2019.
All the mRNA expression data were derived from 552 tumor
cases and 23 normal cases. 32 patients without well-annotated
clinical information and survival time less than 30 days were
excluded. After that, 515 patients were obtained. The tumor
purity, infiltration level and stromal content were calculated
through the ESTIMATE method (Yoshihara et al., 2013). The
single-sample gene-set enrichment analysis (ssGSEA) scores were
implemented via invoking the R package“GSEAbase”scores. to
obtain the enrichment level of 29 immune signatures in each
UCEC tissue by evaluating the mRNA expression level of UCEC
patients and perform hierarchical clustering of UCEC using R
package “hclust” (Barbie et al., 2009; Hanzelmann et al., 2013).

A total of 15 UCEC specimens and 15 adjacent tissues were
obtained from patients at the Wuxi Maternal and Child Health
Hospital, the Affiliated Hospital to Nanjing Medical University
from 2018 to 2019 and routine written informed consent was
obtained from all patients. These tissues were used to validate
the mRNA and protein expression of KLRC1 and CCL13 in
an external set.

Differentially Expressed Genes and
Immune-Related Genes
To identity the differentially expressed genes (DEGs) among
all of the three groups, we first compared the DEGs between
Immunity_L and Immunity_H, Immunity_L and Immunity_M,
and Immunity_M and Immunity_H. After that, we imported the
immune gene set from Immport database2. Then, the overlapping
genes were obtained by Venn analysis.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analyses
We performed functional enrichment analyses to investigate
the potential mechanisms of different hierarchical clustering
based on 29 immune signatures. Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were utilized to reveal the enriched biological process,
cellular component, molecular function and signaling pathway.
Terms with a false discovery rate (FDR) < 0.05 were listed using
R package “ClusterProfiler”.

Establishment of the Immune-Related
Prognostic Signature
We divided all the cases into a training set and a testing set
with the ratio of 1:1. We used the training set to identify the
prognostic immune-related genes and to establish the IRPS. The

1http://cancergenome.nih.gov/
2https://www.immport.org
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testing set and entire set were used to validate its prognostic
capability. First, a univariate Cox regression analysis was used to
identify prognosis-related genes in the training set. The inclusion
criterion was set at P < 0.05 and least absolute shrinkage and
selection operator (LASSO) regression was utilized to minimize
the overfitting. We then utilized multivariate Cox model to verify
the correlation and developed an immune risk score model using
the coefficients of multivariate Cox analysis. The risk score for
patients in training set, testing set and total set was calculated
using the following equation:

Risk score = Expression of the 1st gene · coefficient
+Expression of the 2ndgene · coefficient
+Expression of the nth gene · coefficient

Patients were then divided into high-risk and low-risk groups
according the risk score.

Validation of the IRPS
The receiver operating characteristic (ROC) curve was plotted
to validate the prognostic value of IRPS. The area under the
curve (AUC) was calculated using R package “survivalROC”. The
survival analyses were conducted using Kaplan-Meier survival
curves and “survival” R package. We also used the decision curve
analysis (DCA) curve to obtain the predictive power of the IRPS
and other clinical characteristics.

Construction and Validation of a
Predictive Nomogram
To fully expand the predictive power of a prognostic model, a
nomogram was constructed based on the clinical characteristics
of UCEC, including age, stage, grade and histological type.
Validation of the nomogram was evaluated using calibration plot.

Gene Set Enrichment Analysis
To identify potential biological mechanism related IRPS,
we performed GSEA and GO analysis. KEGG terms with
FDR ≤ 0.05 were considered enriched. Based on IRPS, patients
were divided into different groups, the different expression genes
with a fold change (FC) > 1 and an adjusted P-value < 0.05 were
identified using R package “limma”. The GO analysis was then
performed using the “clusterProfiler” R package.

Estimate of Tumor-Infiltrating Immune
Cells
We used the CIBERSORT tool to quantify 22 types of
immunocyte fractions based on TCGA RNA-sequencing data.
P < 0.05 was set as the threshold. P < 0.05 was set
as the threshold.

TIMER Database Analysis
TIMER is a comprehensive resource for systematical evaluations
of the clinical impact of different immune cells on diverse
cancer types3. We analyzed the expressions of KLRC1 and

3https://cistrome.shinyapps.io/timer

CCL13 in UCEC and evaluated their correlation with the
infiltration of immune cells. Besides, correlations of KLRC1
and CCL13 expression with markers of several immune cells
were also statistically evaluated using Spearman’s correlation and
represented via scatterplots.

TISIDB Database Analysis
The TISIDB online platform was used to analyze the
correlation of KLRC1 and CCL13 expression with 28 immune
infiltrating cells4.

Mutation Analysis
We downloaded the mutation data of UCEC patients from
the TCGA database5 and utilized the maftools to analyze the
mutation data. The tumor mutational burden (TMB) score was
calculated using following formula:

TMB =
Total mutation

Total covered based
· (10)6

IPS Analysis
IPS can be generated in an unbiased manner using machine
learning based on four major gene categories that determine
immunogenicity. The IPS was calculated with z-scores of
representative genes associated with immunogenicity. The
IPSs of patients were obtained from the Cancer Immunome
Atlas (TCIA)6.

Immunotherapy Response Prediction
The response to immunotherapy was predicted using an online
tool called Immune Cell Abundance Identifier (ImmuCellAI)
(Miao et al., 2020), which can estimate the abundance of 24
immune cells from gene expression datasets, including RNA-Seq
and microarray data, and predict the patient’s response to an
existing immune checkpoint blockade therapy.

Verification of Gene Correlation in GEPIA
To further verify the correlation of KLRC1 and CCL13 expression
with immune cells markers, the Gene Expression Profiling
Interactive Analysis (GEPIA)7 database was employed. Statistical
analysis was performed using Spearman’s correlation.

Chemotherapy Response and Candidate
Small Molecule Drugs Prediction
The response of chemotherapy in UCEC patients was determined
using a public database called Genomics of Drug Sensitivity
in Cancer (GDSC8). The half-maximal inhibitory concentration
(IC50) was estimated which represented the drug response.
The potential small molecule drugs for UCEC were predicted
using Connectivity map (CMap)9. This database comprises

4http://cis.hku.hk/TISIDB/index.php
5https://portal.gdc.cancer.gov
6https://tcia.at/home
7http://gepia.cancer-pku.cn/index.html
8https://www.cancerrxgene.org
9https://www.broadinstitute.org/connectivity-map-cmap
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FIGURE 1 | The workflow employed to identify small molecular drug targets for patients with high IRPS.

of genome-wide transcriptional expression data from small
molecule drugs, and can discover the connections between drugs,
genes and diseases through the variation of gene-expression
profiles. These small molecule drugs were predicted based
on 382 DEGs between high-risk and low-risk group with |
log2fold change (FC) | > 1 and FDR < 0.05. The 3D
structures of the three most significant drugs were obtained from
Pubchem10.

Quantitative Real-Time RT-PCR
Total RNA from 15 UCEC samples and 15 adjacent tissues
was extracted using TRIzol reagent (Invitrogen) and the total
RNA integrity were checked by RNA 6000 Nano kit. Before
reverse transcription to cDNA, 4 × gDNA wiper Mix (Vazyme

10https://pubchem.ncbi.nlm.nih.gov/

R323-01), DEPC and total RNA (1 µg) were resuspended
and reacted at 42◦C for 2 min to remove the residual
genomic DNA from total RNA. PrimeScript R© RT reagent kit
was used to synthesize the complementary RNA. The SYBR R©

Premix Ex TaqTM Kit (TaKaRa DRR041) was utilized to
perform real-time quantification. The relative expression levels
of target genes were normalized by GAPDH and estimated
using the 2−M M Ct method. The PCR primers are listed in
Supplementary Table 2.

Immunohistochemical Staining
The protein expression levels of CCL13 and KLRC1 were
estimated via immunohistochemical (IHC) staining. Briefly,
the tissues slides were deparaffinized, rehydrated and
treated with 3% H2O2 for 15 min to eliminate endogenous
peroxidase. Then, antigen retrieval was performed by
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FIGURE 2 | Hierarchical clustering of UCEC patients. Three distinct immune infiltration clusters, termed Immunity_H, Immunity_M and Immunity_L were defined with
the help of ssGSEA scores of 29 immune signatures from TCGA database. The immune cells were highly expressed in the Immunity_H, and the low expressed in the
Immunity_L group. Tumor purity, ESTIMATE Score, Immune Score and Stromal Score are shown in the above panel. Immunity_H (Immunity High), Immunity_M
(Immunity Medium), and Immunity_L (Immunity Low) (The reference gene list can be obtained in the Supplementary Material A).

heating the slides in sodium citrate buffer for 3 min.
Next, the slides were incubated with rabbit anti-CCL13
or anti-KLRC1 primary antibodies (Affinity, Biosciences,
1:200) at 4◦C overnight. The slides were washed and
incubated with HRP-conjugated donkey anti-rabbit secondary
antibodies (Abcam) for 15 min. The staining was visualized
using DAB solution and samples were counterstained
with hematoxylin.

Immunostaining of CCL13 and KLRC1 were analyzed by two
pathologists who were blinded to the same information. The
staining intensity score was defined on a scale of 0 to 3 in which
0 means no staining, 1 means mild staining, 2 means medium
staining and 3 means intense staining. The percentage score of
stained cells were also calculated on a scale of 1 to 4 in which 1
represents (0–25%), 2 = (26–50%), 3 = (51–75%) and 4 = (76–
100%). In order to obtain the final score, the intensity score
and percentage score were multiplied to reach the final score
ranging from 0 to 12.

Statistical Analysis
We adopted the R project (version 3.6.2; R Foundation) for
all analysis11. The following R packages was adopted in this
study (“pheatmap”, “rms” “ggplot2”, “forest plot”, “limma”,
“glmnet”, “preprocessCore”, “GSVA”, “survminer”, “survival
ROC”, “beeswarm”, “ggstatsplot”). Two-side statistical analyses
were performed and samples with P-value < 0.05 were
considered statistically significant.

11http://www.r-project.org/

RESULTS

Construction of UCEC Subgrouping
The total workflow is as shown in the following figure
(Figure 1). With the help of the ssGSEA scores of 29 immune
signatures and R package “hclust”, we divided the patients
into three clusters according to immune infiltration: Immunity
High (Immunity_H), Immunity Medium (Immunity_M), and
Immunity Low (Immunity_L). The three distinct clusters,
Immunity_H, Immunity_M, and Immunity_L, showed different
immune activities. The hierarchical clustering map was shown
in Supplementary Figure 1. We found that the patients in the
Immunity_H group had higher ESTIMATE Score, Immune Score
and Stromal Score and lower Tumor Purity (Figures 2, 3A-C)
than other groups. Besides, the expression levels of most HLA
genes were significantly higher in Immunity_H group than that
in Immunity_L group (Figure 3D). The type of immune cells
was different among three groups (Figure 3E). We also compared
the expression of several immune regulators, including PD-1,
PD-L1, TIM-3, LAG-3, and CTLA4. The expression levels of
these immune regulators in Immunity_H group were all higher
than those in Immunity_L group (Figures 3F–J). We then
conducted Kaplan-Meier survival analysis which highlighted that
patients in three groups had distinct clinical outcomes (P = 0.027,
Figure 3K).

Differentially Expressed Genes and
Immune-Related Genes
To identity the differentially expressed genes (DEGs) among
all of the three groups, we first compared the DEGs between
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FIGURE 3 | Three UCEC subtypes displayed different phenotypes. (A–C) The difference in Tumor Purity, Immune Score and Stromal Score in three UCEC subtypes.
(D) The mRNA expression of HLA genes among UCEC subtypes. (E) The proportion of different immune cells in three UCEC subtypes. (F–J) The mRNA expression
of 5 immune checkpoint molecules (CTLA4, CD274, HAVCR2, LAG3 and TIGHT) in three UCEC subtypes. (K) The survival curve exhibited that the prognosis of
patients among UCEC subtypes is different. *0.01 ≤ P < 0.05; *0.001 ≤ P < 0.01; ***P < 0.001.

TABLE 1 | Multivariate Cox analyses based on 2 hub genes.

Gene Coef HR 95%CI P-value

CCL13 −0.398 0.672 0.437–1.034 0.0709

KLRC1 −2.163 0.115 0.008–1.645 0.1111

Immunity_L and Immunity_H, Immunity_L and Immunity_M,
and Immunity_M and Immunity_H and identified 2314, 411 and
1378 DEGs (Supplementary Figures 2A–C). Then, according
to the gene set from Immport database (see text footnote 2),
we obtained 1811 immune genes (Supplementary Material B).
Then, the overlapping genes were obtained by Venn analysis.
Finally, 89 overlapping genes were found differentially expressed
in all four subgroups, which suggested to play a crucial role in
immune status of UCEC (Supplementary Material C). Thus, the
89 overlapped DEGs were selected as key immune related DEGs
for further analysis (Supplementary Figure 2D).

Identification of Potential Biological
Function-Related Genes
Go and KEGG analyses were performed which highlighted 89
biological function-related key genes in UCEC. We found that
biological functions like such as T cell activation, leukocyte cell-
cell adhesion, positive regulation of leukocyte activation, etc. were
associated with the identified 89 genes. Furthermore, these genes
participated in the KEGG pathways including Cytokine-cytokine
receptor interaction, Natural killer cell mediated cytotoxicity, and
Viral protein interaction with cytokine and cytokine receptor etc.
(Supplementary Figures 3A–D).

Development and Validation of the IRPS
To construct the IRPS based on 89 identified overlapping genes,
the univariate Cox regression analysis was utilized to identify
prognosis-related genes (Supplementary Table 1). 3 overlapping
genes were identified. After that, we used LASSO Cox analysis
to decrease overfitting (Supplementary Figures 4A,B). After
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FIGURE 4 | The mRNA and protein expression level of CCL13 and KLRC1 in UCEC tumor and the adjacent tissues. (A,B) The mRNA expression of CCL13 and
KLRC1 in UCEC tumor and the adjacent tissues. (C,D) The protein expression of CCL13 and KLRC1 in UCEC tumor and the adjacent tissues observed using IHC.

analysis, three genes were all reserved, including KLRC1, CCL13
and LTA. All these genes were associated with the overall
survival of UCEC patients (Supplementary Figure 5). We then
performed multivariate Cox proportional hazards regression
analysis to build the IRPS (Table 1). Two hub genes were
reserved. The mRNA and protein expression of these two gens
were presented in Figure 4. The mRNA expression of CCL13
and KLRC1 in tumor tissues were significantly lower than that
in the normal tissues (Figures 4A,B). Similarly, the protein
expression of CCL13 and KLRC1 was consistent with their
mRNA expression (Figures 4C,D). The risk score was obtained
according to the corresponding coefficients and the expression
levels of hub genes. Risk score was calculated using the following
formula:

Risk factor = [(−2.163) · KLRC1+ (−0.398) · CCL13]

A cutoff Risk score value of 1.40 was selected based on the median
value of the risk score in the training set and used to divide the

patients into low-risk (Risk score ≤ 1.4028) and high-risk (Risk
score > 1.4028) groups.

In the training set, we found the IRPS can distinguish
risk score, survival status and expression of 2 hub genes as
displayed in Figures 5A–C. Kaplan-Meier survival analysis
showed statistical difference between two groups (Figure 5D),
and the areas under the ROC curves (AUC) were 0.599, 0.649,
and 0.661 for 1-, 3-, and 5-year survival, respectively (Figure 5E).
The testing set cohort and the entire cohort were used to validate
the prognostic power of the IRPS model. The distribution of
risk score, survival status and expression of two hub genes in
the testing and entire sets are presented in Figures 5F–H,K–M.
Patients in high-risk group showed worse prognosis than low-risk
group in both testing and entire sets (Figures 5I,N). ROC analysis
revealed the prognostic accuracy of the IRPS in testing and entire
sets (Figures 5J,O).

Furthermore, we analyzed the prognostic power of the
IRPS with different clinical features in the entire set. We first
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FIGURE 5 | Construction of the IRPS. (A–C) The distribution of Risk score, survival status and expression of 2 hub genes in training set. (D) Kaplan-Meier survival
curves of overall survival between high-risk and low-risk patients in training set. (E) 1-, 3-, and 5-year ROC curve of the predictive power of the IRPS in training set
(F–J). (K–O) display similar analyses which were conducted in the testing set and the entire set.

FIGURE 6 | Construction and validation of a nomogram. (A) Nomogram to predict the probability of 1-, 3-, and 5-year OS of UCEC patients. (B–D) Calibration
curves of the nomogram to predict the probability of OS at 1, 3, and 5 years.

represented the data in a heatmap to obtain the general
distribution of risk score, hub genes and other clinical
features (Supplementary Figure 5A) and then utilized
subgroup Kaplan-Meier analysis to evaluate the prognostic
value of IRPS in some specific conditions (Supplementary

Figures 6B–G). We found the IRPS reached satisfactory
prognostic discrimination in patients with age ≤ 60
(Supplementary Figure 6B), grade G1&G2 (Supplementary
Figure 6C), grade G3&G4 (Supplementary Figure 6D),
histological type endometrial (Supplementary Figure 6E),
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stage I&II (Supplementary Figure 6F) and stage III&IV
(Supplementary Figure 6G).

Construction and Validation of a
Prediction Nomogram
We conducted the univariate and multivariate Cox regression
analyses to determine whether the IRPS was an independent
prognostic indicator for UCEC. According to univariate Cox
regression analysis, the hazard ratio (HR) of risk score and 95%
confidence interval (CI) were 2.717 (1.407–5.248), 1.783 (1.013–
3.140), and 2.191 (1.425–3.370) in training, testing, and entire
sets, respectively (Table 2). When turns to multivariate Cox
regression analysis, the HR and 95% CI were 2.224 (1.137–4.350)
and 1.949 (1.273–2.983) in training and entire set, respectively.
However, in testing sets, the HR of risk score and 95% CI were
1.653 (0.956–2.859) (Table 2). According to the univariate and
multivariate Cox regression analyses, the age, stage, histological
type, grade and risk score are significant prognostic factors and
should be involved in the construction of the prognostic models.

To expand the prognostic power of the IRPS and other clinical
characteristics, we constructed a nomogram that integrated age,
clinical stage, grade, histological type, and risk score. Each
parameter was assigned with a score and their total score
was calculated. To validate the performance of the nomogram
(Figure 6A), 1, 3, and 5-year calibration curves were constructed
(Figures 6B–D), which revealed a close association between the
predicted and actual curves. We further compared the AUC
of IRPS and other clinical characteristics for 1-, 3-, and 5-year
survival (Figures 7A–C) and found that the results were not
suitable for clinical usage. However, when these factors were
combined, the AUC reached 0.736, 0.746 and 0.796 for 1-, 3-,

and 5-year survival, respectively (Figures 7D–F), suggesting the
combination of IRPS and other clinical characteristics was highly
reliable. This methodology was further confirmed by the decision
curve analysis (DCA) (Figures 7G,H).

Potential Biological Pathways
Associated With IRPS
According to the GSEA analysis. We identified that pathways,
such as axon guidance, basal cell carcinoma, glycosaminoglycan
biosynthesis chondroitin sulfate, were enriched in the high-risk
group, whereas autoimmune thyroid disease, B cell receptor
signaling pathway, and chemokine signaling pathway were
enriched in the low-risk group (Supplementary Figures 7A,B).
Besides, we also identified several immune-related GO terms such
as T cell activation, regulation of leukocyte activation, regulation
of lymphocyte activation, regulation of T cell activation and
leukocyte cell-cell adhesion (Supplementary Figures 6C,D).

Correlation Between IRPS and Immune
Cell Infiltration
We used CIBERSORT to obtain the proportion of the 22 immune
cells (Figure 8A) and found that the proportions of several types
of immune cells, including plasma cells, CD8+ T cells, CD4+
memory T cell, follicular helper T cells and M1 macrophages,
were higher in the low-risk group, but those of immune cells
like, CD4+ memory T cells, M0 macrophages and mast cells
were lower in the high-risk group. Besides, we also investigated
the correlation between IRPS and different types of immune
cells. The IRPS showed positive correlation with memory B cells,
activated dendritic cells, M0 macrophages, mast cells, CD4+

TABLE 2 | Univariate and multivariate Cox regression analyses of the prognosis-related factors.

Variables Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value

Training sets

Age 1.303 0.674–2.517 0.431 1.037 0.505–2.130 0.921

Stage 4.044 2.179–7.506 <0.001 2.902 1.496–5.629 0.002

Histological type 3.443 1.870–6.340 <0.001 1.597 0.729–3.500 0.242

Grade 2.869 1.327–6.202 0.007 1.881 0.774–4.568 0.163

RiskScore 2.717 1.407–5.248 0.003 2.224 1.137–4.350 0.020

Testing sets

Age 2.465 1.253–4.851 0.009 2.346 1.159–4.751 0.018

Stage 4.126 2.306–7.383 <0.001 3.852 2.030–7.310 <0.001

Histological type 2.682 1.506–4.777 <0.001 0.918 0.462–1.822 0.806

Grade 3.996 1.864–8.565 <0.001 2.521 1.085–5.857 0.032

RiskScore 1.783 1.013–3.140 0.045 1.653 0.956–2.859 0.072

Entire sets

Age 1.778 1.112–2.843 0.016 1.563 0.952–2.567 0.078

Stage 4.116 2.700–6.275 <0.001 3.400 2.152–5.371 <0.001

Histological type 3.044 2.003–4.624 <0.001 1.193 0.716–1.989 0.498

Grade 3.397 1.976–5.840 <0.001 2.137 1.163–3.928 0.014

RiskScore 2.191 1.425–3.370 <0.001 1.949 1.273–2.983 0.002

HR, hazard ratio; CI, confidence interval.
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FIGURE 7 | The predictive power of the IRPS and other clinical characteristics. (A–C) 1-, 3-, and 5-year ROC of IRPS and the other clinical characteristics. (D,E) 1-,
3-, and 5-year ROC of the combination of IRPS and the existing clinical factors. (G,H) The decision curve analysis (DCA) curves showed that the prognostic power of
combining IRPS and clinical factors was superior to the existing prognostic factors.

memory T cells, and negative correlation with M1 macrophages,
NK cells, CD4+ memory T cells, CD8+T cells and follicular helper
T cell (Figures 8B,C).

Correlation Analysis Between 2 Hub
Genes and Immune Infiltration Level
To investigate the relationship between the two hub genes,
tumor purity and the immune filtrating cells, we used the
TIMER database to obtain their relationship. We first analyzed

the correlations between CCL13 expression, tumor purity and
immune infiltration level of 6 immune cells. The results
showed that CCL13 expression level had negative correlation
with tumor purity. Besides, CCL13 expression level had
significant positive correlations with infiltrating levels of B
cell, CD8+ T cell, CD4+ T cell, Macrophage, Neutrophil and
Dendritic cell (Supplementary Figure 8A). Similarly, the KLRC1
expression level had negative correlation with tumor purity
and positive correlation with infiltrating levels of B cell, CD8+
T cell, CD4+ T cell, Macrophage, Neutrophil and Dendritic
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FIGURE 8 | Correlation between IRPS and immune cell infiltration. (A) The landscape of immune cell infiltration in low-risk and high-risk groups. Th low-risk and
high-risk groups are represented via blue and red violin, respectively. (B) The association between IRPS and immune cell infiltration. (C) The association between
IRPS and each type of immune cell.

cell (Supplementary Figure 8B). The above results were also
validated using the TISIDB dataset (Supplementary Figures 9A–
C). These results suggest that CCL13 and KLRC1 play a specific
role in immune infiltration in UCEC.

We further revealed the relationship between the two hub
genes and several immune markers, including CD8+ T cells,
T cells (general), B cells, monocytes, TAMs, M1 and M2
macrophages, neutrophils, NK cells, DCs and several functional
T cells. After adjustment by purity, the results showed that CCL13
expression level was associated with most immune marker sets of
immune cells and different T cells except for the M1 Macrophage
and Dendritic cell (Table 3). In addition, the KLRC expression
level was associated with nearly all of the immune cells. These
results were also verified using the GEPIA database (Table 4). In
general, according to the above results, CCL13 and KLRC1 play a
remarkable role in immune regulation in UCEC.

In addition, we analyzed the relationships of the mutants of
these 2 hub genes with immune infiltrates in UCEC. Compared
with the immune infiltration levels in samples with wild
type signatures, diverse forms of mutation in two hub genes
could inhibit the immune infiltration levels of several immune

cells, including CD8+ T cell, macrophages and dendritic cells
(Supplementary Figures 8C,D).

Correlation Between IRPS and Mutation
Profile
The relationship between IRPS and mutation profile was
evaluated in UCEC patients using somatic mutation data. The
top 10 mutated genes in high-risk and low-risk group are shown
in the Figures 9A,B. And the most frequently mutated genes
in high-risk and low-risk group are presented in Figure 9C.
The results revealed that somatic mutation was more frequently
observed in the low-risk group. And the TMB scores in low-
risk group were significantly higher than that in high-risk group
(P < 0.05, Figure 9D). Further results revealed that TMB score
had negative correlation with IROS (P = 4.015e-09, Figure 9E).

Correlation Between IRPS and Two
Therapeutic Regimens
We also analyzed the expression of four immune checkpoint
molecules in high-risk and low-risk groups. The results revealed
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TABLE 3 | Correlation analysis between two hub genes and immune cells markers in TIMER.

Description Gene markers CCL13 KLRC1

None Purity None Purity

Cor P Cor P Cor P Cor P

CD8+ T cell CD8A 0.452 *** 0.435 *** 0.597 *** 0.581 ***

CD8B 0.248 *** 0.196 ** 0.384 *** 0.369 ***

T cell (general) CD3D 0.444 *** 0.444 *** 0.605 *** 0.623 ***

CD3E 0.422 *** 0.412 *** 0.634 *** 0.66 ***

CD2 0.468 *** 0.466 *** 0.624 *** 0.624 ***

B cell CD19 0.157 ** 0.119 0.041 0.385 *** 0.399 ***

CD79A 0.307 *** 0.296 *** 0.454 *** 0.436 ***

Monocyte CD86 0.343 *** 0.301 *** 0.542 *** 0.543 ***

CD115 (CSF1R) 0.159 ** 0.11 0.06 0.443 *** 0.47 ***

TAM CCL2 0.303 *** 0.272 *** 0.282 *** 0.253 ***

CD68 0.312 *** 0.289 *** 0.459 *** 0.438 ***

IL10 0.136 * 0.125 0.032 0.236 *** 0.199 **

M1 Macrophage INOS (NOS2) −0.019 0.659 −0.039 0.502 0.119 * 0.034 0.563

IRF5 0.027 0.531 0.03 0.605 0.241 *** 0.207 **

COX2(PTGS2) −0.015 0.732 −0.084 0.154 −0.033 0.446 −0.036 0.535

M2 Macrophage CD163 0.376 *** 0.324 *** 0.393 *** 0.365 ***

VSIG4 0.26 *** 0.195 ** 0.409 *** 0.388 ***

MS4A4A 0.377 *** 0.335 *** 0.492 *** 0.466 ***

Neutrophils CD66b (CEACAM8) −0.092 0.031 −0.082 0.162 0.068 0.113 0.09 0.125

CD11b (ITGAM) 0.228 *** 0.158 * 0.441 *** 0.466 ***

CCR7 0.33 *** 0.344 *** 0.482 *** 0.518 ***

Natural killer cell KIR2DL1 0.164 ** 0.091 0.12 0.445 *** 0.423 ***

KIR2DL3 0.2 *** 0.165 * 0.514 *** 0.514 ***

KIR2DL4 0.29 *** 0.322 *** 0.693 *** 0.696 ***

KIR3DL1 0.241 *** 0.24 *** 0.525 *** 0.577 ***

KIR3DL2 0.193 *** 0.21 ** 0.485 *** 0.493 ***

KIR3DL3 0.154 ** 0.126 0.031 0.364 *** 0.386 ***

KIR2DS4 0.182 *** 0.136 0.02 0.465 *** 0.512 ***

Dendritic cell HLA-DPB1 0.208 *** 0.11 0.06 0.472 *** 0.442 ***

HLA-DQB1 0.152 ** 0.071 0.226 0.418 *** 0.375 ***

HLA-DRA 0.182 *** 0.084 0.152 0.475 *** 0.435 ***

HLA-DPA1 0.234 *** 0.143 0.014 0.539 *** 0.519 ***

BDCA-1(CD1C) 0.027 0.529 0.01 0.868 0.345 *** 0.344 ***

BDCA-4(NRP1) 0.081 0.059 0.075 0.203 0.304 *** 0.238 ***

CD11c (ITGAX) 0.188 *** 0.14 0.016 0.556 *** 0.569 ***

Th1 T-bet (TBX21) 0.45 *** 0.411 *** 0.631 *** 0.617 ***

STAT4 0.282 *** 0.24 *** 0.493 *** 0.46 ***

STAT1 0.27 *** 0.248 *** 0.296 *** 0.244 ***

IFN-γ (IFNG) 0.495 *** 0.489 *** 0.498 *** 0.481 ***

TNF-α (TNF) −0.031 0.464 0.009 0.876 0.086 0.044 0.068 0.245

Th2 GATA3 0.195 *** 0.164 * 0.237 *** 0.19 *

STAT6 −0.048 0.265 −0.103 0.079 0.065 0.129 −0.03 0.604

STAT5A 0.119 * 0.053 0.367 0.274 *** 0.303 ***

IL13 0.193 *** 0.226 *** 0.116 * 0.084 0.153

Tfh BCL6 −0.085 0.046 −0.088 0.132 −0.005 0.902 0.054 0.356

IL21 0.314 *** 0.316 *** 0.207 *** 0.245 ***

Th17 STAT3 0.02 0.643 −0.038 0.52 0.15 ** 0.141 0.016

IL17A 0.279 *** 0.288 *** 0.14 * 0.168 *

(Continued)
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TABLE 3 | Continued

Description Gene markers CCL13 KLRC1

None Purity None Purity

Cor P Cor P Cor P Cor P

Treg FOXP3 0.36 *** 0.376 *** 0.439 *** 0.453 ***

CCR8 0.345 *** 0.366 *** 0.312 *** 0.341 ***

STAT5B 0.065 0.129 0.044 0.449 0.107 0.013 0.111 0.058

TGFβ (TGFB1) 0.103 0.016 0.114 0.052 0.223 *** 0.213 **

T cell exhaustion PD-1 (PDCD1) 0.421 *** 0.371 *** 0.466 *** 0.458 ***

CTLA4 0.445 *** 0.412 *** 0.523 *** 0.5 ***

LAG3 0.462 *** 0.447 *** 0.476 *** 0.448 ***

TIM-3 (HAVCR2) 0.367 *** 0.314 *** 0.617 *** 0.603 ***

GZMB 0.467 *** 0.478 *** 0.587 *** 0.58 ***

Cor, R-value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity; *P < 0.01; **P < 0.001; ***P < 0.0001.

that IRPS was negatively corelated with the listed four immune
checkpoint molecules (Figure 10A). Besides, we performed IPS
analysis to acquire immunogenicity. The results showed that
four molecules displayed higher scores in the low-risk group
(Figure 10B). Besides, according to the ImmuCellAI, patients in
the low-risk group showed higher immunotherapy response rate
compared with patients in the high-risk group (Figures 10C,D),
which implied that patients in the low-risk group would benefit
from immunotherapy.

Chemotherapy is the most common way to treat UCEC
cancer, in this research, we used GDSC database to predict the
likelihood of response to several common chemotherapy drugs.
We estimated the IC50 of each sample and observed a significant
difference of IC50 between high-risk and low-risk groups among
eight chemo drugs. Patients in the low-risk group were more
sensitive to commonly administered chemodrugs (P = 1.467e-
05 for cisplatin, P = 4.412e-06 for gemcitabine, P = 0.039 for
paclitaxel, P = 0.002 for bleomycin, P = 1.458e-06 for vinblastine,
P = 0.048 for vinorelbine, P = 4.620e-05 for vorinostat, P = 0.005
for methotrexate) (Figure 11). In contrast, the chemotherapeutic
response of Docetaxel and Doxorubicin was not significantly
different between both groups.

Potential Small Molecular Drugs for
UCEC
In order to explore new therapeutic regimens for UCEC, the
Cmap database was employed (Lamb et al., 2006). We found eight
associated small molecule drugs that are listed in the Table 5.
Among these small molecule drugs, the 3D chemical structures of
three most significant small molecule drugs were obtained from
PubChem (Figure 12).

DISCUSSION

UCEC is the most common tumor affecting female reproductive
system, with a 5-year survival rate of 16% in patients with
distant metastasis (Siegel et al., 2019). To date, the therapeutic
regimens, such as immunological therapy and chemotherapy, are

mainly designed according to the clinical stages of the tumor.
Due to physiological differences, not all the patients can benefit
from the current therapeutic regimens (Brooks et al., 2019). To
overcome this challenge, in this research, we developed a model
for predicting the survival and therapeutic response of UCEC
patients using two immune-related genes.

We first estimated the relative levels of 24 immune cells
based on the training set online data and used hierarchical
clustering analysis to profile the infiltration of immune cells.
The results revealed that the infiltration of immune cells
varied much among UCEC patients. We found different tumor
purities, immune scores, stromal scores, fractions of different
immune cells, expression of several HLA genes and expression of
five immune checkpoint molecules (CTLA4, CD274, HAVCR2,
LAG3 and TIGHT) among UCEC subtypes. These results
strongly suggest that tumor immune microenvironment has
different landscapes in UECE patients. Emerging evidence
demonstrates that tumor immune microenvironment is closely
associated with the prognosis of several cancers13 (Liu et al.,
2020). In this research, we found the overall survival of three
UCEC subtypes differed significantly. The hierarchical clustering
analysis is capable of distinguishing patients with different
prognosis. However, this method is complicated and produces
irrelevant information, making it less clinically applicable.

To overcome the shortcomings, we filtered out two hub
genes (CCL13 and KLRC1) closely related to the prognosis of
UCEC patients. The mRNA and protein expression levels of both
genes were verified via qPCR and IHC. The survival analyses
confirmed the ability of IRPS in distinguishing patients with
different prognosis. In order to enhance the predictive power
of the IRPS, we added other clinical characteristics and built a
nomogram model. According to the ROC and DCA curves, this
nomogram model exhibited remarkable ability in predicting the
prognosis of patients.

We further investigated the potential biological function
of IRPS. The GSEA analysis revealed that several immune-
related pathways were significantly enriched in the low-risk
group. In contrast, the same pathways in the high-risk group
were scattered. It is widely acknowledged that innate and
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adaptive immune cells play a major role in regulating the cancer
growth. Increasing evidence shows that some immune cells (like
Neutrophils, Macrophage M2, T regulatory cell) can stimulate,
while some (like Macrophage M1, CD8+ T cell and Th1 CD4+ T
cell) can inhibit cancer growth (Coussens and Werb, 2002; Disis,
2010). In the present study, low-risk and high-risk groups differed

TABLE 4 | Correlation analysis between two hub genes and immune cells markers
in GEPIA.

Description Gene markers CCL13 KLRC1

R P R P

CD8+ T cell CD8A 0.59 *** 0.65 ***

CD8B 0.37 *** 0.52 ***

T cell (general) CD3D 0.47 *** 0.59 ***

CD3E 0.49 *** 0.65 ***

CD2 0.49 *** 0.65 ***

B cell CD19 0.13 0.091 0.31 ***

CD79A 0.31 *** 0.45 ***

Monocyte CD86 0.41 *** 0.62 ***

CD115 (CSF1R) 0.29 ** 0.52 ***

TAM CCL2 0.41 *** 0.34 ***

CD68 0.42 *** 0.52 ***

IL10 0.14 0.071 0.3 ***

M2 Macrophage CD163 0.39 *** 0.48 ***

VSIG4 0.35 *** 0.52 ***

MS4A4A 0.42 *** 0.57 ***

Neutrophils CD66b (CEACAM8) −0.13 0.093 0.022 0.77

CD11b (ITGAM) 0.3 *** 0.56 ***

CCR7 0.38 *** 0.51 ***

Natural killer cell KIR2DL1 0.12 0.12 0.44 ***

KIR2DL3 0.3 *** 0.54 ***

KIR2DL4 0.36 *** 0.75 ***

KIR3DL1 0.35 *** 0.5 ***

KIR3DL2 0.21 ** 0.56 ***

KIR3DL3 0.25 *** 0.39 ***

KIR2DS4 0.2 ** 0.41 ***

Dendritic cell HLA-DPB1 0.3 *** 0.56 ***

HLA-DQB1 0.22 ** 0.36 ***

HLA-DRA 0.28 *** 0.53 ***

HLA-DPA1 0.36 *** 0.6 ***

BDCA-1(CD1C) 0.12 0.13 0.35 ***

BDCA-4(NRP1) 0.14 0.057 0.36 ***

CD11c (ITGAX) 0.26 *** 0.59 ***

Th1 T-bet (TBX21) 0.48 *** 0.67 ***

STAT4 0.37 *** 0.48 ***

STAT1 0.24 * 0.37 ***

IFN-γ (IFNG) 0.56 *** 0.63 ***

TNF-α (TNF) −0.022 0.77 0.041 0.6

T cell exhaustion PD-1 (PDCD1) 0.45 *** 0.55 ***

CTLA4 0.52 *** 0.6 ***

LAG3 0.42 *** 0.52 ***

TIM-3 (HAVCR2) 0.4 *** 0.66 ***

GZMB 0.48 *** 0.66 ***

*P < 0.01; **P < 0.001; ***P < 0.0001.

in the proportion of immune cells in UCEC, including plasma
cells, CD8+ T cells, CD4+ memory T cells, CD4+ memory T
cells, follicular helper T cells, M0 macrophages, M1 macrophages
and activated mast cells. To be specific, M1 Macrophages, CD4+
and CD8+ T cells and plasma cells were activated in the low-
risk group, suggesting that they can inhibit cancer growth and
improve the prognosis of UCEC patients.

As listed in the methods section, the IRPS was established
using the expression profiles of CCL13 and KLRC1. CCL13
is a gene located on chromosome 17q11.2 that encodes
monocyte chemoattractant protein 4 (MCP-4), a Cys-Cys
(CC) type cytokine characterized by two adjacent cysteines.
In the immunoregulatory and inflammatory processes, CCL13
demonstrates chemotaxis to monocytes, lymphocytes, basophils
and eosinophils, but not neutrophils, and plays a role in the
accumulation of leukocytes during inflammation. Increasing
evidence has confirmed that chemokines and their receptors can
facilitate the entry of specific immune cells into tumors, thus
enhancing anti-tumor response and improving patient prognosis
(Rusakiewicz et al., 2013; Jacquelot et al., 2018).

KLRC1 (Killer Cell Lectin Like Receptor C1), also known as
NKG2A, is a protein-coding gene associated with Natural killer
(NK) cells. NK cells can mediate the lysis of certain tumor cells
and virus-infected cells, and specific humoral and cell-mediated
immunity. The protein encoded by KLRC1 belongs to the killer
cell lectin-like receptor family, also called NKG2 family, which
is a group of transmembrane proteins preferentially expressed
in NK cells. KLRC1 can form a complex with KLRD1/CD94
and participate in the recognition of the MHC class I HLA-E
molecules in NK cells. Researcher has also proved that crystal
structure of CD94-NKG2A in complex with HLA-E bound to a
peptide derived from the leader sequence of HLA-G. A previous
study found KLRC1 expression changed with CD8+ T cell
infiltration in 34 types of human cancers (Chen et al., 2019).

It is well known that tumors can escape the immune system
via several mechanisms, including expanding T regulatory cells,
inducing the production of certain inhibitory cytokines, altering
the function of antigen presenting cells (APCs) (Disis, 2010).
In this research, we found that the expression of CCL13 and
KLRC1 had a positive correlation with the activation of several
types of immune cells. Mutations in these two genes can inhibit
the infiltration of some immune cells, especially in CD8+ T
cells. Thus, IRPS based on both genes can distinguish cellular
immunoactivation and immunosuppression.

We also investigated whether IRPS can provide valuable
information about the host response to immunotherapy
and chemotherapy. Immune checkpoint molecules are
traditional biomarkers for evaluating the therapeutic benefit of
immunotherapy. In this research, we found that the expression
levels of four immune checkpoint molecules (PD-1, PD-L1,
PD-L2 and CTLA4) were significantly low in the high-risk
group, suggesting that the patients in the high-risk group
might not benefit from immunotherapy based on immune
checkpoint inhibitors. Apart from immune checkpoint
molecules, tumor mutational burden (TMB) has emerged
as a promising predictive biomarker for immunotherapy based
on immune checkpoint inhibitors in several tumor types
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FIGURE 9 | The mutation profile and TMB among high-risk and low-risk group. (A,B) The top 10 mutated genes in high-risk and low-risk group. (C) The most
frequently mutated genes in high-risk and low-risk group. (D) The TMB in high-risk and low-risk group. (E) The relationship between TMB and IRPS. TMB: tumor
mutational burden.

FIGURE 10 | Correlation between IRPS and immune checkpoint molecules and the predicted response to immunotherapy. (A) The gene expression profile of PD1,
CTLA-4, PD-L1 and PD-L2 in low-risk and high-risk group. (B) The association between IPS and the IRPS in UCEC patients. (C) The different immunotherapy
response rates in low-risk and high-risk group. (D) The relationship between IRPS and immunotherapy response.
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FIGURE 11 | Chemotherapeutic response in the high-risk and low-risk groups. *0.01 ≤ P < 0.05; **0.001 ≤ P < 0.01; ***P < 0.001.

TABLE 5 | Results of CMap analysis.

Cmap name Mean n Enrichment p Specificity Percent non-null

Carbenoxolone −0.332 4 −0.807 0.00271 0 50

Emetine −0.6 4 −0.713 0.01369 0.1941 75

Lovastatin −0.367 4 −0.704 0.01578 0.0233 50

MG-262 −0.567 3 −0.794 0.01787 0.1417 66

Piperlongumine 0.368 2 0.897 0.02181 0.1234 50

Megestrol −0.406 4 −0.677 0.02425 0.0068 50

Semustine −0.398 4 −0.653 0.03364 0.1111 50

Trimethoprim −0.442 5 −0.577 0.04055 0.0449 60

FIGURE 12 | The 3D structure of the three small molecule drugs for UCEC. (A) carbenoxolone, (B) emetine, and (C) lovastatin.

(Chen et al., 2019). High TMB and high neoantigen load
have positive correlation with sensitivity to immunotherapy
(Hollern et al., 2019). Multiple studies have proved that TMB
may be a surrogate for overall neoantigen load20 (Rizvi et al.,
2015; Rooney et al., 2015). During the cancer onset, somatic
cells mutate and express neoantigens (Gubin et al., 2015).
These neoantigens can sometimes induce T-cell-dependent
immune responses by activating CD8+ T cells that can

recognize those neoantigens and initiate tumor cell lysis
(Chen and Flies, 2013).

In this research, when it turns to the evidence regarding
immune checkpoint molecules, According to TMB and
ImmuCellAI tool, patients in the low-risk group may benefit
more from immunotherapy with immune checkpoint inhibitors,
but those in the high-risk group may not. Similarly, the patients
in the low-risk group were sensitive to chemodrugs such
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as cisplatin, gemcitabine, paclitaxel, bleomycin, vinblastine,
vinorelbine, vorinostat and methotrexate. However, patients in
the high-risk group were resistant to these drugs, which may
explain their poor prognosis.

Fortunately, we found that several small molecule drugs,
such as carbenoxolone, emetine, lovastatin and MG-262, could
provide potential benefits for patients in the high-risk group.
There is limited research regarding the effects of these drugs
on tumor. Carbenoxolone is widely used as an antiulcer drug,
but with unknown effect on tumor. Carbenoxolone can also
act as the inhibitor of Pannexin 1 (Panx-1) and suppress the
migration and invasion of testicular cancer cells to counter
cancer progression and metastasis (Penuela et al., 2012; Furlow
et al., 2015; Jankowski et al., 2018; Liu et al., 2019). Emetine,
a potent anti-protozoal and emetic drug, recent evidence has
verified its anti-malarial, anti-bacterial and anti-amoebic effects
(Matthews et al., 2013; Hudson et al., 2016; Khandelwal et al.,
2017; Yang et al., 2018). Over the past decades, emetine has
been reported to have anti-tumor effects on leukemia, ovarian
cancer, bladder cancer and lung cancer by inhibiting tumor
growth by regulating multiple mechanisms such as apoptosis
and autophagy (Moller and Wink, 2007; Moller et al., 2007;
Kim et al., 2015; Sun et al., 2015). Lovastatin, an HMG-
CoA reductase inhibitor, can decrease cholesterol biosynthesis
and is an ideal medicine for treating coronary heart disease.
In 2004, lovastatin was found to be a useful adjuvant drug
for breast cancer (Shibata et al., 2004). Besides, lovastatin
can reduce cancer-related deaths. MG-262, also known as
Z-Leu-Leu-Leu-B(OH)2, is a proteasome inhibitor that can
reversibly and selectively inhibit chymotryptic activity of the
proteasome. As we know, proteasome inhibition has emerged
as a novel approach to treat cancer. In some studies, MG-
262 has exhibited obvious inhibitory effect on the growth of
malignant cells.

The above drugs are untraditional anti-tumor drugs and there
is limited evidence of their effects on tumors especially UCEC.
However, for patients in the high-risk group, all drugs with
potential benefits should be tried. For patients who may not
benefit from traditional drugs, adjuvant agents should be tried.

Nevertheless, there are still some limitations in this research.
First, this study only includes the immune-related genes and did
not take other biomarkers into consideration. Another important
issue, there are lots of immune cells varies significantly among
individuals, it is hard to distinguish if the gene expression
level mainly depends on the varieties of immune cells. The
variable number of NK cells might be a confounder for KLRC1
expression. We used Timer2.0 to explore the correlation of
KLRC1 and NK cells, the result confirmed that the expression of
KLRC1 is positively correlated with NK cells. However, according
to the results of CIBERSORT analysis, the proportion of NK cells
showed no significant difference in high- and low- risk group.
Besides, by analyzing the correlation between the RiskScore and
different types of immune cells, we found the RiskScore was
negatively correlated with NK cells. Thus, we speculated that the
expression of KLRC1 might not mainly depend on the number
of NK cells varieties among individuals. It was an independent
prognosis related factor. Additionally, this research is based on

the online data, and large-sample clinical studies are still needed
to validate the predictive value of our IRPS model.

In summary, our study identified two immune-related genes,
CCL13 and KLRC1 in the development of UCEC. The IRPS
of both genes can predict the prognosis and immune status
of UCEC patients and evaluate their therapeutic response to
immunotherapy and chemotherapy.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Clinical Research Ethics Committee, Wuxi Maternal
and Child Health Hospital, The Affiliated Hospital to Nanjing
Medical University. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

YZ conceived the study. JL, YW, and JM participated in the
design, analysis, and draft of the study. JL and YW plotted all
figures in this manuscript. JM helped in data analysis. All authors
approved the final version of this manuscript and agreed to be
accountable for all aspects of the work.

FUNDING

This study was financially supported by the Wuxi Science
and Technology Bureau Project (No. CSE31N1720), the
Jiangsu Province Youth Medical Talent Fund Project (No.
QNRC2016166), and the Jiangsu Provincial Six Talent Peaks
Project (No. YY-124).

ACKNOWLEDGMENTS

We thank Cao Yongke, Ph.D., from Nanjing KEY Translation
Studio for editing the English text of a draft of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
671736/full#supplementary-material

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 July 2021 | Volume 9 | Article 671736

https://www.frontiersin.org/articles/10.3389/fcell.2021.671736/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.671736/full#supplementary-material
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-671736 July 22, 2021 Time: 14:3 # 18

Liu et al. Prognosis Associated Immune Landscape Signature

REFERENCES
Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E.,

Dunn, I. F., et al. (2009). Systematic RNA interference reveals that
oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112.
doi: 10.1038/nature08460

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F.,
Merad, M., et al. (2018). Understanding the tumor immune
microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550.
doi: 10.1038/s41591-018-0014-x

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Brooks, R. A., Fleming, G. F., Lastra, R. R., Lee, N. K., Moroney, J. W.,
Son, C. H., et al. (2019). Current recommendations and recent
progress in endometrial cancer. CA Cancer J. Clin. 69, 258–279.
doi: 10.3322/caac.21561

Chaudhry, P., and Asselin, E. (2009). Resistance to chemotherapy and hormone
therapy in endometrial cancer. Endocr. Relat. Cancer 16, 363–380. doi: 10.1677/
ERC-08-0266

Chen, L., and Flies, D. B. (2013). Molecular mechanisms of T cell
co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242.
doi: 10.1038/nri3405

Chen, Y., Xin, Z., Huang, L., Zhao, L., Wang, S., Cheng, J., et al. (2019). CD8(+)
T cells form the predominant subset of NKG2A(+) cells in human lung cancer.
Front. Immunol. 10:3002. doi: 10.3389/fimmu.2019.03002

Coussens, L. M., and Werb, Z. (2002). Inflammation and cancer. Nature 420,
860–867. doi: 10.1038/nature01322

Disis, M. L. (2010). Immune regulation of cancer. J. Clin. Oncol. 28, 4531–4538.
doi: 10.1200/JCO.2009.27.2146

Furlow, P. W., Zhang, S., Soong, T. D., Halberg, N., Goodarzi, H.,
Mangrum, C., et al. (2015). Mechanosensitive pannexin-1 channels
mediate microvascular metastatic cell survival. Nat. Cell Biol. 17, 943–952.
doi: 10.1038/ncb3194

Galon, J., Angell, H. K., Bedognetti, D., and Marincola, F. M. (2013).
The continuum of cancer immunosurveillance: prognostic, predictive, and
mechanistic signatures. Immunity 39, 11–26. doi: 10.1016/j.immuni.2013.07.
008

Gottwald, L., Pluta, P., Piekarski, J., Spych, M., Hendzel, K.,
Topczewska-Tylinska, K., et al. (2010). Long-term survival of
endometrioid endometrial cancer patients. Arch. Med. Sci. 6, 937–944.
doi: 10.5114/aoms.2010.19305

Gubin, M. M., Artyomov, M. N., Mardis, E. R., and Schreiber, R. D. (2015). Tumor
neoantigens: building a framework for personalized cancer immunotherapy.
J. Clin. Invest. 125, 3413–3421. doi: 10.1172/JCI80008

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.
1186/1471-2105-14-7

Hollern, D. P., Xu, N., Thennavan, A., Glodowski, C., Garcia-Recio, S., Mott, K. R.,
et al. (2019). B Cells and T follicular helper cells mediate response to checkpoint
inhibitors in high mutation burden mouse models of breast cancer. Cell 179,
1191–1206.e21. doi: 10.1016/j.cell.2019.10.028

Hudson, L. K., Dancho, M. E., Li, J., Bruchfeld, J. B., Ragab, A. A., He, M. M., et al.
(2016). Emetine Di-HCl attenuates type 1 diabetes mellitus in mice. Mol. Med.
22, 585–596. doi: 10.2119/molmed.2016.00082

Jacquelot, N., Duong, C. P. M., Belz, G. T., and Zitvogel, L. (2018). Targeting
chemokines and chemokine receptors in melanoma and other cancers. Front.
Immunol. 9:2480. doi: 10.3389/fimmu.2018.02480

Jain, A., Chia, W. K., and Toh, H. C. (2016). Immunotherapy
for nasopharyngeal cancer-a review. Chin. Clin. Oncol. 5:22.
doi: 10.21037/cco.2016.03.08

Jankowski, J., Perry, H. M., Medina, C. B., Huang, L., Yao, J.,
Bajwa, A., et al. (2018). Epithelial and endothelial pannexin1
channels mediate AKI. J. Am. Soc. Nephrol. 29, 1887–1899.
doi: 10.1681/ASN.2017121306

Khandelwal, N., Chander, Y., Rawat, K. D., Riyesh, T., Nishanth, C., Sharma, S.,
et al. (2017). Emetine inhibits replication of RNA and DNA viruses without

generating drug-resistant virus variants. Antiviral Res. 144, 196–204. doi: 10.
1016/j.antiviral.2017.06.006

Kim, J. H., Cho, E. B., Lee, J., Jung, O., Ryu, B. J., Kim, S. H., et al. (2015). Emetine
inhibits migration and invasion of human non-small-cell lung cancer cells via
regulation of ERK and p38 signaling pathways. Chem. Biol. Interact. 242, 25–33.
doi: 10.1016/j.cbi.2015.08.014

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.
(2006). The connectivity map: using gene-expression signatures to connect
small molecules, genes, and disease. Science 313, 1929–1935. doi: 10.1126/
science.1132939

Liu, H., Yuan, M., Yao, Y., Wu, D., Dong, S., and Tong, X. (2019). In vitro
effect of Pannexin 1 channel on the invasion and migration of I-10 testicular
cancer cells via ERK1/2 signaling pathway. Biomed. Pharmacother. 117:109090.
doi: 10.1016/j.biopha.2019.109090

Liu, S. L., Bian, L. J., Liu, Z. X., Chen, Q. Y., Sun, X. S., Sun, R., et al.
(2020). Development and validation of the immune signature to predict distant
metastasis in patients with nasopharyngeal carcinoma. J. Immunother. Cancer
8:e000205. doi: 10.1136/jitc-2019-000205

Lortet-Tieulent, J., Ferlay, J., Bray, F., and Jemal, A. (2018). International patterns
and trends in endometrial cancer incidence, 1978-2013. J. Natl. Cancer Inst. 110,
354–361. doi: 10.1093/jnci/djx214

Matthews, H., Usman-Idris, M., Khan, F., Read, M., and Nirmalan, N. (2013).
Drug repositioning as a route to anti-malarial drug discovery: preliminary
investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride
hydrate. Malar J. 12:359. doi: 10.1186/1475-2875-12-359

Miao, Y. R., Zhang, Q., Lei, Q., Luo, M., Xie, G. Y., Wang, H., et al. (2020).
ImmuCellAI: a unique method for comprehensive T-cell subsets abundance
prediction and its application in cancer immunotherapy. Adv. Sci (Weinh)
7:1902880. doi: 10.1002/advs.201902880

Moller, M., Herzer, K., Wenger, T., Herr, I., and Wink, M. (2007).
The alkaloid emetine as a promising agent for the induction and
enhancement of drug-induced apoptosis in leukemia cells. Oncol. Rep.
18, 737–744.

Moller, M., and Wink, M. (2007). Characteristics of apoptosis induction by the
alkaloid emetine in human tumour cell lines. Planta Med. 73, 1389–1396. doi:
10.1055/s-2007-990229

Pages, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F. S., Bifulco, C., et al. (2018).
International validation of the consensus immunoscore for the classification
of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139. doi:
10.1016/S0140-6736(18)30789-X

Penuela, S., Gyenis, L., Ablack, A., Churko, J. M., Berger, A. C., Litchfield, D. W.,
et al. (2012). Loss of pannexin 1 attenuates melanoma progression by reversion
to a melanocytic phenotype. J. Biol. Chem. 287, 29184–29193. doi: 10.1074/jbc.
M112.377176

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J.,
et al. (2015). Cancer immunology. Mutational landscape determines sensitivity
to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128. doi:
10.1126/science.aaa1348

Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., and Hacohen, N. (2015). Molecular
and genetic properties of tumors associated with local immune cytolytic activity.
Cell 160, 48–61. doi: 10.1016/j.cell.2014.12.033

Rusakiewicz, S., Semeraro, M., Sarabi, M., Desbois, M., Locher, C., Mendez, R., et al.
(2013). Immune infiltrates are prognostic factors in localized gastrointestinal
stromal tumors. Cancer Res. 73, 3499–3510. doi: 10.1158/0008-5472.CAN-13-
0371

Shibata, M. A., Ito, Y., Morimoto, J., and Otsuki, Y. (2004). Lovastatin
inhibits tumor growth and lung metastasis in mouse mammary carcinoma
model: a p53-independent mitochondrial-mediated apoptotic mechanism.
Carcinogenesis 25, 1887–1898. doi: 10.1093/carcin/bgh201

Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer
J. Clin. 69, 7–34. doi: 10.3322/caac.21551

Sun, Q., Yogosawa, S., Iizumi, Y., Sakai, T., and Sowa, Y. (2015). The alkaloid
emetine sensitizes ovarian carcinoma cells to cisplatin through downregulation
of bcl-xL. Int. J. Oncol. 46, 389–394. doi: 10.3892/ijo.2014.2703

Yang, S., Xu, M., Lee, E. M., Gorshkov, K., Shiryaev, S. A., He, S., et al. (2018).
Emetine inhibits Zika and Ebola virus infections through two molecular
mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov.
4:31. doi: 10.1038/s41421-018-0034-1

Frontiers in Cell and Developmental Biology | www.frontiersin.org 18 July 2021 | Volume 9 | Article 671736

https://doi.org/10.1038/nature08460
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21561
https://doi.org/10.1677/ERC-08-0266
https://doi.org/10.1677/ERC-08-0266
https://doi.org/10.1038/nri3405
https://doi.org/10.3389/fimmu.2019.03002
https://doi.org/10.1038/nature01322
https://doi.org/10.1200/JCO.2009.27.2146
https://doi.org/10.1038/ncb3194
https://doi.org/10.1016/j.immuni.2013.07.008
https://doi.org/10.1016/j.immuni.2013.07.008
https://doi.org/10.5114/aoms.2010.19305
https://doi.org/10.1172/JCI80008
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2019.10.028
https://doi.org/10.2119/molmed.2016.00082
https://doi.org/10.3389/fimmu.2018.02480
https://doi.org/10.21037/cco.2016.03.08
https://doi.org/10.1681/ASN.2017121306
https://doi.org/10.1016/j.antiviral.2017.06.006
https://doi.org/10.1016/j.antiviral.2017.06.006
https://doi.org/10.1016/j.cbi.2015.08.014
https://doi.org/10.1126/science.1132939
https://doi.org/10.1126/science.1132939
https://doi.org/10.1016/j.biopha.2019.109090
https://doi.org/10.1136/jitc-2019-000205
https://doi.org/10.1093/jnci/djx214
https://doi.org/10.1186/1475-2875-12-359
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1055/s-2007-990229
https://doi.org/10.1055/s-2007-990229
https://doi.org/10.1016/S0140-6736(18)30789-X
https://doi.org/10.1016/S0140-6736(18)30789-X
https://doi.org/10.1074/jbc.M112.377176
https://doi.org/10.1074/jbc.M112.377176
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1158/0008-5472.CAN-13-0371
https://doi.org/10.1158/0008-5472.CAN-13-0371
https://doi.org/10.1093/carcin/bgh201
https://doi.org/10.3322/caac.21551
https://doi.org/10.3892/ijo.2014.2703
https://doi.org/10.1038/s41421-018-0034-1
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-671736 July 22, 2021 Time: 14:3 # 19

Liu et al. Prognosis Associated Immune Landscape Signature

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Yu, Y., Ke, L., Lv, X., Ling, Y. H., Lu, J., Liang, H., et al. (2018).
The prognostic significance of carcinoma-associated fibroblasts and tumor-
associated macrophages in nasopharyngeal carcinoma. Cancer Manag. Res. 10,
1935–1946. doi: 10.2147/CMAR.S167071

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Wang, Mei, Nie and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 19 July 2021 | Volume 9 | Article 671736

https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.2147/CMAR.S167071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Identification of a Novel Immune Landscape Signature for Predicting Prognosis and Response of Endometrial Carcinoma to Immunotherapy and Chemotherapy
	Introduction
	Materials and Methods
	Data Sources and Clustering
	Differentially Expressed Genes and Immune-Related Genes
	Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analyses
	Establishment of the Immune-Related Prognostic Signature
	Validation of the IRPS
	Construction and Validation of a Predictive Nomogram
	Gene Set Enrichment Analysis
	Estimate of Tumor-Infiltrating Immune Cells
	TIMER Database Analysis
	TISIDB Database Analysis
	Mutation Analysis
	IPS Analysis
	Immunotherapy Response Prediction
	Verification of Gene Correlation in GEPIA
	Chemotherapy Response and Candidate Small Molecule Drugs Prediction
	Quantitative Real-Time RT-PCR
	Immunohistochemical Staining
	Statistical Analysis

	Results
	Construction of UCEC Subgrouping
	Differentially Expressed Genes and Immune-Related Genes
	Identification of Potential Biological Function-Related Genes
	Development and Validation of the IRPS
	Construction and Validation of a Prediction Nomogram
	Potential Biological Pathways Associated With IRPS
	Correlation Between IRPS and Immune Cell Infiltration
	Correlation Analysis Between 2 Hub Genes and Immune Infiltration Level
	Correlation Between IRPS and Mutation Profile
	Correlation Between IRPS and Two Therapeutic Regimens
	Potential Small Molecular Drugs for UCEC

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


